Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Chem Commun (Camb) ; 60(3): 336-339, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38073516

Continuous advancement in molecular electronics demands increasing functionality and diversity of integrated molecular junctions; however, single-functional molecular junctions fail to meet these requirements. In this article, we propose the use of a widely applicable and efficient click reaction on the surface to modify self-assembled monolayers (SAMs) to achieve multifunctional molecular tunnelling junctions, current rectification and memristance, on a single chip. This approach has allowed us to meet the growing demand for versatility and functionality in molecular electronic devices.

2.
Proc Natl Acad Sci U S A ; 120(24): e2304506120, 2023 Jun 13.
Article En | MEDLINE | ID: mdl-37279276

Dynamic molecular devices operating with time- and history-dependent performance raised new challenges for the fundamental study of microscopic non-steady-state charge transport as well as functionalities that are not achievable by steady-state devices. In this study, we reported a generic dynamic mode of molecular devices by addressing the transient redox state of ubiquitous quinone molecules in the junction by proton/water transfer. The diffusion limited slow proton/water transfer-modulated fast electron transport, leading to a non-steady-state transport process, as manifested by the negative differential resistance, dynamic hysteresis, and memory-like behavior. A quantitative paradigm for the study of the non-steady-state charge transport kinetics was further developed by combining the theoretical model and transient state characterization, and the principle of the dynamic device can be revealed by the numerical simulator. On applying pulse stimulation, the dynamic device emulated the neuron synaptic response with frequency-dependent depression and facilitation, implying a great potential for future nonlinear and brain-inspired devices.

3.
Chem Commun (Camb) ; 59(17): 2489-2492, 2023 Feb 23.
Article En | MEDLINE | ID: mdl-36752553

By inserting a tricoordinate B atom into an indolo[3,2,1-jk]carbazole precursor, an efficient fused multiple resonance-induced thermally activated delayed fluorescence emitter was prepared, which exhibits a narrowband emission and a considerable reverse intersystem crossing rate. The corresponding organic light-emitting diode displays an external quantum efficiency of 27.2% with a suppressed efficiency roll-off.

4.
Adv Mater ; 34(26): e2202135, 2022 Jul.
Article En | MEDLINE | ID: mdl-35546046

Controllable single-molecule logic operations will enable development of reliable ultra-minimalistic circuit elements for high-density computing but require stable currents from multiple orthogonal inputs in molecular junctions. Utilizing the two unique adjacent conductive molecular orbitals (MOs) of gated Au/S-(CH2 )3 -Fc-(CH2 )9 -S/Au (Fc = ferrocene) single-electron transistors (≈2 nm), a stable single-electron logic calculator (SELC) is presented, which allows real-time modulation of output current as a function of orthogonal input bias (Vb ) and gate (Vg ) voltages. Reliable and low-voltage (ǀVb ǀ ≤ 80 mV, ǀVg ǀ ≤ 2 V) operations of the SELC depend upon the unambiguous association of current resonances with energy shifts of the MOs (which show an invariable, small energy separation of ≈100 meV) in response to the changes of voltages, which is confirmed by electron-transport calculations. Stable multi-logic operations based on the SELC modulated current conversions between the two resonances and Coulomb blockade regimes are demonstrated via the implementation of all universal 1-input (YES/NOT/PASS_1/PASS_0) and 2-input (AND/XOR/OR/NAND/NOR/INT/XNOR) logic gates.

5.
Adv Sci (Weinh) ; 6(20): 1900390, 2019 Oct 16.
Article En | MEDLINE | ID: mdl-31637155

In principle, excitation of surface plasmons by molecular tunnel junctions can be controlled at the molecular level. Stable electrical excitation sources of surface plasmons are therefore desirable. Herein, molecular junctions are reported where tunneling charge carriers excite surface plasmons in the gold bottom electrodes via inelastic tunneling and it is shown that the intermittent light emission (blinking) originates from conformational dynamics of the molecules. The blinking rates, in turn, are controlled by changing the rigidity of the molecular backbone. Power spectral density analysis shows that molecular junctions with flexible aliphatic molecules blink, while junctions with rigid aromatic molecules do not.

