Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Biomed Rep ; 21(5): 152, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39247422

RESUMEN

Cervical spondylotic radiculopathy (CSR) is the most common type of cervical spondylosis, frequently accompanied by cervicogenic headache (CEH). Percutaneous plasma disc decompression (PPDD) and pulsed radiofrequency (PRF) are minimally invasive techniques targeting cervical intervertebral discs or cervical nerves, and have been proven to be effective methods for treatment of CSR and CEH. The present study aimed to evaluate clinical efficacy and practicality of percutaneous plasma disc decompression (PPDD) via a lower surgical approach for the treatment of cervicogenic headache (CEH) and upper extremity radicular pain by analyzing clinical outcomes of patients with cervical spondylotic radiculopathy (CSR) undergoing PPDD and pulsed radiofrequency (PRF). Clinical data of patients with CSR who received PPDD (n=79) or PRF (n=92) at Shanghai Traditional Chinese Medicine Hospital (Shanghai, China) and Jiashan County People's Hospital (Jiaxing, China) from January 2022 to December 2022 were retrospectively collected and analyzed. The surgical site and procedure, bleeding volume, preoperative analgesic use and upper extremity symptoms, history of nerve block treatment and duration of disease were recorded, as well as relevant postoperative complications (infection, hematoma, nerve injury). The therapeutic effects [NRS (numeric rating scale) and NDI (neck disability index) score, and CEH remission rate at 1, 3 and 6 months after treatment] of both surgical methods were investigated using the telephone follow-up. CEH remission rates at 1, 3 and 6 months after surgery in the PPDD group were significantly higher than in the PRF group (78.8 vs. 43.5, P=0.016; 84.8 vs. 34.8, P=0.003 and 75.8 vs. 26.1%, P=0.005, respectively). The PPDD group showed higher NRS scores than the PRF group at 1 month after surgery (3 vs. 2, P<0.0001) and lower NRS scores than the PRF group at 6 months after surgery (2 vs. 3, P<0.0001). NDI scores in the PPDD group were significantly lower than those in the PRF group at 1, 3 and 6 months after surgery (15.49 vs. 20.05, P=0.002; 16.06 vs. 20.10, P=0.003 and 9.90 vs. 13.80, P=0.001, respectively). There was no significant difference in postoperative complication rate between the two groups (P>0.999). PPDD could significantly relieve CEH symptoms and upper extremity radicular pain in patients with CSR treated via a lower surgical approach and PPDD was more effective than PRF for long-term CEH remission and pain alleviation.

2.
Plant J ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265046

RESUMEN

Mature embryos are the main explants of tissue culture used in rice transgenic technology. However, the mechanism of mature embryo callus formation remains unclear. In this study, a microRNA-mediated gene regulatory network of rice calli was established using degradome sequencing. We identified a microRNA, OsmiR408, that regulates the formation of the callus derived from the mature rice embryo. OsUCLACYANIN 30 (OsUCL 30), a target gene of OsmiR408, was the most abundant cleavage mRNA in rice callus. OsUCL17 was verified as a target gene of OsmiR408 using RNA ligase-mediated 5'-RACE. In analysis of the OsmiR408 promoter reporter line and pri-miR408 transcript level, the promoter activity and transcript level of MIR408 were increased dramatically during callus formation. In phenotypic observations, OsmiR408 knockout caused severe defects in mature embryo callus formation, whereas OsmiR408 overexpression promoted callus formation. Transcriptome analysis demonstrated that OsUCLs and certain genes related to the plant hormone signal transduction and phenylpropanoid-flavonoid biosynthesis pathway had different differential expression patterns between OsmiR408 knockout and overexpression calli. Thus, OsmiR408 may regulate callus formation mainly by affecting plant hormone signal transduction and phenylpropanoid-flavonoid biosynthesis pathway. Our findings provide insight into OsmiR408/UCLs module function in callus formation.

