Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.572
1.
Article En | MEDLINE | ID: mdl-38743552

Physical therapists play a crucial role in guiding patients through effective and safe rehabilitation processes according to medical guidelines. However, due to the therapist-patient imbalance, it is neither economical nor feasible for therapists to provide guidance to every patient during recovery sessions. Automated assessment of physical rehabilitation can help with this problem, but accurately quantifying patients' training movements and providing meaningful feedback poses a challenge. In this paper, an Expert-knowledge-based Graph Convolutional approach is proposed to automate the assessment of the quality of physical rehabilitation exercises. This approach utilizes experts' knowledge to improve the spatial feature extraction ability of the Graph Convolutional module and a Gated pooling module for feature aggregation. Additionally, a Transformer module is employed to capture long-range temporal dependencies in the movements. The attention scores and weight matrix obtained through this approach can serve as interpretability tools to help therapists understand the assessment model and assist patients in improving their exercises. The effectiveness of the proposed method is verified on the KIMORE dataset, achieving state-of-the-art performance compared to existing models. Experimental results also illustrate the interpretability of the method in both spatial and temporal dimensions.


Algorithms , Exercise Therapy , Neural Networks, Computer , Humans , Exercise Therapy/methods , Male , Rehabilitation/methods , Knowledge Bases , Movement/physiology , Expert Systems , Female , Adult
2.
BMC Genomics ; 25(1): 492, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760719

Rapeseed (Brassica napus L.), accounts for nearly 16% of vegetable oil, is the world's second produced oilseed. However, pod shattering has caused significant yield loses in rapeseed production, particularly during mechanical harvesting. The GH28 genes can promote pod shattering by changing the structure of the pod cell wall in Arabidopsis. However, the role of the GH28 gene family in rapeseed was largely unknown. Therefore, a genome-wide comprehensive analysis was conducted to classify the role of GH28 gene family on rapeseed pod shattering. A total of 37 BnaGH28 genes in the rapeseed genome were identified. These BnaGH28s can be divided into five groups (Group A-E), based on phylogenetic and synteny analysis. Protein property, gene structure, conserved motif, cis-acting element, and gene expression profile of BnaGH28 genes in the same group were similar. Specially, the expression level of genes in group A-D was gradually decreased, but increased in group E with the development of silique. Among eleven higher expressed genes in group E, two BnaGH28 genes (BnaA07T0199500ZS and BnaC06T0206500ZS) were significantly regulated by IAA or GA treatment. And the significant effects of BnaA07T0199500ZS variation on pod shattering resistance were also demonstrated in present study. These results could open a new window for insight into the role of BnaGH28 genes on pod shattering resistance in rapeseed.


Brassica napus , Phylogeny , Plant Proteins , Brassica napus/genetics , Plant Proteins/genetics , Gene Expression Regulation, Plant , Multigene Family , Genome, Plant , Synteny , Gene Expression Profiling
3.
Nanoscale Horiz ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747281

This study introduces a new, facile method to synthesize silver clusters from aqueous silver ion solution by using high intensity femtosecond pulse laser irradiation. The particles obtained in the absence of reducing or capping agents are 1-17 nm in size and presented quantum properties, as characterized by fluorescence, but did not exhibit plasmon signals, which is not a common characteristic of conventional silver nanoparticles. In a further development, small silver quantum clusters (∼1 nm) were bound in situ to wet-spun filaments of cellulose nanofibrils by pulsed laser irradiation. The obtained hybrid filaments as well as free silver quantum clusters revealed a catalytic activity remarkably higher than that of free gold quantum clusters; moreover, the hybrid filaments were found to show improved stability and cycling performance for silver-based catalysis. The present results indicate the potential of femtosecond laser irradiation to generate clusters as well as hybrid systems with excellent performance and reactivity.