6.
Nat Nanotechnol ; 13(4): 322-329, 2018 04.
Article En | MEDLINE | ID: mdl-29581549

Solid-state molecular tunnel junctions are often assumed to operate in the Landauer regime, which describes essentially activationless coherent tunnelling processes. In solution, on the other hand, charge transfer is described by Marcus theory, which accounts for thermally activated processes. In practice, however, thermally activated transport phenomena are frequently observed also in solid-state molecular junctions but remain poorly understood. Here, we show experimentally the transition from the Marcus to the inverted Marcus region in a solid-state molecular tunnel junction by means of intra-molecular orbital gating that can be tuned via the chemical structure of the molecule and applied bias. In the inverted Marcus region, charge transport is incoherent, yet virtually independent of temperature. Our experimental results fit well to a theoretical model that combines Landauer and Marcus theories and may have implications for the interpretation of temperature-dependent charge transport measurements in molecular junctions.

7.
Nanoscale ; 10(8): 3904-3910, 2018 Feb 22.
Article En | MEDLINE | ID: mdl-29423488

Recent experiments demonstrate a temperature control of the electric conduction through a ferrocene-based molecular junction. Here we examine the results in view of determining means to distinguish between transport through single-particle molecular levels or via transport channels split by Coulomb repulsion. Both transport mechanisms are similar in molecular junctions given the similarities between molecular intralevel energies and the charging energy. We propose an experimentally testable way to identify the main transport process. By applying a magnetic field to the molecule, we observe that an interacting theory predicts a shift of the conductance resonances of the molecule whereas in the noninteracting case each resonance is split into two peaks. The interaction model works well in explaining our experimental results obtained in a ferrocene-based single-molecule junction, where the charge degeneracy peaks shift (but do not split) under the action of an applied 7-Tesla magnetic field. This method is useful for a proper characterization of the transport properties of molecular tunnel junctions.

8.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 9): 1275-1278, 2017 Sep 01.
Article En | MEDLINE | ID: mdl-28932453

In the title compound (systematic name: 4,4'-{[2-(5,6-di-hydro-[1,3]di-thiolo[4,5-b][1,4]dioxin-2-yl-idene)-1,3-di-thiole-4,5-di-yl]bis-(sulfanedi-yl)}di-benzoic acid 0.25-hydrate), C22H14O6S6·0.25H2O, the tetra-thia-fulvalene (TTF) core adopts a boat conformation, where the central S2C=CS2 plane makes dihedral angles of 31.34 (4) and 26.83 (6)°, respectively, with the peripheral S2C=CS2 and S2C2O2 planes. In the crystal, the benzoic acid mol-ecules are linked via O-H⋯O hydrogen bonds, forming inversion dimers with R22(8) motifs. The dimers are linked through weak C-H⋯O hydrogen bonds into a chain structure along [-101]. The chains stack along the a axis through S⋯S and S⋯C short contacts, forming layers parallel to the ac plane.

9.
Dalton Trans ; 45(43): 17153-17159, 2016 Nov 01.
Article En | MEDLINE | ID: mdl-27775126

In this work we present a comparative study of the temperature behavior of charge current in both single-molecule transistors and self-assembled monolayer-based tunnel junctions with symmetrical molecules of alkanethiolates functionalized with a ferrocene (Fc) unit. The Fc unit is separated from the electrodes with two equal alkyl chains of enough length to ensure weak coupling of the Fc unit with the electrodes. These junctions do not rectify charge current and display exponential dependence with temperature with moderate slopes, which can be directly associated to the thermal broadening of the electronic occupation Fermi distribution in the electrodes. The capability to electrically gate the molecular frontier orbital of the Fc (here the highest occupied molecular orbital, HOMO) in the single-molecule transistor, not possible in the two-terminal SAM-based junctions, allows for a detailed comparative between the two classes of junctions. Our findings demonstrate that, although most transport characteristics are equivalent, collective effects arising from interactions between molecules in the self-assembled monolayer greatly affect the energetics of SAM-based junctions, resulting in a bias-independent tunnel current, contrary to the case of the single-molecule junction and as expected from the thermal broadening of the electronic occupation around the Fermi energy in the electrodes.