3.
Anal Chim Acta ; 1319: 342986, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39122284

RESUMEN

BACKGROUND: Due to the serious issue of ofloxacin (OFL) abuse, there is an increasingly urgent need for accurate and rapid detection of OFL. Immunoassay has become the "golden method" for detecting OFL in complex matrix beneficial to its applicability for a large-scale screening, rapidity, and simplicity. However, traditional antibodies used in immunoassay present challenges such as time-consuming preparation, unstable sensitivity and specificity, and difficulty in directional evolution. In this paper, we successfully developed an OFL detection method based on a shark-derived single-domain antibody (ssdAb) to address these issues. RESULTS: Using phage display technology and a heterologous expression system, OFL-specific clones 1O11, 1O13, 1O17, 1O19, 1O21, and 2O26 were successfully isolated and expressed in soluble form. Among all OFL-specific ssdAbs, the 1O17 ssdAb exhibited the highest binding affinity to OFL in a concentration-dependence manner. The limit of detection (IC10) of 1O17 ssdAb was calculated as 0.34 ng/mL with a detection range of 3.40-1315.00 ng/mL, and its cross reactivity with other analogs was calculated to be less than 5.98 %, indicating high specificity and sensitivity. Molecular docking results revealed that 100Trp and 101Arg located in the CDR3 region of 1O17 ssdAb were crucial for OFL binding. In fish matrix performance tests, the 1O17 ssdAb did not demonstrate severe matrix interference in OFL-negative fish matrix, achieving satisfactory recovery rates ranging from 83.04 % to 108.82 % with high reproducibility. SIGNIFICANCE: This research provides a new and efficient OFL detection recognition element with significant potential in immunoassay applications, broadening the application scenarios of ssdAbs. It offers valuable insights into the structure-activity relationship between ssdAbs and small molecules, laying a theoretical foundation for the further directional modification and maturation of ssdAbs in subsequent applications.


Asunto(s)
Ofloxacino , Tiburones , Anticuerpos de Dominio Único , Animales , Ofloxacino/análisis , Ofloxacino/inmunología , Ofloxacino/química , Tiburones/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Límite de Detección , Inmunoensayo/métodos
4.
Small ; : e2403593, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180252

RESUMEN

Confronting the impending exhaustion of traditional energy, it is urgent to devise and deploy sustainable clean energy alternatives. Osmotic energy contained in the salinity gradient of the sea-river interface is an innovative, abundant, clean, and renewable osmotic energy that has garnered considerable attention in recent years. Inspired by the impressively intelligent ion channels in nature, the developed angstrom-scale 2D channels with simple fabrication process, outstanding design flexibility, and substantial charge density exhibit excellent energy conversion performance, opening up a new era for osmotic energy harvesting. However, this attractive research field remains fraught with numerous challenges, particularly due to the complexities associated with the regulation at angstrom scale. In this review, the latest advancements in the design of angstrom-scale 2D channels are primarily outlined for harvesting osmotic energy. Drawing upon the analytical framework of osmotic power generation mechanisms and the insights gleaned from the biomimetic intelligent devices, the design strategies are highlighted for high-performance angstrom channels in terms of structure, functionalization, and application, with a particular emphasis on ion selectivity and ion transport resistance. Finally, current challenges and future prospects are discussed to anticipate the emergence of more anomalous properties and disruptive technologies that can promote large-scale power generation.

5.
Int J Biol Macromol ; 276(Pt 2): 133914, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029842

RESUMEN

Intelligent food packaging has recently gained significant attention due to the heightened consumer awareness regarding food quality. Although anthocyanins avoid safety issues, the instability and leakage of anthocyanins restrict their utilization in freshness indicator labels. In this study, we introduced an innovative metal-organic framework (UiO-66-NH2) synergistic pH-colorimetric label with fast ammonia-responsive, incorporating sodium alginate, red cabbage anthocyanin, and UiO-66-NH2. The cross-linked sodium alginate substrate enabled the label to possess superior insolubility. The microscopic morphology of the labels was intricately analyzed, while their sensitivity was rigorously tested utilizing ammonia as a representative gas. Due to the remarkable UV absorption capability of UiO-66-NH2 and various molecular interactions with anthocyanins, the label exhibited good UV absorption, enhanced stability, and optimized performance in reducing anthocyanin leakage, ensuring the stability and effectiveness of the labels in practical applications. The prepared label exhibited good specificity for volatile amines and ammonia gases, and robust anti-interference properties, enabling visualization and early detection of shrimp spoilage during storage at different temperatures. The strategy employed in this study presents promising new possibilities for developing intelligent packaging solutions for food products.


