Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(28): e2310339, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38295011

RESUMEN

The modulation of the coordination environment of single atom catalysts (SACs) plays a vital role in promoting CO2 reduction reaction (CO2RR). Herein, N or B doped Fe-embedded graphyne (Fe-GY), Fe-nXGYm (n = 1, 2, 3; X = N, B; m = 1, 2, 3), are employed as probes to reveal the effect of the coordination environment engineering on CO2RR performance via heteroatom doping in SACs. The results show that the doping position and number of N or B in Fe-GY significantly affects catalyst activity and CO2RR product selectivity. In comparison, Fe-1NGY exhibits high-performance CO2RR to CH4 with a low limiting potential of -0.17 V, and Fe-2NGY3 is demonstrated as an excellent CO2RR electrocatalyst for producing HCOOH with a low limiting potential of -0.16 V. With applied potential, Fe-GY, Fe-1NGY, and Fe-2NGY3 exhibit significant advantages in CO2RR to CH4 while hydrogen evolution reaction is inhibited. The intrinsic essence analysis illustrates that heteroatom doping modulates the electronic structure of active sites and regulates the adsorption strength of the intermediates, thereby rendering a favorable coordination environment for CO2RR. This work highlights Fe-nXGYm as outstanding SACs for CO2RR, and provides an in-depth insight into the intrinsic essence of the promotion effect from heteroatom doping.

2.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 173-179, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38015525

RESUMEN

This atudy aimed to reveal the effect of DNA methylation on immune infiltration of uterine fibroids (UFs) and to further classify UFs based on transcriptomic characteristics. The transcriptome and DNA methylation data of UFs were collected from the GEO database. After taking the intersection of the differentially expressed genes in these two types of data, the intersection gene was used to draw ROC curves and to filtrate the candidate genes with AUC≥0.8. Immune infiltration analysis was performed in the online tool EPIC. The correlation between gene with AUC≥0.8 and the abundance of each immune cell type was calculated with |R|>0.3 and P<0.05. ConsensusClusterPlus package in R software was used to further cluster the samples of UFs. In this study, a total of 41 RNA-seq data (10 normal uterine samples and 31 UFs samples) and 34 DNA methylation data (10 from normal subjects and 24 from patients with UFs) were involved. The significantly down-regulated ICAM4, SPECC1L, and NOXO1 were the top three methylated drive genes of UFs. Therefore, NOXO1 and ICAM4 present an intimate correlation to immune cell infiltration. Besides, UFs could be clustered into two subtypes, including a TSAB1 up-regulated subtype and a FOSB up-regulated subtype. DNA methylation of ICAM4 and NOXO1 are involved in the pathogenesis of UFs via regulating immune cell infiltration. Further classification based on transcriptomic characteristics could divide UFs into sexual steroids-related and biomechanics-related subtypes, which would promote its non-invasive treatment.


Asunto(s)
Metilación de ADN , Leiomioma , Humanos , Metilación de ADN/genética , Fenómenos Biomecánicos , Perfilación de la Expresión Génica , Bases de Datos Factuales , Leiomioma/genética , Proteínas Adaptadoras Transductoras de Señales , Moléculas de Adhesión Celular
3.
J Colloid Interface Sci ; 650(Pt B): 1361-1370, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37480651

RESUMEN

Excessive CO2 emissions have contributed to global environmental issues, driving the development of CO2 capture adsorbents. Among various candidates, metal-organic frameworks (MOFs) are considered the most promising due to their unique microporous structure. Herein, a series of partially interpenetrated MOFs named UPC-XX were built to investigate the continuous enhancement in CO2 capture performance via synergistic effects from functional group, pore size, and steric-hindrance using theoretical calculations. It's showed that the introduction of functional groups improved the structure polarity and created more adsorption sites, thus, enhanced CO2 capture capacity. The pore size modification augments the exposure of adsorption sites to mitigate the negative impact of pore space and surface area reduction caused by the introduction of functional groups, thereby further increasing the CO2 capture capacity. The steric-hindrance effect optimized the adsorption sites distribution, which hasn't been considered in the previous two regulation strategies, thus, further increased the CO2 capture capacity. The results underscore UPC-MOFs as outstanding adsorbent materials, among the UPC-MOFs, UPC-OSO3-steric exhibited the highest CO2 capture capacity of 12.69 mmol/g with selectivities of 1142.41 (CO2 over N2) and 507.42 (CO2 over CH4) at 1.0 bar, 298 K. And the synergistic effect mechanisms of functional group, structure size, and steric hindrance were elucidated through theoretical calculations analyzing pore characteristics, gas distribution, isosteric heat, and van der Waals/Coulomb interactions.

4.
Science ; 381(6655): 291-296, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37471552

RESUMEN

High-performance thermogalvanic cells have the potential to convert thermal energy into electricity, but their effectiveness is limited by the low concentration difference of redox ions. We report an in situ photocatalytically enhanced redox reaction that generates hydrogen and oxygen to realize a continuous concentration gradient of redox ions in thermogalvanic devices. A linear relation between thermopower and hydrogen production rate was established as an essential design principle for devices. The system exhibited a thermopower of 8.2 millivolts per kelvin and a solar-to-hydrogen efficiency of up to 0.4%. A large-area generator (112 square centimeters) consisting of 36 units yielded an open-circuit voltage of 4.4 volts and a power of 20.1 milliwatts, as well 0.5 millimoles of hydrogen and 0.2 millimoles of oxygen after 6 hours of outdoor operation.

