Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 120
1.
Free Radic Biol Med ; 220: 262-270, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38729451

Aging affects all organs. Arteries, in particular, are among the most affected. Vascular aging (VA) is defined as age-associated changes in function and structure of vessels. Classical VA phenotypes are carotid intima-media thickness (IMT), carotid plaque (CP), and arterial stiffness (STIFF). Individuals have different predisposition to these VA phenotypes and their associated risk of cardiovascular events. Some develop an early vascular aging (EVA), and others are protected and identified as having supernormal vascular aging (SUPERNOVA). The mechanisms leading to these phenotypes are not well understood. In the Northern Manhattan Study (NOMAS), we found genetic variants in the 7 Sirtuins (SIRT) and 5 Uncoupling Proteins (UCP) to be differently associated with risk to developing VA phenotypes. In this article, we review the results of genetic-epidemiology studies to better understand which of the single nucleotide polymorphisms (SNPs) in SIRT and UCP are responsible for both EVA and SUPERNOVA.


Aging , Polymorphism, Single Nucleotide , Sirtuins , Humans , Sirtuins/genetics , Sirtuins/metabolism , Aging/genetics , Aging/metabolism , Vascular Stiffness/genetics , Carotid Intima-Media Thickness , Mitochondrial Uncoupling Proteins/genetics , Mitochondrial Uncoupling Proteins/metabolism , Genetic Predisposition to Disease , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology
2.
Medicine (Baltimore) ; 103(15): e37712, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38608110

This study aimed to investigate the risk factors related to sleep disorders in patients undergoing hemodialysis using a nomogram model. A cross-sectional survey was conducted in a hospital in Zhejiang province, China from January 1, 2020, to November 31, 2022 among patients undergoing hemodialysis. Dietary intake was assessed applying a Food Frequency Questionnaire. Sleep quality was evaluated by the Pittsburgh Sleep Quality Index. Evaluation of risk factors related to sleep disorders in patients undergoing hemodialysis was using a nomogram model. This study included 201 patients and 87 individuals (43.3%, 87/201) exhibited sleep disorders. The average age of included patients was 51.1 ±â€…9.0 years, with males accounting for 55.7% (112/201). Results from nomogram model exhibited that potential risk factors for sleep disorders in patients undergoing hemodialysis included female, advanced age, increased creatinine and alanine aminotransferase levels, as well as higher red meat consumption. Inversely, protective factors against sleep disorders in these patients included higher consumption of poultry, fish, vegetables, and dietary fiber. The C-index demonstrated a high level of discriminative ability (0.922). This study found that age, sex, and dietary factors were associated with sleep disorders in hemodialysis patients. Hemodialysis patients with sleep disorders require urgent dietary guidance.


Nomograms , Sleep Wake Disorders , Animals , Male , Humans , Female , Adult , Middle Aged , Cross-Sectional Studies , Renal Dialysis/adverse effects , Risk Factors , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/etiology
3.
EBioMedicine ; 101: 104993, 2024 Mar.
Article En | MEDLINE | ID: mdl-38324982