Asunto(s)
Alginatos , Antocianinas , Embalaje de Alimentos , Estructuras Metalorgánicas , Alginatos/química , Estructuras Metalorgánicas/química , Antocianinas/química , Embalaje de Alimentos/métodos , Concentración de Iones de Hidrógeno , Amoníaco/química , Amoníaco/análisis , Calidad de los Alimentos , Colorimetría/métodos
6.
Transl Androl Urol ; 13(5): 667-678, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38855606

RESUMEN

Background: Urosepsis is a serious complication after percutaneous nephrolithotomy (PCNL). This study aimed to develop and validate a nomogram model that can effectively predict urosepsis following PCNL. Methods: A total of 839 patients who underwent PCNL at General Hospital of Southern Theater Command from January 2018 to January 2023 and a total of 609 patients who underwent PCNL at Guangdong Second Provincial General Hospital from January 2020 to January 2023 were retrospectively analyzed in this study. The center with 839 patients was used to develop the model, and another center with 609 patients was used as an external validation group. Multivariate analysis was used to determine the optimal variables. The validation of the nomogram was assessed using the receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis (DCA). Results: Urosepsis was observed in 47 (5.6%) and 33 (5.4%) patients in the two centers. Four variables were selected to establish the nomogram through multivariate analysis, including operative time [P<0.001, odds ratio (OR): 1.035, 95% confidence interval (CI): 1.019-1.051], accumulated time of renal pelvic pressure ≥30 mmHg (0 vs. 0-60 s, P=0.011, OR: 3.180, 95% CI: 1.300-7.780; 0-60 vs. ≥60 s, P<0.001, OR: 6.389, 95% CI: 2.603-15.685), bladder urine culture (P<0.001, OR: 6.045, 95% CI: 2.454-14.891) and hydronephrosis (none or light vs. moderate, P=0.003, OR: 3.403, 95% CI: 1.509-7.674; moderate vs. several, P=0.002, OR: 4.704, 95% CI: 1.786-12.391). The calibration results showed that the model was well calibrated and ROC curve demonstrated excellent discrimination of the nomogram. In addition, the DCA showed that the nomogram had a positive net benefit. Conclusions: A prediction nomogram was developed and validated to assist clinicians in assessing the probability of urosepsis after PCNL.

7.
Food Res Int ; 189: 114564, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876596

RESUMEN

Total volatile basic nitrogen (TVB-N) serves as a crucial indicator for evaluating the freshness of salmon. This study aimed to achieve accurate and non-destructive prediction of TVB-N content in salmon fillets stored in multiple temperature settings (-20, 0, -4, 20 °C, and dynamic temperature) using near-infrared (NIR) and Raman spectroscopy. A partial least square support vector machine (LSSVM) regression model was established through the integration of NIR and Raman spectral data using low-level data fusion (LLDF) and mid-level data fusion (MLDF) strategies. Notably, compared to a single spectrum analysis, the LLDF approach provided the most accurate prediction model, achieving an R2P of 0.910 and an RMSEP of 1.922 mg/100 g. Furthermore, MLDF models based on 2D-COS and VIP achieved R2P values of 0.885 and 0.906, respectively. These findings demonstrated the effectiveness of the proposed method for precise quantitative detection of salmon TVB-N, laying a technical foundation for the exploration of similar approaches in the study of other meat products. This approach has the potential to assess and monitor the freshness of seafood, ensuring consumer safety and enhancing product quality.


Asunto(s)
Nitrógeno , Salmón , Alimentos Marinos , Espectroscopía Infrarroja Corta , Espectrometría Raman , Máquina de Vectores de Soporte , Animales , Espectrometría Raman/métodos , Espectroscopía Infrarroja Corta/métodos , Alimentos Marinos/análisis , Nitrógeno/análisis , Temperatura , Análisis de los Mínimos Cuadrados
8.
J Biochem Mol Toxicol ; 38(6): e23743, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816989