10.
Nat Commun ; 7: 11595, 2016 05 23.
Article En | MEDLINE | ID: mdl-27211787

Understanding how the mechanism of charge transport through molecular tunnel junctions depends on temperature is crucial to control electronic function in molecular electronic devices. With just a few systems investigated as a function of bias and temperature so far, thermal effects in molecular tunnel junctions remain poorly understood. Here we report a detailed charge transport study of an individual redox-active ferrocene-based molecule over a wide range of temperatures and applied potentials. The results show the temperature dependence of the current to vary strongly as a function of the gate voltage. Specifically, the current across the molecule exponentially increases in the Coulomb blockade regime and decreases at the charge degeneracy points, while remaining temperature-independent at resonance. Our observations can be well accounted for by a formal single-level tunnelling model where the temperature dependence relies on the thermal broadening of the Fermi distributions of the electrons in the leads.

11.
Sci Rep ; 6: 26517, 2016 05 24.
Article En | MEDLINE | ID: mdl-27216489

We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Similar to Marcus relaxation processes in wet electrochemistry, the thermal broadening of the Fermi distribution describing the electronic occupation energies in the electrodes accounts for the exponential dependence of the tunneling current on temperature. We demonstrate that a single-level tunnel model satisfactorily explains experimental results obtained in three different molecular junctions (both single-molecule and SAM-based) formed by ferrocene-based molecules. Among other things, we use the model to map the electrostatic potential profile in EGaIn-based SAM junctions in which the ferrocene unit is placed at different positions within the molecule, and we find that electrical screening gives rise to a strongly non-linear profile across the junction.

12.
Nanoscale ; 7(46): 19547-56, 2015 Dec 14.
Article En | MEDLINE | ID: mdl-26537895

This paper describes a method to fabricate a microfluidic top-electrode that can be utilized to generate arrays of self-assembled monolayer (SAM)-based junctions. The top-electrodes consist of a liquid-metal of GaOx/EGaIn mechanically stabilized in microchannels and through-holes in polydimethylsiloxane (PDMS); these top-electrodes form molecular junctions by directly placing them onto the SAM supported by template-stripped (TS) Ag or Au bottom-electrodes. Unlike conventional techniques to form multiple junctions, our method does not require lithography to pattern the bottom-electrode and is compatible with TS bottom-electrodes, which are ultra-flat with large grains, free from potential contamination of photoresist residues, and do not have electrode-edges where the molecules are unable to pack well. We formed tunneling junctions with n-alkanethiolate SAMs in yields of ∼80%, with good reproducibility and electrical stability. Temperature dependent J(V) measurements indicated that the mechanism of charge transport across the junction is coherent tunneling. To demonstrate the usefulness of these junctions, we formed molecular diodes based on SAMs with Fc head groups. These junctions rectify currents with a rectification ratio R of 45. These molecular diodes were incorporated in simple electronic circuitry to demonstrate molecular diode-based Boolean logic.