BACKGROUND: Macrophages are innate immune cells whose phagocytosis function is critical to the prognosis of stroke and peritonitis. cis-aconitic decarboxylase immune-responsive gene 1 (Irg1) and its metabolic product itaconate inhibit bacterial infection, intracellular viral replication, and inflammation in macrophages. Here we explore whether itaconate regulates phagocytosis. METHODS: Phagocytosis of macrophages was investigated by time-lapse video recording, flow cytometry, and immunofluorescence staining in macrophage/microglia cultures isolated from mouse tissue. Unbiased RNA-sequencing and ChIP-sequencing assays were used to explore the underlying mechanisms. The effects of Irg1/itaconate axis on the prognosis of intracerebral hemorrhagic stroke (ICH) and peritonitis was observed in transgenic (Irg1flox/flox; Cx3cr1creERT/+, cKO) mice or control mice in vivo. FINDINGS: In a mouse model of ICH, depletion of Irg1 in macrophage/microglia decreased its phagocytosis of erythrocytes, thereby exacerbating outcomes (n = 10 animals/group, p < 0.05). Administration of sodium itaconate/4-octyl itaconate (4-OI) promoted macrophage phagocytosis (n = 7 animals/group, p < 0.05). In addition, in a mouse model of peritonitis, Irg1 deficiency in macrophages also inhibited phagocytosis of Staphylococcus aureus (n = 5 animals/group, p < 0.05) and aggravated outcomes (n = 9 animals/group, p < 0.05). Mechanistically, 4-OI alkylated cysteine 155 on the Kelch-like ECH-associated protein 1 (Keap1), consequent in nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and transcriptional activation of Cd36 gene. Blocking the function of CD36 completely abolished the phagocytosis-promoting effects of Irg1/itaconate axis in vitro and in vivo. INTERPRETATION: Our findings provide a potential therapeutic target for phagocytosis-deficiency disorders, supporting further development towards clinical application for the benefit of stroke and peritonitis patients. FUNDING: The National Natural Science Foundation of China (32070735, 82371321 to Q. Li, 82271240 to F. Yang) and the Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ202010025033 to Q. Li).


Hemorrhagic Stroke , Peritonitis , Succinates , Humans , Mice , Animals , Kelch-Like ECH-Associated Protein 1 , Hemorrhagic Stroke/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Macrophages/metabolism , Peritonitis/drug therapy , Phagocytosis , Prognosis , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Hydro-Lyases/pharmacology
4.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article En | MEDLINE | ID: mdl-38138963

Extracellular vesicles (EVs)/exosomes are nanosized membrane-bound structures that are released by virtually all cells. EVs have attracted great attention in the scientific community since the discovery of their roles in cell-to-cell communication. EVs' enclosed structure protects bioactive molecules from degradation in the extracellular space and targets specific tissues according to the topography of membrane proteins. Upon absorption by recipient cells, EV cargo can modify the transcription machinery and alter the cellular functions of these cells, playing a role in disease pathogenesis. EVs have been tested as the delivery system for the mRNA COVID-19 vaccine. Recently, different therapeutic strategies have been designed to use EVs as a delivery system for microRNAs and mRNA. In this review, we will focus on the exciting and various platforms related to using EVs as delivery vehicles, mainly in gene editing using CRISPR/Cas9, cancer therapy, drug delivery, and vaccines. We will also touch upon their roles in disease pathogenesis.


Exosomes , Extracellular Vesicles , MicroRNAs , Humans , COVID-19 Vaccines , Extracellular Vesicles/metabolism , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism
5.
Environ Sci Pollut Res Int ; 30(60): 125398-125416, 2023 Dec.
Article En | MEDLINE | ID: mdl-38012483

Organic pollutants in the air have serious consequences on both human health and the environment. Among the various methods for removing organic pollution gas, biotrickling filters (BTFs) are becoming more and more popular due to their cost-effective advantages. BTF can effectively degrade organic pollutants without producing secondary pollutants. In the current research on the removal of organic pollutants by BTF, improving the performance of BTF has always been a research hotspot. Researchers have conducted studies from different aspects to improve the removal performance of BTF for organic pollutants. Including research on the performance of BTF using different packing materials, research on the removal of various mixed pollutant gases by BTF, research on microbial communities in BTF, and other studies that can improve the performance of BTF. Moreover, computational fluid dynamics (CFD) was introduced to study the microscopic process of BTF removal of organic pollutants. CFD is a simulation tool widely used in aerospace, automotive, and industrial production. In the study of BTF removal of organic pollutants, CFD can simulate the fluid movement, mass transfer process, and biodegradation process in BTF in a visual way. This review will summarize the development of BTFs from four aspects: packing materials, mixed gases, micro-organisms, and CFD, in order to provide a reference and direction for the future optimization of BTFs.