RESUMEN

UBE2T is an oncogene in varying tumors, including lung adenocarcinoma (LUAD). SORBS3 is an important signaling regulatory protein that plays a crucial role in many cancers. This study aimed to investigate whether UBE2T promoted LUAD development by mediating the ubiquitination of SORBS3 and further explore its mechanism. Bioinformatics analysis was conducted to examine the expression of SORBS3 in LUAD tissues. Cell Counting Kit-8, Transwell, and flow cytometry were employed to analyze the cellular functions of SORBS3. Co-immunoprecipitation and ubiquitination analysis were employed to observe the correlation between UBE2T and SORBS3. In vitro and in vivo experiments verified the role of UBE2T in mediating SORBS3 ubiquitination to enhance interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling and promote LUAD development. We observed significant downregulation of SORBS3 in LUAD tissues and cells. Furthermore, SORBS3 inhibited the proliferation, migration, and invasion of LUAD cells, while facilitating apoptosis in vitro. UBE2T enhanced IL-6/STAT3 signaling by mediating ubiquitination and degradation of SORBS3, thereby promoting LUAD progression. Additionally, this mechanism was further validated in the xenograft animal model in vivo. This study confirmed that UBE2T-mediated SORBS3 ubiquitination enhanced IL-6/STAT3 signaling and promoted LUAD progression, providing a novel therapeutic target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Interleucina-6 , Neoplasias Pulmonares , Factor de Transcripción STAT3 , Transducción de Señal , Enzimas Ubiquitina-Conjugadoras , Ubiquitinación , Humanos , Factor de Transcripción STAT3/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Interleucina-6/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Animales , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Ratones , Ratones Desnudos , Progresión de la Enfermedad , Línea Celular Tumoral , Femenino , Ratones Endogámicos BALB C , Proliferación Celular , Masculino
9.
Anal Chim Acta ; 1307: 342631, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719408

RESUMEN

BACKGROUND: Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spots". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. RESULTS: The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 µg L-1. SIGNIFICANCE: The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors - the interference generated by uncontrollable SERS "hot spots" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environmental contaminants.


Asunto(s)
Aptámeros de Nucleótidos , Oro , Aprendizaje Automático , Nanopartículas del Metal , Plata , Espectrometría Raman , Aptámeros de Nucleótidos/química , Plata/química , Oro/química , Nanopartículas del Metal/química , Cloranfenicol/análisis , Estradiol/análisis , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Límite de Detección
10.
Sci Total Environ ; 929: 172332, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615776

RESUMEN

Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.


Asunto(s)
Carbono , Inocuidad de los Alimentos , Nanoestructuras , Alimentos Marinos , Alimentos Marinos/análisis , Inocuidad de los Alimentos/métodos , Nanoestructuras/análisis , Carbono/análisis , Contaminación de Alimentos/análisis
11.
Front Biosci (Landmark Ed) ; 29(4): 134, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682180

RESUMEN

BACKGROUND: Immune escape is a key factor influencing survival rate of lung adenocarcinoma (LUAD) patients, but molecular mechanism of ubiquitin binding enzyme E2T (UBE2T) affecting immune escape of LUAD remains unclear. The objective was to probe role of UBE2T in LUAD. METHODS: Bioinformatics means were adopted for analyzing UBE2T and forkhead box A1 (FOXA1) expression in LUAD tissues, the gene binding sites, the pathway UBE2T regulates, and the correlation between UBE2T and glycolysis genes. Dual luciferase and chromatin immunoprecipitation (ChIP) assays were conducted for validating the binding relationship between the two genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were employed to evaluate UBE2T, FOXA1, and programmed death ligand 1 (PD-L1) levels in cancer cells. MTT assay was conducted for detecting cell viability. Cytotoxicity assay detected CD8+T cell toxicity. Cytokine expression was assayed by enzyme linked immunosorbent assay (ELISA). Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were assayed by extracellular flow analyzer. Glycolytic gene expression was analyzed by qRT-PCR, and glycolysis-related indicators were detected by ELISA. Immunohistochemistry (IHC) detected CD8+T cell infiltration in tumor tissues. RESULTS: FOXA1 and UBE2T were up-regulated in LUAD, and a binding site existed between UBE2T and FOXA1. Overexpressing UBE2T could increase PD-L1 expression and inhibit toxicity of CD8+T cells to LUAD cells. Overexpressing UBE2T repressed CD8+T cell activity in LUAD by activating the glycolysis pathway, and the addition of glycolysis inhibitor 2-deoxy-d-glucose (2-DG) reversed the above results. Mechanistically, FOXA1 promoted the immune escape of LUAD by up-regulating UBE2T and thus mediating glycolysis. In vivo experiments revealed that UBE2T knockdown hindered tumor growth, inhibited PD-L1 expression, and facilitated CD8+T cell infiltration. CONCLUSION: FOXA1 up-regulated the expression of UBE2T, which activated glycolysis, and thus inhibited activity of CD8+T cells, causing immune escape of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Linfocitos T CD8-positivos , Factor Nuclear 3-alfa del Hepatocito , Neoplasias Pulmonares , Enzimas Ubiquitina-Conjugadoras , Animales , Femenino , Humanos , Masculino , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glucólisis , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Desnudos , Escape del Tumor/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
12.
Food Chem ; 447: 138902, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38458132