4.
Integr Comp Biol ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38755000

Predicting performance responses of insects to climate change is crucial for biodiversity conservation and pest management. While most projections on insects' performance under climate change have used macro-scale weather station data, few incorporated the microclimates within vegetation that insects inhabit and their feeding behaviors (e.g., leaf-nesting: building leaf nests or feeding inside). Here, taking advantage of relatively homogenous vegetation structures in agricultural fields, we built microclimate models to examine fine-scale air temperatures within two important crop systems (maize and rice) and compared microclimate air temperatures to temperatures from weather stations. We deployed physical models of caterpillars and quantified effects of leaf-nesting behavior on operative temperatures of two Lepidoptera pests: Ostrinia furnacalis (Pyralidae) and Cnaphalocrocis medinalis (Crambidae). We built temperature-growth rate curves and predicted the growth rate of caterpillars with and without leaf-nesting behavior based on downscaled microclimate changes under different climate change scenarios. We identified widespread differences between microclimates in our crop systems and air temperatures reported by local weather stations. Leaf-nesting individuals in general had much lower body temperatures compared to non-leaf-nesting individuals. When considering microclimates, we predicted leaf-nesting individuals grow slower compared to non-leaf nesting individuals with rising temperature. Our findings highlight the importance of considering microclimate and habitat-modifying behavior in predicting performance responses to climate change. Understanding the thermal biology of pests and other insects would allow us to make more accurate projections on crop yields and biodiversity responses to environmental changes.

5.
J Gastrointest Oncol ; 15(2): 597-611, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38756631

Background: As one of the most common diseases in terms of cancer-related mortality worldwide, gastric adenocarcinoma (GA) frequently develops peritoneal metastases (PMs) in advanced stages. Systemic therapy or optimal supportive care are recommended for advanced GA; however, patients frequently develop drug resistance. Surgical resection is not recommended for stage IV patients, and there have been some controversies regarding the role of it in GA patients with PMs. The aim of the study was to preliminarily evaluate the possible effect of surgical treatments on patients with only PMs from GA. Methods: Data were collected from the Surveillance, Epidemiology and End Results (SEER) database (year 2000-2022). A propensity score matching (PSM) was performed to reduce the influence of selection bias and confounding variables on comparisons. Then Cox proportional hazard regression, Kaplan-Meier analysis, and log-rank test were performed to assess the efficacy of surgical treatment in patients with PMs from GA. Results: A total of 399 patients diagnosed with PMs from GA were enrolled for our analysis, of which, 180 (45.1%) patients did not receive surgery and 219 (54.9%) patients received surgery. Multivariate Cox regression analysis before PSM indicated higher rates of overall survival (OS) outcome for patients who had received surgery [hazard ratio (HR) =0.4342, 95% confidence interval (CI): 0.3283-0.5742, P<0.001]. After PSM, a total of 172 patients were enrolled, with 86 in each group. Multivariate Cox analysis showed that surgery was the independent factor reflecting patients' survival (HR =0.4382, 95% CI: 0.3037-0.6324, P<0.001). Subgroup survival analysis revealed that surgery may bring advantages to patients with grades I-IV, stages T1-T4, stage N0, and tumor size less than 71 mm (P<0.05). We also found that the OS of chemotherapy patients who had undergone surgery was better than that of chemotherapy patients who had not undergone surgery (P<0.01). Conclusions: Based on the SEER database, surgery has better OS for patients only with PMs from GA. Patients without lymph node metastasis and those who received chemotherapy before may benefit from surgery. These specific groups of patients may have surgery as an option to improve the prognosis.