13.
Chem Asian J ; 8(8): 1901-9, 2013 Aug.
Article En | MEDLINE | ID: mdl-23729379

Understanding the relationships between the molecular structure and electronic transport characteristics of single-molecule junctions is of fundamental and technological importance for future molecular electronics. Herein, we report a combined experimental and theoretical study on the single-molecule conductance of a series of oligo(phenylene ethynylene) (OPE) molecular wires, which consist of two phenyl-ethynyl-phenyl π units with different dihedral angles. The molecular conductance was studied by scanning tunneling microscopy (STM)-based break-junction techniques under different conditions, including variable temperature and bias potential, which suggested that a coherent tunneling mechanism takes place in the OPE molecular wires with a length of 2.5 nm. The conductance of OPE molecular junctions are strongly affected by the coupling strength between the two π systems, which can be tuned by controlling their intramolecular conformation. A cos(2)θ dependence was revealed between the molecular conductance and dihedral angles between the two conjugated units. Theoretical investigations on the basis of density functional theory and nonequilibrium Green's functions (NEGF) gave consistent results with the experimental observations and provided insights into the conformation-dominated molecular conductance.

14.
Phys Chem Chem Phys ; 13(35): 15882-90, 2011 Sep 21.
Article En | MEDLINE | ID: mdl-21822508

The feasibility of employing azulene-like molecules as a new type of high performance substitution-free molecular rectifier has been explored using NEGF-DFT calculation. The electronic transport behaviors of metal-molecule-metal junctions consisting of various azulene-like dithiol molecules are investigated, which reveals that the azulene-like molecules exhibit high conductance and bias-dependent rectification effects. Among all the substitution-free azulene-like structures, cyclohepta[b]cyclopenta[g]naphthalene exhibits the highest rectification ratio, revealing that the all fused aromatic ring structure and an appropriate separation between the pentagon and heptagon rings are essential for achieving both high conductance and high rectification ratio. The rectification ratio can be increased by substituting the pentagon ring with electron-withdrawing group and/or the heptagon ring with electron donating groups. Further increase of the rectification ratio may also be obtained by lithium adsorption on the pentagon ring. This work reveals that azulene-like molecules may be used as a new class of highly conductive unimolecular rectifiers.

15.
Chemistry ; 17(30): 8414-23, 2011 Jul 18.
Article En | MEDLINE | ID: mdl-21656581

Understanding the effects of intermolecular interactions on the charge-transport properties of metal/molecule/metal junctions is an important step towards using individual molecules as building blocks for electronic devices. This work reports a systematic electron-transport investigation on a series of "core-shell"-structured oligo(phenylene ethynylene) (Gn-OPE) molecular wires. By using dendrimers of different generations as insulating "shells", the intermolecular π-π interactions between the OPE "cores" can be precisely controlled in single-component monolayers. Three techniques are used to evaluate the electron-transport properties of the Au/Gn-OPE/Au molecular junctions, including crossed-wire junction, scanning tunneling spectroscopy (STS), and scanning tunneling microscope (STM) break-junction techniques. The STM break-junction measurement reveals that the electron-transport pathways are strongly affected by the size of the side groups. When the side groups are small, electron transport could occur through three pathways, including through single-molecule junctions, double-molecule junctions, and molecular bridges between adjacent molecules formed by aromatic π-π coupling. The dendrimer shells effectively prohibit the π-π coupling effect, but at the same time, very large dendrimer side groups may hinder the formation of Au-S bonds. A first-generation dendrimer acts as an optimal shell that only allows electron transport through the single-molecule junction pathway, and forbids the other undesired pathways. It is demonstrated that the dendrimer-based core-shell strategy allows the single-molecule conductance to be probed in a homogenous monolayer without the influence of intermolecular π-π interactions.

16.
Org Lett ; 9(4): 595-8, 2007 Feb 15.
Article En | MEDLINE | ID: mdl-17253702

Two series of oligo(phenylene ethynylene)s (OPEs) with different dendrimer side groups have been designed and synthesized. The molecules contain thiol groups at both ends to enable interconnection between nanoscale gapped metallic electrodes. The different dendrimer groups act as "shells", allowing tailoring to the nanoscopic environment surrounding the OPE "core". Meanwhile, the dendrimer shells also act as spacers for the precise control of the packing density and intermolecular interaction between the OPE cores. [structure: see text].

...