RESUMEN

The timely detection of freshness changes of aquatic products is crucial. In this study, we have developed a reliable, cost-effective, and user-friendly method for rapidly detecting hypoxanthine using a xanthine oxidase (XOD)/nanozyme enzymatic cascade system. The nanozyme, derived from the Fe7/Ni3 metal-organic framework (Fe7Ni3MOF), exhibited good peroxidase-mimetic activity and stability. Our proposed XOD/Fe7Ni3MOF enzymatic cascade system demonstrated a linear response to hypoxanthine in the range of 3-70 µM, with a low detection limit of 1.39 µM. We also analyzed hypoxanthine in actual aquatic products, achieving spiked recoveries ranging from 90.04 % to 107.37 %. The correlation coefficient between our developed colorimetric method and the HPLC method was 0.98. Importantly, our proposed method holds several advantages over alternative techniques, particularly in terms of cost-effectiveness, precision, and speed. Consequently, this methodology shows great promise for the early detection of freshness changes in aquatic samples.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Hipoxantina , Técnicas Biosensibles/métodos , Colorimetría/métodos , Peróxido de Hidrógeno
13.
J Cell Mol Med ; 28(7): e18240, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38509741

RESUMEN

Growing evidence supports the analgesic efficacy of electroacupuncture (EA) in managing chronic neuropathic pain (NP) in both patients and NP models induced by peripheral nerve injury. However, the underlying mechanisms remain incompletely understood. Ferroptosis, a novel form of programmed cell death, has been found to be activated during NP development, while EA has shown potential in promoting neurological recovery following acute cerebral injury by targeting ferroptosis. In this study, to investigate the detailed mechanism underlying EA intervention on NP, male Sprague-Dawley rats with chronic constriction injury (CCI)-induced NP model received EA treatment at acupoints ST36 and GV20 for 14 days. Results demonstrated that EA effectively attenuated CCI-induced pain hypersensitivity and mitigated neuron damage and loss in the spinal cord of NP rats. Moreover, EA reversed the oxidative stress-mediated spinal ferroptosis phenotype by upregulating reduced expression of xCT, glutathione peroxidase 4 (GPX4), ferritin heavy chain (FTH1) and superoxide dismutase (SOD) levels, and downregulating increased expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), malondialdehyde levels and iron overload. Furthermore, EA increased the immunofluorescence co-staining of GPX4 in neurons cells of the spinal cord of CCI rats. Mechanistic analysis unveiled that the inhibition of antioxidant pathway of Nrf2 signalling via its specific inhibitor, ML385, significantly countered EA's protective effect against neuronal ferroptosis in NP rats while marginally diminishing its analgesic effect. These findings suggest that EA treatment at acupoints ST36 and GV20 may protect against NP by inhibiting neuronal ferroptosis in the spinal cord, partially through the activation of Nrf2 signalling.


Asunto(s)
Electroacupuntura , Ferroptosis , Neuralgia , Humanos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Electroacupuntura/métodos , Factor 2 Relacionado con NF-E2/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Médula Espinal/metabolismo , Analgésicos
14.
Small Methods ; 8(7): e2301262, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38227388

RESUMEN

Icing negatively impacts various industrial sectors and daily life, often leading to severe safety problems and substantial economic losses. In this work, a fluorinated resin coating with embedded graphene nanoflakes is prepared using a spin-coating curing process. The results shows that the ice adhesion strength is reduced by ≈97.0% compared to the mirrored aluminum plate, and the icing time is delayed by a factor of 46.3 under simulated solar radiation power of 96 mW cm-2 (1 sun) at an ambient temperature of -15 °C. The superior anti/de-icing properties of the coating are mainly attributed to the synergistic effect of the fluorinated resin with a low surface energy, the rough structure of the sandblasted aluminum plate, which reduces the contact area, and the embedded graphene nanoflakes with a superior photothermal effect. Furthermore, the hydrogen bonding competition effect between the exposed-edge oxygen-containing functional groups of the embedded graphene nanoflakes and water molecules further improves the anti-icing properties. This work proposes a facile preparation method to prepare coatings with excellent anti/de-icing properties, offering significant potential for large-scale engineering applications.