6.
Quant Imaging Med Surg ; 14(5): 3461-3472, 2024 May 01.
Article En | MEDLINE | ID: mdl-38720834

Background: Although the application of four-dimensional hysterosalpingo-contrast sonography (4D-HyCoSy) has relatively good diagnostic accuracy for assessing the patency of the fallopian tubes, the evaluation process mainly relies on morphological findings of the fallopian tubes and pelvic cavity. The purpose of this study was to explore the relationship of peak injection pressure during 4D-HyCoSy and tubal patency to provide a quantitative indicator for the evaluation of fallopian tube patency. Methods: This study included infertile patients who underwent 4D-HyCoSy and laparoscopic chromopertubation (LC) between 2020 and 2022, with LC serving as the reference test for assessing tubal patency. For the HyCoSy procedure, the ultrasound contrast agent was injected automatically using a liquid injection machine, and real-time pressure values were recorded. Patients were classified based on tubal patency status in LC as bilaterally patent, unilaterally patent, or bilaterally nonpatent. The average peak injection pressure and contrast agent volume of different groups were compared. Receiver operating characteristic (ROC) curve analysis was employed to determine the cutoff value. Results: A total of 268 infertile patients were enrolled in the study. With LC as the standard examination, the sensitivity and specificity of 4D-HyCoSy in diagnosing nonpatent fallopian tubes were 91.1% and 95.1%, respectively. In general, peak injection pressure was observed to gradually increase as tubal patency decreased (P<0.001), with average peak injection pressures of 233.5±66.3, 338.8±99.8, and 469.6±63.1 mmHg in the bilaterally patent, unilaterally patent, and bilaterally nonpatent groups, respectively. The volume of contrast agent used in patients in the bilaterally nonpatent group was significantly lower than that in the other two groups (P<0.01), with average volumes of 22.7±6.3, 24.3±9.3, and 18.9±9.2 mL, respectively. When one fallopian tube was patent, the area under the curve (AUC) for distinguishing obstruction from patency of the other fallopian tube was 0.827, with a sensitivity of 79.8% and a specificity of 74.3% (cutoff value: 254.3 mmHg). Similarly, when one fallopian tube was nonpatent, the AUC was 0.866, with a sensitivity of 90.6% and a specificity of 78.3% (cutoff value: 401.3 mmHg). Conclusions: Peak injection pressure during 4D-HyCoSy demonstrates promising diagnostic performance in evaluating fallopian tube patency in infertile patients.

7.
Adv Sci (Weinh) ; : e2401327, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725147

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease, with limited therapeutic options available. Impaired autophagy resulting from aberrant TRB3/p62 protein-protein interactions (PPIs) contributes to the progression of IPF. Restoration of autophagy by modulating the TRB3/p62 PPIs has rarely been reported for the treatment of IPF. Herein, peptide nanofibers are developed that specifically bind to TRB3 protein and explored their potential as a therapeutic approach for IPF. By conjugating with the self-assembling fragment (Ac-GFFY), a TRB3-binding peptide motif A2 allows for the formation of nanofibers with a stable α-helix secondary structure. The resulting peptide (Ac-GFFY-A2) nanofibers exhibit specific high-affinity binding to TRB3 protein in saline buffer and better capacity of cellular uptake to A2 peptide. Furthermore, the TRB3-targeting peptide nanofibers efficiently interfere with the aberrant TRB3/p62 PPIs in activated fibroblasts and fibrotic lung tissue of mice, thereby restoring autophagy dysfunction. The TRB3-targeting peptide nanofibers inhibit myofibroblast differentiation, collagen production, and fibroblast migration in vitro is demonstrated, as well as bleomycin-induced pulmonary fibrosis in vivo. This study provides a supramolecular method to modulate PPIs and highlights a promising strategy for treating IPF diseases by restoring autophagy.

8.
J Food Sci ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38725370

Bisphenol A (BPA) is an endocrine disruptor with reproductive toxicity. Further, 1,25-dihydroxyvitamin D3 (VD3) plays an important role in male reproduction by binding vitamin D receptor (VDR) and mediating the pleiotropic biological actions that include spermatogenesis. However, whether VD3/VDR regulates the effect of BPA on Leydig cells (LCs) injury remains unknown. This study aimed to explore the effects of VD on BPA-induced cytotoxicity in mouse LCs. Hereby, LCs treated with BPA, VD3, or both were subjected to the assays of cell apoptosis, proliferation, autophagy, and levels of target proteins. This study unveiled that cell viability was dose-dependently reduced after exposure to BPA. BPA treatment significantly inhibited LC proliferation, induced apoptosis, and also downregulated VDR expression. By jointly analyzing transcriptome data and Comparative Toxicogenomics Database (CTD) data, autophagy signaling pathways related to testicular development and male reproduction were screened out. Therefore, the autophagy phenomenon of cells was further detected. The results showed that BPA treatment could activate cell autophagy, Vdr-/- inhibits cell autophagy, and active VD3 does not have a significant effect on the autophagy of normal LCs. After VD3 and BPA were used in combination, the autophagy of cells was further enhanced, and VD3 could alleviate BPA-induced damage of LCs. In conclusion, this study found that supplementing VD3 could eliminate the inhibition of BPA on VDR expression, further enhance LCs autophagy effect, and alleviate the inhibition of LCs proliferation and induction of apoptosis by BPA, playing a protective role in cells. The research results will provide valuable strategies to alleviate BPA-induced reproductive toxicity.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124403, 2024 May 03.
Article En | MEDLINE | ID: mdl-38710138