5.
J Colloid Interface Sci ; 647: 375-383, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37269734

RESUMEN

Recently, surging interests exist in direct electrochemical ammonia (NH3) synthesis from nitric oxide (NO) due to the dual benefit of NH3 synthesis and NO removal. However, designing highly efficient catalysts is still challenging. Based on density functional theory, the best ten candidates of transition-metal atoms (TMs) embedded in phosphorus carbide (PC) monolayer is screened out as highly active catalysts for direct NO-to-NH3 electroreduction. The employment of machine learning-aided theoretical calculations helps to identify the critical role of TM-d orbitals in regulating NO activation. A V-shape tuning rule of TM-d orbitals for the Gibbs free energy change of NO or limiting potentials is further revealed as the design principle of TM embedded PC (TM-PC) for NO-to-NH3 electroreduction. Moreover, after employing effective screening strategies including surface stability, selectivity, the kinetic barrier of potential-determining step, and thermal stability comprehensively studied for the ten TM-PC candidates, only Pt embedded PC monolayer has been identified as the most promising direct NO-to-NH3 electroreduction with high feasibility and catalytic performance. This work not only offers a promising catalyst but also sheds light on the active origin and design principle of PC-based single-atom catalysts for NO-to-NH3 conversion.

6.
Angew Chem Int Ed Engl ; 61(47): e202209703, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36070972

RESUMEN

An optimized approach to producing lattice-matched heterointerfaces for electrocatalytic hydrogen evolution has not yet been reported. Herein, we present the synthesis of lattice-matched Mo2 C-Mo2 N heterostructures using a gradient heating epitaxial growth method. The well lattice-matched heterointerface of Mo2 C-Mo2 N generates near-zero hydrogen-adsorption free energy and facilitates water dissociation in acid and alkaline media. The lattice-matched Mo2 C-Mo2 N heterostructures have low overpotentials of 73 mV and 80 mV at 10 mA cm-2 in acid and alkaline solutions, respectively, comparable to commercial Pt/C. A novel photothermal-electrocatalytic water vapor splitting device using the lattice-matched Mo2 C-Mo2 N heterostructure as a hydrogen evolution electrocatalyst displays a competitive cell voltage for electrocatalytic water splitting.

7.
Chemphyschem ; 23(20): e202200298, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-35789081

RESUMEN

Developing efficient CO2 adsorbent materials and technologies is significant to reduce the increasing greenhouse gases concentration in the atmosphere. Herein, a layered MOF with a porous kagomé lattice (kgm), which owned three phases (kgm-1, kgm-2, and kgm-3) via interlayer expansion, was evaluated as a promising CO2 capture and separation material by using grand canonical Monte Carlo simulations. Results showed that the interlayer expansion provided additional pore volume, which played a considerable role in CO2 adsorption and separation. The CO2 adsorption capacity and CO2 /N2 selectivity followed the sequence kgm-3>kgm-2>kgm-1, and kgm-3 exhibited an excellent CO2 adsorption capacity of 8.7 mmol g-1 at 1 bar with a CO2 /N2 selectivity of 130.3 at 20 bar and 298 K. Gas distribution analysis showed that CO2 and N2 are adsorbed only in the channels in kgm-1, whereas they could be adsorbed between layers in kgm-2 and kgm-3 due to the interlayer expansion. The adsorption heat and interactions between CO2 and frameworks were analyzed to elucidate the effect of interlayer expansion. Results of this work highlighted that appropriate interlayer expansion can be an effective approach for framework adsorbents to improve CO2 capture ability and separation performance at the same time.

8.
ChemSusChem ; 15(3): e202101674, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-34873862

RESUMEN

CO2 capture and separation by using charge-modulated adsorbent materials is a promising strategy to reduce CO2 emissions. Herein, three TM-HAB (TM=Co, Ni, and Cu; HAB=hexa-aminobenzene) metal-organic frameworks (MOFs) were evaluated as charge-modulated CO2 capture and separation materials by using density functional theory and grand canonical Monte Carlo simulations. The results showed that each TM-HAB presented a high electrical conductivity and structural stability when injecting charges. The CO2 adsorption energy increased from 0.211 to 2.091 eV on Co-HAB, 0.262 to 2.119 eV on Ni-HAB, and 0.904 to 2.803 eV on Cu-HAB, respectively, with the increase in charge state from 0.0 to 3.0 e- . Co-HAB and Ni-HAB were better charge-modulated CO2 capture materials with less structure deformation based on energy decomposition analyses. The kinetic process demonstrated that considerably low energy consumptions of 0.911 and 1.589 GJ ton-1 CO2 were observed for a complete adsorption-desorption cycle on Co-HAB and Ni-HAB. All charged MOFs, especially Co-HAB and Ni-HAB, exhibited higher CO2 adsorption energies and adsorption capacities than those of H2 , N2 , and CH4 , thereby exhibiting high CO2 selectivities. Interaction analysis confirmed that the injecting charges had a more pronounced enhancement in the coulombic interactions between CO2 and MOFs. The results of this work highlight Co-HAB and Ni-HAB as promising charge-modulated CO2 capture and separation materials with controllable CO2 capture, high selectivity, and low energy consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...