15.
Compr Rev Food Sci Food Saf ; 23(1): e13301, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284587

RESUMEN

In recent years, the food industry has shown a growing interest in the development of rapid and nondestructive analytical methods. However, the utilization of a solitary nondestructive detection technique offers only a constrained extent of physical or chemical insights regarding the sample under examination. To overcome this limitation, the amalgamation of spectroscopy with data fusion strategies has emerged as a promising approach. This comprehensive review delves into the fundamental principles and merits of low-level, mid-level, and high-level data fusion strategies within the domain of food analysis. Various data fusion techniques encompassing spectra-to-spectra, spectra-to-machine vision, spectra-to-electronic nose, and spectra-to-nuclear magnetic resonance are summarized. Moreover, this review also provides an overview of the latest applications of spectral data fusion techniques (SDFTs) for classification, adulteration, quality evaluation, and contaminant detection within the purview of food safety analysis. It also addresses current challenges and future prospects associated with SDFTs in real-world applications. Despite the extant technical intricacy, the ongoing evolution of online data fusion platforms and the emergence of smartphone-based multi-sensor fusion detection technology augur well for the pragmatic realization of SDFTs, endowing them with formidable capabilities for both qualitative and quantitative analysis in the realm of food analysis.


Asunto(s)
Análisis de los Alimentos , Industria de Alimentos , Análisis Espectral/métodos , Análisis de los Alimentos/métodos
16.
Bioact Mater ; 33: 545-561, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38162513

RESUMEN

Osteoarthritis (OA) is a common chronic inflammatory disorder. Effective remodeling of inflammatory microenvironment in the joint is a promising strategy to prevent OA. However, current drugs remain unsatisfactory due to a lack of targeted and effective ways for relieving inflammatory conditions in OA joints. Bortezomib (BTZ), a proteasome inhibitor, could effectively inhibit proinflammatory cytokines but with poor accumulation in the inflammatory tissues. To overcome the shortcomings of BTZ delivery and to improve the efficacy of OA therapy, herein, we designed a novel nanomedicine (denoted as BTZ@PTK) by the co-assembly of BTZ and an amphiphilic copolymer (denoted as PTK) with ROS-cleaved thioketal (TK) linkages. The TK units in BTZ@PTK are first cleaved by the excessive ROS at OA sites, and then triggered the controlled release of BTZ, resulting in the accurate delivery and the inflammatory microenvironment remodeling. Accordingly, BTZ@PTK suppressed ROS generation and proinflammatory cytokines while promoting M1 macrophage apoptosis in lipopolysaccharide (LPS)-activated RAW264.7 macrophages or LPS/IFN-γ-treated primary macrophages, which leads to a better effect than BTZ. In OA mice, BTZ@PTK passively accumulates into inflamed joints to attenuate pain sensitivity and gait abnormality. Importantly, BTZ@PTK treatment successfully ameliorates synovitis with the reduction of synovial hyperplasia and synovitis scores by suppressing M1 macrophage polarization and promoting M1 macrophage apoptosis in the synovium, thereby delaying cartilage damage. Collectively, BTZ@PTK can effectively modulate inflammatory microenvironment for OA recession by activating M1 macrophage apoptosis and inhibiting M1macrophage-mediated inflammatory response.