Air Pollutants , Environmental Pollutants , Humans , Air Pollutants/metabolism , Bioreactors , Gases , Hydrodynamics , Filtration , Biodegradation, Environmental
6.
Opt Express ; 31(18): 29491-29503, 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37710748

We demonstrate a scheme to realize high-efficiency entanglement of two microwave fields in a dual opto-magnomechanical system. The magnon mode simultaneously couples with the microwave cavity mode and phonon mode via magnetic dipole interaction and magnetostrictive interaction, respectively. Meanwhile, the phonon mode couples with the optical cavity mode via radiation pressure. Each magnon mode and optical cavity mode adopts a strong red detuning driving field to activate the beam splitter interaction. Therefore, the entangled state generated by the injected two-mode squeezed light in optical cavities can be eventually transferred into two microwave cavities. A stationary entanglement E a 1 a 2 =0.54 is obtained when the input two-mode squeezed optical field has a squeezing parameter r = 1. The entanglement E a 1 a 2 increases as the squeezing parameter r increases, and it shows the flexible tunability of the system. Meanwhile, the entanglement survives up to an environmental temperature about 385 mK, which shows high robustness of the scheme. The proposed scheme provides a new mechanism to generate entangled microwave fields via magnons, which enables the degree of the prepared microwave entanglement to a more massive scale. Our result is useful for applications which require high entanglement of microwave fields like quantum radar, quantum navigation, quantum teleportation, quantum wireless fidelity (Wi-Fi) network, etc.

7.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article En | MEDLINE | ID: mdl-37108729

People living with HIV (PLHIV) are at a higher risk of having cerebrocardiovascular diseases (CVD) compared to HIV negative (HIVneg) individuals. The mechanisms underlying this elevated risk remains elusive. We hypothesize that HIV infection results in modified microRNA (miR) content in plasma extracellular vesicles (EVs), which modulates the functionality of vascular repairing cells, i.e., endothelial colony-forming cells (ECFCs) in humans or lineage negative bone marrow cells (lin- BMCs) in mice, and vascular wall cells. PLHIV (N = 74) have increased atherosclerosis and fewer ECFCs than HIVneg individuals (N = 23). Plasma from PLHIV was fractionated into EVs (HIVposEVs) and plasma depleted of EVs (HIV PLdepEVs). HIVposEVs, but not HIV PLdepEVs or HIVnegEVs (EVs from HIVneg individuals), increased atherosclerosis in apoE-/- mice, which was accompanied by elevated senescence and impaired functionality of arterial cells and lin- BMCs. Small RNA-seq identified EV-miRs overrepresented in HIVposEVs, including let-7b-5p. MSC (mesenchymal stromal cell)-derived tailored EVs (TEVs) loaded with the antagomir for let-7b-5p (miRZip-let-7b) counteracted, while TEVs loaded with let-7b-5p recapitulated the effects of HIVposEVs in vivo. Lin- BMCs overexpressing Hmga2 (a let-7b-5p target gene) lacking the 3'UTR and as such is resistant to miR-mediated regulation showed protection against HIVposEVs-induced changes in lin- BMCs in vitro. Our data provide a mechanism to explain, at least in part, the increased CVD risk seen in PLHIV.


Atherosclerosis , Circulating MicroRNA , Extracellular Vesicles , HIV Infections , MicroRNAs , Humans , Animals , Mice , HIV Infections/complications , HIV Infections/genetics , MicroRNAs/genetics , Extracellular Vesicles/genetics , Atherosclerosis/genetics
8.
Alzheimers Dement ; 19(9): 3902-3915, 2023 09.
Article En | MEDLINE | ID: mdl-37037656

INTRODUCTION: European local ancestry (ELA) surrounding apolipoprotein E (APOE) ε4 confers higher risk for Alzheimer's disease (AD) compared to African local ancestry (ALA). We demonstrated significantly higher APOE ε4  expression in ELA versus ALA in AD brains from APOE ε4/ε4 carriers. Chromatin accessibility differences could contribute to these expression changes. METHODS: We performed single nuclei assays for transposase accessible chromatin sequencing from the frontal cortex of six ALA and six ELA AD brains, homozygous for local ancestry and APOE ε4. RESULTS: Our results showed an increased chromatin accessibility at the APOE ε4  promoter area in ELA versus ALA astrocytes. This increased accessibility in ELA astrocytes extended genome wide. Genes with increased accessibility in ELA in astrocytes were enriched for synapsis, cholesterol processing, and astrocyte reactivity. DISCUSSION: Our results suggest that increased chromatin accessibility of APOE ε4  in ELA astrocytes contributes to the observed elevated APOE ε4  expression, corresponding to the increased AD risk in ELA versus ALA APOE ε4/ε4 carriers.


Alzheimer Disease , Apolipoprotein E4 , Humans , Apolipoprotein E4/genetics , Alzheimer Disease/genetics , Alzheimer Disease/complications , Chromatin , Heterozygote , Gene Expression
9.
J Hepatocell Carcinoma ; 10: 553-571, 2023.
Article En | MEDLINE | ID: mdl-37041757

Objective: To investigate the involvement and transcriptional targets of zinc finger protein 281 (ZNF281) in the progression of hepatocellular carcinoma (HCC). Methods: The expression of ZNF281 in HCC was detected in tissue microarray and cell lines. The role of ZNF281 in aggressiveness of HCC was examined using wound healing, matrigel transwell, pulmonary metastasis model and assays for expression of EMT markers. RNA-seq was used to find potential target gene of ZNF281. Chromatin immunoprecipitation (ChIP) assay and co-immunoprecipitation (Co-IP) were employed to uncover the mechanism of the transcriptional regulation of ZNF281 on the target gene. Results: ZNF281 was increased in tumor tissues and positively correlated with vascular invasion in HCC. Knockdown of ZNF281 suppressed the migration and invasion with significant alteration of EMT marker expression in HLE and Huh7 HCC cell lines. RNA-seq screening showed that the tumor suppressor gene Annexin A10 (ANXA10) was a most up-regulated gene in response to ZNF281 depletion and responsible for the attenuation of aggressiveness. Mechanistically, ZNF281 interacted with the ANXA10 promoter region harboring ZNF281 recognition sites, and recruited components of nucleosome remodeling and deacetylation (NuRD) complex. By knocking down such components like HDAC1 or MTA1, ANXA10 was released from transcriptional repression by ZNF281/NuRD, and in turn reversed the EMT, invasion and metastasis driven by ZNF281. Conclusion: ZNF281 drives invasion and metastasis of HCC partially through transcriptional repression of tumor suppressor gene ANXA10 by recruiting NuRD complex.

10.
Exp Mol Med ; 55(3): 597-611, 2023 03.
Article En | MEDLINE | ID: mdl-36879115

MYB-NFIB fusion and NOTCH1 mutation are common hallmark genetic events in salivary gland adenoid cystic carcinoma (SACC). However, abnormal expression of MYB and NOTCH1 is also observed in patients without MYB-NFIB fusion and NOTCH1 mutation. Here, we explore in-depth the molecular mechanisms of lung metastasis through single-cell RNA sequencing (scRNA-seq) and exome target capture sequencing in two SACC patients without MYB-NFIB fusion and NOTCH1 mutation. Twenty-five types of cells in primary and metastatic tissues were identified via Seurat clustering and categorized into four main stages ranging from near-normal to cancer-based on the abundance of each cell cluster in normal tissue. In this context, we identified the Notch signaling pathway enrichment in almost all cancer cells; RNA velocity, trajectory, and sub-clustering analyses were performed to deeply investigate cancer progenitor-like cell clusters in primary tumor-associated lung metastases, and signature genes of progenitor-like cells were enriched in the "MYC_TARGETS_V2" gene set. In vitro, we detected the NICD1-MYB-MYC complex by co-immunoprecipitation (Co-IP) and incidentally identified retinoic acid (RA) as an endogenous antagonist of genes in the "MYC_TARGETS_V2" gene set. Following this, we confirmed that all-trans retinoic acid (ATRA) suppresses the lung metastasis of SACC by correcting erroneous cell differentiation mainly caused by aberrant NOTCH1 or MYB expression. Bioinformatic, RNA-seq, and immunohistochemical (IHC) analyses of primary tissues and metastatic lung tissues from patients with SACC suggested that RA system insufficiency partially promotes lung metastasis. These findings imply the value of the RA system in diagnosis and treatment.


Carcinoma, Adenoid Cystic , Lung Neoplasms , Salivary Gland Neoplasms , Humans , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/metabolism , Carcinoma, Adenoid Cystic/pathology , Tretinoin/pharmacology , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/metabolism , Salivary Gland Neoplasms/pathology , Lung Neoplasms/genetics , Signal Transduction , Receptor, Notch1/genetics
11.
J Cereb Blood Flow Metab ; 43(8): 1365-1381, 2023 08.
Article En | MEDLINE | ID: mdl-36960698

Spontaneous intracerebral hemorrhage (ICH) is a devastating disease with high morbidity and mortality worldwide. We have previously shown that ferroptosis contributes to neuronal loss in ICH mice. The overload of iron and dysfunction of glutathione peroxidase 4 (GPx4) promote neuronal ferroptosis post-ICH. However, how epigenetic regulatory mechanisms affect the ferroptotic neurons in ICH remains unclear. In the current study, hemin was used to induce ferroptosis in N2A and SK-N-SH neuronal cells to mimic ICH. The results showed that hemin-induced ferroptosis was accompanied by an increment of global level of trimethylation in histone 3 lysine 9 (H3K9me3) and its methyltransferase Suv39h1. Transcriptional target analyses indicated that H3K9me3 was enriched at the promoter region and gene body of transferrin receptor gene 1 (Tfr1) and repressed its expression upon hemin stimulation. Inhibition of H3K9me3 with inhibitor or siRNA against Suv39h1 aggravated hemin- and RSL3-induced ferroptosis by upregulating Tfr1 expression. Furthermore, Suv39h1-H3K9me3 mediated repression of Tfr1 contributes to the progression of ICH in mice. These data suggest a protective role of H3K9me3 in ferroptosis post ICH. The knowledge gained from this study will improve the understanding of epigenetic regulation in neuronal ferroptosis and shed light on future clinical research after ICH.


Ferroptosis , Mice , Animals , Hemin/pharmacology , Hemin/metabolism , Epigenesis, Genetic , Cerebral Hemorrhage/metabolism , Neurons/metabolism
12.
Theranostics ; 13(3): 955-972, 2023.
Article En | MEDLINE | ID: mdl-36793870

Background: Stress is an important risk factor to induce psychiatric disorders such as depression. Phloretin (PHL), a natural dihydrochalcone compound, has been shown to exhibit anti-inflammatory and anti-oxidative effects. However, the impact of PHL on the depression and the underlying mechanism remain unclear. Methods: The animal behavior tests were used to determine the protective of PHL on the chronic mild stress (CMS)-induced depression-like behaviors. The Magnetic Resonance Imaging (MRI), electron microscopy analysis, fiber photometry, electrophysiology, and Structure Illumination Microscopy (SIM) were used to investigate the protective of PHL on the structural and functional impairments induced by CMS exposure in the mPFC. The RNA sequencing, western blot, reporter gene assay, and chromatin immunoprecipitation were adopted to investigate the mechanisms. Results: We showed that PHL efficiently prevented the CMS-induced depressive-like behaviors. Moreover, PHL not only attenuated the decrease of synapse losses but also improved the dendritic spine density and neuronal activity in the mPFC after CMS exposure. Furthermore, PHL remarkably inhibited the CMS-induced microglial activation and phagocytic activity in the mPFC. In addition, we demonstrated that PHL decreased the CMS-induced synapse losses by inhibiting the deposition of complement C3 deposition onto synapses and subsequent microglia-mediated synaptic engulfment. Finally, we revealed that PHL inhibited the NF-κB-C3 axis to display neuroprotective effects. Conclusions: Our results indicate that PHL represses the NF-κB-C3 axis and subsequent microglia-mediated synaptic engulfment to protect against CMS-induced depression in the mPFC.


Depression , Microglia , Animals , Depression/drug therapy , Depression/prevention & control , Depression/etiology , NF-kappa B , Phloretin/pharmacology , Neurons/pathology
13.
Neurobiol Aging ; 123: 216-221, 2023 03.
Article En | MEDLINE | ID: mdl-36658081

Executive function is a cognitive domain with sizable heritability representing higher-order cognitive abilities. Genome-wide association studies (GWAS) of executive function are sparse, particularly in populations underrepresented in medical research. We performed a GWAS on a composite measure of executive function that included measures of mental flexibility and reasoning using data from the Northern Manhattan Study, a racially and ethnically diverse cohort (N = 1077, 69% Hispanic, 17% non-Hispanic Black and 14% non-Hispanic White). Four SNPs located in the long intergenic non-protein coding RNA 1362 gene, LINC01362, on chromosome 1p31.1, were significantly associated with the composite measure of executive function in this cohort (top SNP rs2788328, ß = 0.22, p = 3.1 × 10-10). The associated SNPs have been shown to influence expression of the tubulin tyrosine ligase like 7 gene, TTLL7 and the protein kinase CAMP-activated catalytic subunit beta gene, PRKACB, in several regions of the brain involved in executive function. Together, these findings present new insight into the genetic underpinnings of executive function in an understudied population.


Executive Function , Genome-Wide Association Study , Humans , Brain , Cognition/physiology , Hispanic or Latino , Polymorphism, Single Nucleotide/genetics , Black or African American
14.
Cells ; 11(24)2022 12 09.
Article En | MEDLINE | ID: mdl-36552752

The roles of lamin A/C in adipocyte differentiation and skeletal muscle lipid metabolism are associated with familial partial lipodystrophy of Dunnigan (FPLD). We confirmed that LMNA knockdown (KD) in mouse adipose-derived mesenchymal stem cells (AD-MSCs) prevented adipocyte maturation. Importantly, in in vitro experiments, we discovered a significant increase in phosphorylated lamin A/C levels at serine 22 or 392 sites (pLamin A/C-S22/392) accompanying increased lipid synthesis in a liver cell line (7701 cells) and two hepatocellular carcinoma (HCC) cell lines (HepG2 and MHCC97-H cells). Moreover, HCC cells did not survive after LMNA knockout (KO) or even KD. Evidently, the functions of lamin A/C differ between the liver and adipose tissue. To date, the mechanism of hepatocyte lipid metabolism mediated by nuclear lamin A/C remains unclear. Our in-depth study aimed to identify the molecular connection between lamin A/C and pLamin A/C, hepatic lipid metabolism and liver cancer. Gain- and loss-of-function experiments were performed to investigate functional changes and the related molecular pathways in 7701 cells. Adenosine 5' monophosphate-activated protein kinase α (AMPKα) was activated when abnormalities in functional lamin A/C were observed following lamin A/C depletion or farnesyltransferase inhibitor (FTI) treatment. Active AMPKα directly phosphorylated acetyl-CoA-carboxylase 1 (ACC1) and subsequently inhibited lipid synthesis but induced glycolysis in both HCC cells and normal cells. According to the mass spectrometry analysis, lamin A/C potentially regulated AMPKα activation through its chaperone proteins, ATPase or ADP/ATP transporter 2. Lonafarnib (an FTI) combined with low-glucose conditions significantly decreased the proliferation of the two HCC cell lines more efficiently than lonafarnib alone by inhibiting glycolysis or the maturation of prelamin A.


AMP-Activated Protein Kinases , Carcinoma, Hepatocellular , Lamin Type A , Liver Neoplasms , Animals , Mice , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Homeostasis , Lamin Type A/genetics , Lamin Type A/metabolism , Lipids/physiology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism
15.
Materials (Basel) ; 15(21)2022 Nov 03.
Article En | MEDLINE | ID: mdl-36363348

The relationship between clutch thermodynamic characteristics and contact states of friction components is explored numerically and experimentally. The clutch thermodynamic numerical model is developed with consideration of the contact state and oil film between friction pairs. The clutch bench test is conducted to verify the variation of the clutch thermodynamic characteristics from the uniform contact (UCS) to the intermittent contact (ICS). The results show that the oil film decreases gradually with increasing temperature; the lubrication state finally changes from hydrodynamic lubrication to dry friction, where the friction coefficient shows an increasing trend before a decrease. Thus, the friction torque in UCS gradually increases after the applied pressure stabilizes. When the contact state changes to ICS, the contact pressure increases suddenly and the oil film decreases rapidly in the local contact area, bringing about a sharp increase in friction torque; subsequently, the circumferential and radial temperature differences of friction components expand dramatically. However, if the contact zone is already in the dry friction state, friction torque declines directly, resulting in clutch failure. The conclusions can potentially be used for online monitoring and fault diagnosis of the clutch.

16.
Nanomaterials (Basel) ; 12(20)2022 Oct 19.
Article En | MEDLINE | ID: mdl-36296867

Dust pollution presents a wide range of adverse effects to product functionalities and the quality of human life. For instance, when dust particles deposit on solar photovoltaic panels, sunlight absorption is significantly reduced, and solar-to-electrical energy conversion yield may be lowered by 51%- Conventional (manual) dust removal methods are costly, consume significant material resources, and cause irreparable damage to the solar glass surface. Therefore, it is critical to develop glass surfaces that can clean themselves or are easily cleaned by natural forces. Many approaches have been attempted to reduce dust deposition, such as developing superhydrophobic surfaces and preparing anti-static surfaces. This paper reviews the recent progress in studies of anti-dust and cleaning mechanisms or methodologies, which include investigation into micro- and nano-sized dust properties, dust deposition processes and adhesion mechanisms to surfaces, and the state-of-the-art approaches to anti-dust and easy-cleaning functions that tailor surface micro-/nanotextures, lowering surface energy via nanocoatings, and enhancing anti-static properties with nanomaterials. We compare the advantages and disadvantages of various approaches and discuss the research prospects. We envision that future research will be focused on developing transparent surfaces with multiple dust-proof functions to cope with dust-burdening operating environments.

17.
ChemSusChem ; 15(21): e202201518, 2022 Nov 08.
Article En | MEDLINE | ID: mdl-36042569

The large-scale fabrication of highly efficient and low-cost bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical to the development of rechargeable zinc-air batteries (ZABs). Herein, a scalable dealloying strategy was proposed to obtain hierarchically porous spinel-type oxide with minor hereditary Al doping. Benefiting from the well-structured porosity and native dopant, O-np-Ni5 Co10 (Al), namely Al-NiCo2 O4 , exhibited excellent electrocatalytic ORR and OER activities, giving a small potential gap of 0.71 V. The rechargeable ZAB with O-np-Ni5 Co10 (Al) as cathode catalyst delivered a high specific capacity of 757 mAh g-1 , a competitive peak power density of 142 mW cm-2 , and a long-term discharge-charge cycling stability. Furthermore, density functional theory calculations evidenced that appropriate Al doping into NiCo2 O4 could significantly reduce the Gibbs free energy difference to 1.71 eV. This work is expected to inspire the design of performance-oriented bifunctional electrocatalysts for wider applications in renewable energy systems.

18.
PLoS Genet ; 18(7): e1009977, 2022 07.
Article En | MEDLINE | ID: mdl-35788729

African descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (ß = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (ß = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (ß = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the "protective" direction but failing to pass a 0.05 significance threshold (ß = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention.


Alzheimer Disease , Alleles , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Genotype , Humans , Nigeria , Risk Factors
19.
Genes Dis ; 9(4): 1086-1098, 2022 Jul.
Article En | MEDLINE | ID: mdl-35685460

Epithelial-to-mesenchymal transition (EMT) activation is important in cancer progression and metastasis. Evidence indicates that nc886 is a representative Pol III gene that processes microRNA products via Dicer and further downregulates its target gene transforming growth factor- ß1 (TGF-ß1), which is the most prominent inducer of EMT in prostate cancer (PC). Consistent with the previous literature, we found that nc886 downregulation was strongly associated with metastatic behavior and showed worse outcomes in PC patients. However, little is known about the association between nc886 and the EMT signaling pathway. We developed a PC cell model with stable overexpression of nc886 and found that nc886 changed cellular morphology and drove MET. The underlying mechanism may be related to its promotion of SNAIL protein degradation via ubiquitination, but not to its neighboring genes, TGFß-induced protein (TGFBI) and SMAD5, which are Pol II-transcribed. TGF-ß1 also override nc886 promotion of MET via transient suppression the transcription of nc886, promotion of TGFBI or increase in SMAD5 phosphorylation. Both nc886 inhibition and TGFBI activation occur regardless of their methylation status. The literature suggests that MYC inhibition by TGF-ß1 is attributed to nc886 downregulation. We incidentally identified MYC-associated zinc finger protein (MAZ) as a suppressive transcription factor of TGFBI, which is controlled by TGF-ß1. We elucidate a new mechanism of TGF-ß1 differential control of Pol II and the transcription of its neighboring Pol III gene and identify a new EMT unit consisting of nc886 and its neighboring genes.

20.
Int J Biol Sci ; 18(7): 2867-2881, 2022.
Article En | MEDLINE | ID: mdl-35541899

Background: There is increasing evidence that tumour-associated macrophages (TAMs) are critical in the formation of lung metastases. However, the molecular mechanisms of tumour interactions with TAMs via EMT are largely unknown. Methods: The mechanism of lung metastasis was studied in patient tissues. The mechanism of SNAIL regulation of the interaction between mesenchymal cells and M2 macrophages was elucidated using coculture of M2 macrophages and Transwell assays in vitro and in vivo in nude mice and NOD-SCID mice. Results: We demonstrated for the first time that SNAIL and CXCL2 were abnormally overexpressed in colorectal cancer, especially lung metastasis, and were associated with poor prognosis in colorectal cancer patients. We demonstrated that SNAIL promoted the secretion of CXCL2 by mesenchymal cells and induced the activation of M2 macrophages. We found that CXCL2 attracted M2-type macrophages to infiltrate and promote tumour metastasis. Conclusion: These findings suggest that SNAIL promotes epithelial tumour transformation, and that transformed mesenchymal cells secrete CXCL2, which promotes M2 macrophage infiltration and tumour cell metastasis. These findings elucidate the tumour-TAM interaction in the metastatic microenvironment, which is mediated by tumour-derived CXCL2 and affects lung metastasis. This study also provides a theoretical basis for the occurrence of secondary lung cancer.


Colorectal Neoplasms , Lung Neoplasms , Snail Family Transcription Factors , Animals , Cell Line, Tumor , Cell Movement , Chemokine CXCL2 , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Macrophages , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Tumor Microenvironment
...