In order to make novel breakthroughs in molecular salt studies of BCS class-IV antifungal medication bifonazole (BIF), a salification-driven strategy towards ameliorating attributes and aiding augment efficiency is raised. This strategy fully harnesses structural characters together attributes and benefits of caffeic acid (CAF) to concurrently enhance dissolvability and permeability of BIF by introducing the two ingredients into the identical molecular salt lattice through the salification reaction, which, coupled with the aroused potential activity of CAF significantly amplifies the antifungal efficacy of BIF. Guided by this route, the first BIF-organic molecular salt, BIF-CAF, is directionally designed and synthesized with satisfactorily structural characterizations and integrated theoretical and experimental explorations on the pharmaceutical properties. Single-crystal X-ray diffraction resolving confirms that there is a lipid-water amphiphilic sandwich structure constructed by robust charge-assistant hydrogen bonds in the salt crystal, endowing the molecular salt with the potential to enhance both dissolvability and permeability relative to the parent drug, which is validated by experimental evaluations. Remarkably, the comprehensive DFT-based theoretical investigations covering frontier molecular orbital, molecular electrostatic potential, Hirshfeld surface analysis, reduced density gradient, topology, sphericity and planarity analysis strongly support these observations, thereby allowing some positive relationships between macroscopic properties and microstructures of the molecular salt can be made. Intriguingly, the optimal properties, together with the stimulated activity of CAF markedly augment in vitro antifungal ability of the molecular salt, with magnifying inhibition zones and reducing minimum inhibitory concentrations. These findings fill in the gaps on researches of BIF-organic molecular salt, and adequately exemplify the feasibility and validity by integrating theoretical and experimental approaches to resolve BIF's problems via the salification-driven tactic.

11.
PLoS One ; 19(5): e0301714, 2024.
Article En | MEDLINE | ID: mdl-38713679

The development of intelligent education has led to the emergence of knowledge tracing as a fundamental task in the learning process. Traditionally, the knowledge state of each student has been determined by assessing their performance in previous learning activities. In recent years, Deep Learning approaches have shown promising results in capturing complex representations of human learning activities. However, the interpretability of these models is often compromised due to the end-to-end training strategy they employ. To address this challenge, we draw inspiration from advancements in graph neural networks and propose a novel model called GELT (Graph Embeddings based Lite-Transformer). The purpose of this model is to uncover and understand the relationships between skills and questions. Additionally, we introduce an energy-saving attention mechanism for predicting knowledge states that is both simple and effective. This approach maintains high prediction accuracy while significantly reducing computational costs compared to conventional attention mechanisms. Extensive experimental results demonstrate the superior performance of our proposed model compared to other state-of-the-art baselines on three publicly available real-world datasets for knowledge tracking.


Knowledge , Neural Networks, Computer , Humans , Deep Learning , Algorithms
12.
Diabetol Metab Syndr ; 16(1): 98, 2024 May 08.
Article En | MEDLINE | ID: mdl-38715117

BACKGROUND: Emerging evidence indicates carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is involved in the development of atherosclerosis (AS). However, the roles and functions of CEACAM1 in AS remain unknown. Therefore, this study aims to investigate the roles and molecular functions of CEACAM1 in AS. METHODS: We constructed a diabetes mellitus (DM) + high-fat diet (HFD) mouse model based on the streptozotocin (STZ)-induced apolipoprotein E-knockdown (ApopE-/-) mouse to investigate the roles and regulatory mechanism of miR-449a/CEACAM1 axis. The mRNA expression and protein levels in this study were examined using quantity PCR, western blot, immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC), respectively. And the lipid deposition and collagen content were detected using Oil Red O and Sirius Red staining. Cell apoptosis, migration, invasion, and tuber formation were detected by Annexin-V FITC/PI, wound healing, transwell, and tuber formation assays, respectively. The relationship between miR-449a and CEACAM1 was determined by a dual-luciferase reporter gene assay. RESULTS: miR-449a and MMP-9 were upregulated, and CEACAM1 was downregulated in the DM + HFD MOUSE model. Upregulation of CEACAM1 promoted atherosclerotic plaque stability and inhibited inflammation in the DM + HFD mouse model. And miR-449a directly targeted CEACAM1. Besides, miR-449a interacted with CEACAM1 to regulate atherosclerotic plaque stability and inflammation in DM-associated AS mice. In vitro, the rescue experiments showed miR-449a interacted with CEACAM1 to affect apoptosis, migration, invasion, and tuber formation ability in high glucose (HG)-induced HUVECs. CONCLUSION: These results demonstrated that miR-449a promoted plaque instability and inflammation in DM and HFD-induced mice by targeting CEACAM1.

13.
BMC Vet Res ; 20(1): 179, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715123

Salmonella infections pose a significant threat to animal and human health. Phytochemicals present a potential alternative treatment. Galla chinensis tannic acid (GCTA), a hydrolyzable polyphenolic compound, inhibits bacterial growth and demonstrates potential as an alternative or supplement to antibiotics to prevent Salmonella infections. However, little is known about the antimicrobial mechanism of GCTA against Salmonella. Here, we revealed 456 differentially expressed proteins upon GCTA treatment, impacting pathways related to DNA replication, repair, genomic stability, cell wall biogenesis, and lipid metabolism using TMT-labeled proteomic analysis. TEM analysis suggested altered bacterial morphology and structure post-treatment. A Salmonella-infected-mouse model indicated that GCTA administration improved inflammatory markers, alleviated intestinal histopathological alterations, and reduced Salmonella enterica serovar Enteritidis (S. Enteritidis) colonization in the liver and spleen of Salmonella-infected mice. The LD50 of GCTA was 4100 mg/kg with an oral single dose, vastly exceeding the therapeutic dose. Thus, GCTA exhibited antibacterial and anti-infective activity against S. Enteritidis. Our results provided insight into the molecular mechanisms of these antibacterial effects, and highlights the potential of GCTA as an alternative to antibiotics.


Proteomics , Salmonella Infections, Animal , Salmonella enteritidis , Tannins , Animals , Salmonella enteritidis/drug effects , Mice , Tannins/pharmacology , Tannins/therapeutic use , Salmonella Infections, Animal/drug therapy , Salmonella Infections, Animal/microbiology , Female , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Mice, Inbred BALB C , Drugs, Chinese Herbal , Polyphenols
14.
Biol Psychiatry Glob Open Sci ; 4(4): 100317, 2024 Jul.
Article En | MEDLINE | ID: mdl-38711865

Schizotypy refers to a latent personality organization that reflects liability to schizophrenia. Because schizotypy is a multidimensional construct, people with schizotypy vary in behavioral and neurobiological features. In this article, we selectively review the neuropsychological and neurobiological profiles of people with schizotypy, with a focus on negative schizotypy. Empirical evidence is presented for alterations of neuropsychological performance in negative schizotypy. We also cover the Research Domain Criteria domains of positive valence, social process, and sensorimotor systems. Moreover, we systematically summarize the neurobiological correlates of negative schizotypy at the structural, resting-state, and task-based neural levels, as well as the neurochemical level. The convergence and inconsistency of the evidence are critically reviewed. Regarding theoretical and clinical implications, we argue that negative schizotypy represents a useful organizational framework for studying neuropsychology and neurobiology across different psychiatric disorders.


This perspective paper provides empirical evidence to show that schizotypy, and especially negative schizotypy, are associated with alterations of positive valence, social process, and sensorimotor systems domains within the Research Domain Criteria (RDoC). This perspective paper also systematically summarizes the neurobiological correlates of negative schizotypy at the structural, resting-state, and task-based neural levels, as well as the neurochemical level. We argue that negative schizotypy represents a useful organizational framework for studying neuropsychology and neurobiology across different psychiatric disorders.

15.
Adv Sci (Weinh) ; : e2403227, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704731

To effectively treat osteoarthritis (OA), the existing inflammation must be reduced before the cartilage damage can be repaired; this cannot be achieved with a single type of extracellular vesicles (EVs). Here, a hydrogel complex with logic-gates function is proposed that can spatiotemporally controlled release two types of EVs: interleukin 10 (IL-10)+ EVs to promote M2 polarization of macrophage, and SRY-box transcription factor 9 (SOX9)+ EVs to increase cartilage matrix synthesis. Following dose-of-action screening, the dual EVs are loaded into a matrix metalloporoteinase 13 (MMP13)-sensitive self-assembled peptide hydrogel (KM13E) and polyethylene glycol diacrylate/gelatin methacryloyl-hydrogel microspheres (PGE), respectively. These materials are mixed to form a "microspheres-in-gel" KM13E@PGE system. In vitro, KM13E@PGE abruptly released IL-10+ EVs after 3 days and slowly released SOX9+ EVs for more than 30 days. In vivo, KM13E@PGE increased the CD206+ M2 macrophage proportion in the synovial tissue and decreased the tumor necrosis factor-α and IL-1ß levels. The aggrecan and SOX9 expressions in the cartilage tissues are significantly elevated following inflammation subsidence. This performance is not achieved using anti-inflammatory or cartilage repair therapy alone. The present study provides an injectable, integrated delivery system with spatiotemporal control release of dual EVs, and may inspire logic-gates strategies for OA treatment.

16.
Heliyon ; 10(9): e30044, 2024 May 15.
Article En | MEDLINE | ID: mdl-38698981

To minimize the global pandemic COVID-19 spread, understanding the possible transmission routes of SARS-CoV-2 and discovery of novel antiviral drugs are necessary. We describe here that the virus can infect ocular surface limbal epithelial, but not other regions. Limbal supports wild type and mutant SARS-CoV-2 entry and replication depending on ACE2, TMPRSS2 and possibly other receptors, resulting in slight CPE and arising IL-6 secretion, which symbolizes conjunctivitis in clinical symptoms. With this limbal model, we have screened two natural product libraries and discovered several unreported drugs. Our data reveal important commonalities between COVID-19 and ocular infection with SARS-CoV-2, and establish an ideal cell model for drug screening and mechanism research.

17.
Animals (Basel) ; 14(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731303

An 8-week feeding trial was performed to investigate the effects of dietary bile acids on growth, glucose metabolism, and intestinal health in spotted seabass (Lateolabrax maculatus) reared at high temperatures (33 °C). The fish (20.09 ± 1.12 g) were fed diets supplemented with bile acids: 0 (Con), 400 (BA400), 800 (BA800), and 1200 (BA1200) mg/kg, respectively. The results showed that the growth was promoted in fish at the BA800 treatment compared with the control (p < 0.05). Increased enzyme activities and transcripts of gluconeogenesis in the liver were observed, whereas decreased enzyme activities and transcripts of glycolysis, as well as glycogen content, were shown in the BA800 treatment (p < 0.05). The transcripts of bile acid receptors fxr in the liver were up-regulated in the BA800 treatment (p < 0.05). A bile acid supplementation of 800 mg/kg improved the morphological structure in the intestine. Meanwhile, intestinal antioxidant physiology and activities of lipase and trypsin were enhanced in the BA800 treatment. The transcripts of genes and immunofluorescence intensity related to pro-inflammation cytokines (il-1ß, il-8, and tnf-α) were inhibited, while those of genes related to anti-inflammation (il-10 and tgf-ß) were induced in the BA800 treatment. Furthermore, transcripts of genes related to the NF-κB pathway in the intestine (nfκb, ikkα, ikkß, and ikbα1) were down-regulated in the BA800 treatment. This study demonstrates that a dietary bile acid supplementation of 800 mg/kg could promote growth, improve glucose metabolism in the liver, and enhance intestinal health by increasing digestive enzyme activity and antioxidant capacity and inhibiting inflammatory response in L. maculatus.

18.
Heliyon ; 10(9): e30416, 2024 May 15.
Article En | MEDLINE | ID: mdl-38726157

Objective: To investigate the clinical characteristics and prognosis of heavy alcohol consumption among young and middle-aged patients with acute cerebral infarction (ACI). Methods: A total of 263 young and middle-aged ACI patients were included in the study from June 2018 to December 2020 and classified into heavy drinkers and non-heavy drinkers. Multivariate logistic regression analysis was conducted to assess the association between ACI and heavy alcohol consumption, considering clinical characteristics and one-year post-discharge prognosis. Results: Among the patients, 78 were heavy drinkers. Heavy drinkers were more likely to consume alcohol 24 h before ACI onset (OR 4.03, 95 % CI 2.26-7.20), especially in the form of liquor (OR 3.83, 95 % CI 1.59-9.20), and had a higher risk of diastolic blood pressure ≥90 mmHg upon admission (OR 2.02, 95 % CI 1.12-3.64). In the one-year post-discharge prognosis, heavy drinkers had a greater likelihood of poor prognosis at 3 months (OR 2.31, 95 % CI 1.01-5.25), were less likely to quit drinking after discharge (OR 0.36, 95 % CI 0.19-0.66), and had a higher risk of recurrent cerebral infarction (OR 2.79, 95 % CI 1.14-6.84). Conclusions: Over the 12-month follow-up, young and middle-aged ACI patients with heavy alcohol consumption exhibited worse short-term prognosis. Controlling alcohol consumption levels may improve the prognosis of these patients.

19.
J Inflamm Res ; 17: 3201-3209, 2024.
Article En | MEDLINE | ID: mdl-38779430

Purpose: To provide a comprehensive analysis of associated genes with osteoarthritis (OA). Here, we reported a network analysis of OA progression by using a Steiner minimal tree algorithm. Methods: We collected the OA-related genes through screening the publications in MEDLINE. We performed functional analysis to analyze the associated biochemical pathways of the OA-related genes. Pathway crosstalk analysis was constructed to explore interactions of the enriched pathways. Steiner minimal tree algorithm was used to analyze molecular pathway networks. The average clustering coefficient was compared with the corresponding values of the Osteoarthritis-specific network. The new finding RNA was compared with former single-cell RNA-seq analysis results. Results: A gene set with 177 members reported to be significantly associated with Osteoarthritis was collected from 187 studies. Functional enrichment analysis revealed a specific related-OA gene including skeletal system development, cytokine-mediated signaling pathway, inflammatory response, cartilage development, and extracellular matrix organization. We performed a pathway crosstalk analysis among the 72 significantly enriched pathways. A total of 151 of the 177 genes in the Osteoarthritis gene set were included in the human interactome network. There were 31 genes in the former single-cell RNA-seq analysis results. The CLU, ENO1, SRRM1, UBC, HMGB1, NR3C1, NOTCH2NL, and CBX5 have significantly increased expression in seven molecularly defined populations of OA cartilage. Conclusion: The Steiner tree-based approach finds new biological molecules associated with OA genes.

20.
World J Diabetes ; 15(5): 958-976, 2024 May 15.
Article En | MEDLINE | ID: mdl-38766439

BACKGROUND: Synaptotagmins (SYTs) are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones. However, few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy (DR) through Ca2+/glucose transporter-1 (GLUT1) and the possible regulatory mechanism of SYTs. AIM: To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR. METHODS: DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells (ARPE-19). Bioinformatics analysis, reverse transcriptase-polymerase chain reaction, Western blot, flow cytometry, ELISA, HE staining, and TUNEL staining were used for analysis. RESULTS: Six differentially expressed proteins (SYT2, SYT3, SYT4, SYT7, SYT11, and SYT13) were found between the DR and control groups, and SYT4 was highly expressed. Hyperglycemia induces SYT4 overexpression, manipulates Ca2+ influx to induce GLUT1 fusion with the plasma membrane, promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake, induces ARPE-19 cell apoptosis, and promotes DR progression. Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR, resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane, and these effects were blocked by oe-Parkin treatment. Moreover, dysregulation of the myelin transcription factor 1 (Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process, and this process was inhibited in the oe-MYT1-treated group. CONCLUSION: Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR.

...