17.
Biomed Rep ; 20(2): 30, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38259587

RESUMEN

The present study aimed to evaluate the efficacy and safety of bloodletting puncture and cupping (BLP-C) in postherpetic neuralgia (PHN) and to provide guidance for clinical treatment. Randomized controlled trials (RCTs) of BLP-C therapy in PHN were systematically searched in eight databases from inception to September 2022. Literature screening, data extraction and quality assessment were performed by two independent researchers. Dichotomous and continuous variables were pooled using the risk ratio (RR) and weighted mean difference (WMD), respectively. A total of 13 studies involving 1,129 patients with PHN (571 in the experimental group and 558 in the control group) were included in the present meta-analysis. Overall efficacy (RR=1.21, 95% CI: 1.15 to 1.28, P<0.00001), VAS score (WMD=-1.10, 95% CI: -1.31 to -0.90, P<0.00001) and PSQI score (WMD=-2.42, 95% CI: -2.87 to -1.96, P<0.0001) were significantly different between the BLP-C group and Western medicine group. Furthermore, subgroup analysis demonstrated that BLP-C alone or combined with other traditional Chinese medicines was more effective than Western medicine in PHN. A total of four RCTs mentioned adverse reactions, most of which were in the Western medicine group and were relieved after treatment discontinuation. In conclusion, BLP-C is superior to Western medicine in relieving pain and improving the sleep quality of patients with PHN with a lower incidence of adverse effects.

18.
Light Sci Appl ; 13(1): 4, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38161203

RESUMEN

Phase recovery (PR) refers to calculating the phase of the light field from its intensity measurements. As exemplified from quantitative phase imaging and coherent diffraction imaging to adaptive optics, PR is essential for reconstructing the refractive index distribution or topography of an object and correcting the aberration of an imaging system. In recent years, deep learning (DL), often implemented through deep neural networks, has provided unprecedented support for computational imaging, leading to more efficient solutions for various PR problems. In this review, we first briefly introduce conventional methods for PR. Then, we review how DL provides support for PR from the following three stages, namely, pre-processing, in-processing, and post-processing. We also review how DL is used in phase image processing. Finally, we summarize the work in DL for PR and provide an outlook on how to better use DL to improve the reliability and efficiency of PR. Furthermore, we present a live-updating resource ( https://github.com/kqwang/phase-recovery ) for readers to learn more about PR.

19.
Global Spine J ; : 21925682231220550, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062746

RESUMEN

STUDY DESIGN: Randomized controlled trial. OBJECTIVES: To compare the effect and safety of 2 anesthetic methods using in the operation of Transforaminal Endoscopic Lumbar Discectomy. METHODS: From the January of 2020 to the December of 2021, 230 consecutive patients that underwent TELD were applied with two methods of anesthesia. All the patients were divided into two groups. The Monitored Anesthesia Care (MAC) group used the local anesthesia (LA) with MAC that based on the combination of dexmedetomidine and butorphanol tartrate. The LA group used the local anesthesia only. Then the Visual Analogic Scale (VAS) through the operating period was compared between the two groups at the time points of before operation (T0), inserting of the puncture needle (T1), establishing of the working cannula (T2), excision of the fibrous rings (T3) and immediately postoperatively (T4). Also, the satisfaction degree of the patients for the course of the operations and the occurrence of the complications were compared between the two groups. RESULTS: There were no differences of the VAS around the operating area at the time point of T0. Then the MAC group expressed lower scores at all other points of T1, T2, T3 and T4. Then the satisfaction degree of the MAC group was superior than the LA group. No difference was observed for the occurrence of the complications. CONCLUSIONS: MAC based on the combination of dexmedetomidine and butorphanol tartrate is an ideal method of anesthesia for TELD with enough effect and safety.

20.
Front Oncol ; 13: 1279045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090500

RESUMEN

Aumolertinib, as a novel third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has been widely employed as a first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation. However, reports regarding the benefit of using aumolertinib as a monotherapy in pulmonary giant cell carcinoma are relatively scarce. In this report, we present a pulmonary giant cell carcinoma case harboring the EGFR Leu858Arg (L858R) mutation, with the patient at stage cT2bN3M1c IVB. Through the use of autolearning as a single agent, we effectively controlled the progression of pulmonary giant cell carcinoma, achieving a 6-month progression-free survival during the treatment course. Notably, the patient's tumor not only ceased its growth but also continued to shrink, highlighting a significant therapeutic effect. This case reveals the effectiveness of aumolertinib as a monotherapy in controlling disease progression. The finding underscores the therapeutic advantage of aumolertinib in this particular subgroup of patients, offering a novel treatment option for pulmonary giant cell carcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA