Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 60(12): 3314-3321, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33983234

RESUMEN

We report a method to sense a surrounding chiral drug based on D-type single-mode photonic crystal fiber (PCF) sensors in this paper. The electromagnetic theory of surface plasmon resonance on metal-chiral drug structure is derived. The wave equation containing constitutive relations of a chiral drug is given and integrated into the finite element method to compute the effective refractive index, confinement loss, and plasmon resonance wavelength for a D-type PCF sensor immersed in the chiral drug. The effects of the chirality parameter on resonance behaviors are displayed. The wavelength sensitivities of the chirality parameter for the sensor changing with different kinds of metal film layers, side-polished depth, and thickness of metal film layer are calculated. The wavelength sensitivity can reach a maximum of 17,580 nm/chirality as the refractive index and chirality parameter of the drug are 1.36 and 0.08, respectively. Furthermore, simultaneous dual-parameter detection of the chirality parameter and refractive index is realized by using two different D-type PCF sensors with gold and silver metal film layers, respectively. This study may provide sufficient guidelines to the field of biochemical sensing.

2.
Sheng Wu Gong Cheng Xue Bao ; 37(12): 4329-4341, 2021 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-34984878

RESUMEN

Dehydration-responsive element binding proteins (DREBs) are an important class of transcription factors related to plant stress tolerance. Ammopiptanthus mongolicus is an evergreen broadleaf shrub endemic to desert areas of northwest China, and it has a very high tolerance to harsh environments. In order to reveal the functions and mechanisms of the AmDREB1F gene from this species in enduring abiotic stresses, we performed subcellular localization test, expression pattern analysis, and stress tolerance evaluation of transgenic Arabidopsis harboring this gene. The protein encoded by AmDREB1F was localized in the nucleus. In laboratory-cultured A. mongolicus seedlings, the expression of AmDREB1F was induced significantly by cold and drought but very slightly by salt and heat stresses, and undetectable upon ABA treatment. In leaves of naturally growing shrubs in the wild, the expression levels of the AmDREB1F gene were much higher during the late autumn, winter and early spring than in other seasons. Moreover, the expression was abundant in roots and immature pods rather than other organs of the shrubs. Constitutive expression of AmDREB1F in Arabidopsis induced the expression of several DREB-regulated stress-responsive genes and improved the tolerance of transgenic lines to drought, high salinity and low temperature as well as oxidative stress. The constitutive expression also caused growth retardation of the transgenics, which could be eliminated by the application of gibberellin 3. Stress-inducible expression of AmDREB1F also enhanced the tolerance of transgenic Arabidopsis to all of the four stresses mentioned above, without affecting its growth and development. These results suggest that AmDREB1F gene may play positive regulatory roles in response to abiotic stresses through the ABA-independent signaling pathways.


Asunto(s)
Arabidopsis , Fabaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Expresión Génica Ectópica , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética
4.
Opt Express ; 27(22): 31407-31417, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684375

RESUMEN

The electromagnetic field theory for a step-index fiber geometry is developed to sense a surrounding chiral drug via long-period fiber gratings (LPFGs). This theory employs Debye potentials and electromagnetic fields for cladding modes in the LPFGs by introducing constitutive relations for a chiral drug. The fields in the chiral drug are transformed and decomposed into right- and left-hand circularly polarized components to account for the magnetoelectric coupling due to the chirality. The solving process for complex propagation constants is given. Numerical results show that responses of the LPFGs to refractive index and chirality changes are different. The two minimum transmissions of a coated LPFG are very sensitive to the variation of the complex chirality. On the other hand, the two resonance wavelengths keep invariant as real and imaginary parts of the comparatively small chirality change. This work enriches the electromagnetic field theory for better design of LPFGs against the highly sensitive chirality detection.

5.
PLoS One ; 14(10): e0224296, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31644601

RESUMEN

Dehydration-responsive element-binding (DREB) transcription factors (TFs) are key regulators of stress-inducible gene expression in plants. Anthocyanins, an important class of flavonoids, protect plants from reactive oxygen species produced under abiotic stresses. However, regulation of DREBs on anthocyanin accumulation is largely unknown. Here, an A-5 subgroup DREB gene (AmDREB3) isolated from Ammopiptanthus mongolicus, a desert broadleaf shrub with very high tolerance to harsh environments, was characterized in terms of both abiotic stress tolerance and anthocyanin accumulation. AmDREB3 does not contain the transcriptional repression motif EAR, and the protein was located in the nucleus and has transcriptional activation capacity. The transcription of AmDREB3 was differentially induced in the shoots and roots of A. mongolicus seedlings under drought, salt, heat, cold, ultraviolet B, and abscisic acid treatments. Moreover, the transcript levels in twigs, young leaves, and roots were higher than in other organs of A. mongolicus shrubs. Constitutively expressing AmDREB3 improved the tolerance of transgenic Arabidopsis to drought, high salinity and heat, likely by inducing the expression of certain stress-inducible genes. The transgenic Arabidopsis seedlings also exhibited an obvious purple coloration and significant increases in anthocyanin accumulation and/or oxidative stress tolerance under drought, salt, and heat stresses. These results suggest that the AmDREB3 TF may be an important positive regulator of both stress tolerance and anthocyanin accumulation.


Asunto(s)
Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fabaceae/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Arabidopsis/fisiología , Expresión Génica , Espacio Intracelular/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional
6.
Plant Physiol Biochem ; 143: 375-387, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31542639

RESUMEN

Chloroplast glycerol-3-phosphate acyltransferase (GPAT) is the first key enzyme determining the unsaturation of phosphatidylglycerol (PG) in thylakoid membranes and is involved in the tolerance of plants to chilling, heat and high salinity. However, whether the GPAT affects plant tolerance to other stressors has been scarcely reported. Ammopiptanthus mongolicus is the only evergreen broadleaf shrub growing in the central Asian desert, and it has a high tolerance to harsh environments, especially extreme cold. This study aimed to characterize the physiological function of AmGPAT from A. mongolicus. The transcription of AmGPAT was markedly induced by cold and drought but differentially suppressed by heat and high salinity in the laboratory-cultured seedlings. The gene also had the highest transcription levels in the leaves of shrubs naturally growing in the wild during the late autumn and winter months throughout the year. Moreover, AmGPAT was most abundantly expressed in leaves and immature pods rather than other organs of the shrubs. Constitutive expression of AmGPAT in Arabidopsis increased the levels of cis-unsaturated fatty acids, especially that of linolenic acid (18:3), mainly in PG but also in other chloroplast lipids in transgenic lines. More importantly, the transgene significantly increased the tolerance of the transgenics not only to chilling but also to freezing and oxidative stress at both the cellular and whole-plant levels. In contrast, this gene reduced heat tolerance of the transgenic plants. This study improves the current understanding of chloroplast GPAT in plant tolerance against abiotic stressors through regulating the unsaturation of chloroplast lipids, mainly that of PG.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Congelación , Proteínas de Plantas/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
7.
BMC Plant Biol ; 19(1): 349, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399044

RESUMEN

BACKGROUND: AFP is a negative regulator of ABA signaling that promotes ABI5 protein degradation and weakens regulation of ABA signaling by targeting upstream genes of ABI5, and TaABI5 gene was seed-specific, and accumulated during wheat grain maturation and dormancy acquisition, which played an important role in seed dormancy; TaAFP has a conserved domain with AFP, so TaAFP may also play an important role in seed dormancy in wheat. RESULTS: Two allelic variants of TaAFP were identified on chromosome 2BS in common wheat, and designated as TaAFP-B1a and TaAFP-B1b. Sequence analysis showed a 4-bp deletion in the 5'UTR region of TaAFP-B1b compared with TaAFP-B1a. Based on the 4-bp deletion, a co-dominant functional marker of TaAFP-B was developed and designated as AFPB. The genotype generating a 203-bp fragment (TaAFP-B1b) was more resistant to pre-harvest sprouting than the genotype producing a 207-bp fragment (TaAFP-B1a) in a test of 91 white-grained Chinese wheat cultivars and advanced lines. The average germination index(GI) values of TaAFP-B1a and that of TaAFP-B1b were 45.18 and 30.72%, respectively, indicating a significant difference (P < 0.001). Moreover, the 4-bp deletion located in the 5'UTR not only affected the transcription level of TaAFP-B but also affected the mRNA decay, reduced the translation level of GUS and tdTomatoER and GUS activity in wheat leaves of transient expression. The transcript expression and the mRNA half-life value of TaAFP-B1a in developing seeds and mature seeds were much higher than those of TaAFP-B1b. CONCLUSION: We identified a 4-bp InDel in the 5'UTR of TaAFP-B, which affected the mRNA transcription level, mRNA decay, translation levels of GUS and tdTomatoER, GUS activity, and was significantly associated with seed dormancy in common wheat. A functional marker was developed and validated based on this InDel.


Asunto(s)
Latencia en las Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Regiones no Traducidas 5'/genética , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismo , Eliminación de Secuencia , Transducción de Señal/genética , Triticum/crecimiento & desarrollo
8.
Opt Express ; 26(22): 28277-28287, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470002

RESUMEN

The transfer matrix method is developed to probe bianisotropic biomolecules via a Kretschmann configuration surface plasmon resonance (SPR) sensor. This method employs wave vectors and 4 × 4 transfer matrices derived by using anisotropic and magnetoelectric coupling constitutive relations. The transfer matrices relate four eigenstates and trace four transverse field components through the multilayer to account for cross-polarization coupling due to the chirality of the biomolecule layer. The validity of the method is confirmed by means of numerical results. It is shown that cross-polarized reflection waves are enhanced around the SPR angle, as the water solution and bianisotropic biomolecules to be detected are placed in contact with the graphene layer of the sensor. The effects of optical activity and bianisotropy on the SPR sensor are investigated. This work enriches the transfer matrix theory for SPR sensors to detect the chirality parameter of bianisotropic chiral material, and may lead to a better design of SPR sensors against the chirality parameter variation.


Asunto(s)
Anisotropía , Técnicas Biosensibles , Grafito/química , Resonancia por Plasmón de Superficie/métodos , Diseño de Equipo
9.
Plant Physiol Biochem ; 130: 517-528, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30096686

RESUMEN

Dehydration-responsive element-binding (DREB) transcription factors (TFs) play a vital role in plant response to abiotic stresses. However, little is known about DREB TFs in plants adapted to harsh environments and in the formation of polyunsaturated fatty acids (PUFAs), a major membrane component closely associated with plant stress tolerance. Here, we characterized AmDREB2C in Ammopiptanthus mongolicus (Maxim. ex kom.) Cheng F., a desert evergreen broadleaf shrub with a high tolerance to harsh environments. AmDREB2C encodes a canonical DREB2-type TF, and the protein was localized in the nucleus. AmDREB2C had the highest expression levels in leaves of naturally growing shrubs in the wild during the winter season of a year of sampling. The expression was also induced by cold, heat and drought stresses in laboratory-cultured seedlings. Moreover, AmDREB2C was most abundantly expressed in young leaves and immature seeds rather than other tissues of the shrubs. Constitutive expression of AmDREB2C in Arabidopsis enhanced freezing, heat and drought tolerances of the transgenic plants, likely through inducing the expression of important stress-responsive genes. The transgene also increased the level of linolenic acid (C18:3), a major PUFA in most plant species, in leaves and seeds of the transgenic plants. Correspondingly, the transcription of FAD3, FAD7 and FAD8, three genes encoding fatty acid desaturases (FADs) responsible for the production of C18:3, showed a differential up-regulation in these two organs. This study provides new insight into the underlying molecular mechanisms of A. mongolicus' ability to endure harsh environments and DREB TF regulation of fatty acid desaturation.


Asunto(s)
Arabidopsis/metabolismo , Fabaceae/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Clonación Molecular , Fabaceae/genética , Fabaceae/fisiología , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN , Estrés Fisiológico , Factores de Transcripción/genética
10.
Sci Rep ; 7(1): 652, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28381822

RESUMEN

In order to pull objects towards the light source a single tractor beam inevitably needs to be strongly nonparaxial. This stringent requirement makes such a tractor beam somewhat hypothetical. Here we reveal that the cylindrical shape of dielectric particles can effectively mitigate the nonparaxiality requirements, reducing the incidence angle of the partial plane waves of the light beam down to 45° and even to 30° for respectively dipole and dipole-quadrupole objects. The optical pulling force attributed to the interaction of magnetic dipole and magnetic quadrupole moments of dielectric cylinders occurs due to the TE rather than TM polarization. Therefore, the polarization state of the incident beam can be utilized as an external control for switching between the pushing and pulling forces. The results have application values towards optical micromanipulation, transportation and sorting of targeted particles.

11.
Opt Express ; 23(13): 16546-53, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26191666

RESUMEN

We report a mechanism to obtain optical pulling or pushing forces exerted on the active dispersive chiral media. Electromagnetic wave equations for the pure chiral media using constitutive relations containing dispersive Drude models are numerically solved by means of Auxiliary Differential Equation Finite Difference Time Domain (ADE-FDTD) method. This method allows us to access the time averaged Lorentz force densities exerted on the magnetoelectric coupling chiral slabs via the derivation of bound electric and magnetic charge densities, as well as bound electric and magnetic current densities. Due to the continuously coupled cross-polarized electromagnetic waves, we find that the pressure gradient force is engendered on the active chiral slabs under a plane wave incidence. By changing the material parameters of the slabs, the total radiation pressure exerted on a single slab can be directed either along the propagation direction or in the opposite direction. This finding provides a promising avenue for detecting the chirality of materials by optical forces.

12.
BMC Genomics ; 15: 671, 2014 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-25108399

RESUMEN

BACKGROUND: The molecular mechanisms involved in plant tolerance to either drought or cold have been extensively studied in many plant species. However, few studies have focused on their comparisons especially using non-model plants with strong tolerance to both stresses. Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. is the only evergreen broadleaf shrub grown in the central Asian desert and it has very strong cold and drought tolerance. To provide further insights into plant tolerance, the transcriptome profiles of drought- and cold-treated A. mongolicus seedlings were analyzed using Illumina technology and differentially expressed genes (DEGs) were compared. RESULTS: A comprehensive transcriptome of A. mongolicus was sequenced using pooled mRNA extracted from drought-, cold-stressed and unstressed seedlings as well as leaves from naturally grown shrub. These sequences were assembled into 86058 unigenes, of which 51014 unigenes had an annotated function and 2440 encoded transcription factors (TFs). Transcriptome profiles were analyzed in A. mongolicus seedlings after drought and cold treatments at three time points (2, 8 and 24 h). Between 3917 and 6102 unigenes were identified as DEGs at a single time point in both stresses. Among these DEGs 2028 and 2026 DEGs were common across the three time points of drought and cold treatments respectively, and 971 DEGs were co-regulated by both stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The most pronounced findings are that flavonoid biosynthesis genes were enriched in the DEGs co-up-regulated by both stresses; while membrane protein genes and genes related to chloroplast were abundant in the DEGs specifically up-regulated by drought or cold, respectively. Furthermore, the DREB, ERF, NAC and WRKY TFs were predominantly co-up-regulated by both stresses. CONCLUSIONS: The present study provides the most comprehensive transcriptome resource and the first dynamic transcriptome profiles of A. mongolicus under drought and cold stresses. This information will deepen our understanding of plant tolerance to drought and cold. The up-regulated DEGs will be valuable for further investigations of key genes and molecular mechanisms involved in the adaptation of A. mongolicus to harsh environments.


Asunto(s)
Respuesta al Choque por Frío/genética , Clima Desértico , Sequías , Fabaceae/genética , Fabaceae/fisiología , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular
13.
Sheng Wu Gong Cheng Xue Bao ; 28(1): 86-95, 2012 Jan.
Artículo en Chino | MEDLINE | ID: mdl-22667112

RESUMEN

Ammopiptanthus mongolicus shows very strong resistance to severe environments. To isolate drought-resistant genes and elucidate drought-resistant molecular mechanisms of the plant, we constructed a drought-induced full-length cDNA library using SMART (Switching mechanism at 5'-end of RNA transcript) technique. The phage titer of the unamplified library was 1.6 x 10(7) PFU/mL; the recombination percentage was 97.7%; and the sizes of most cloned cDNA fragments were around 1 kb. Three thousand positive clones were randomly selected and sequenced from their 5' ends, and a total of 1 450 Unigenes were identified. By Blast searches against the Nt, Nr and Swissprot databases, we found that 919 Unigenes (amount to 63.4%) showed significant similarity to the annotated genes, and the remaining 531 Unigenes (amount to 36.6%) represented novel genes without any annotation. Among the functional categories of the GO (Gene Ontology) classification, the terms related to physiological process, cellular process, binding, catalytic activity and cellular components were dominant. The next abundant terms were for organelle, protein complex, transporter activity and structural molecule activity. In addition, there were a significant proportion of the terms involved in stimulus response, gene expression regulation, regulation of physiological and biochemical processes and signal transduction. Many of the annotated Unigenes were found to be related to plant resistance to abiotic stresses, and expression analyses of 6 out of these genes by semi-quantitive RT-PCR confirmed their involvements in the response of A. mongolicus to drought stress. These results laid a foundation for the expression profile analysis and the cloning and characterization of drought-resistant genes from the plant in the future.


Asunto(s)
Sequías , Fabaceae/genética , Biblioteca de Genes , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Análisis de Secuencia de ADN
14.
Plant Mol Biol ; 65(6): 733-46, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17882512

RESUMEN

The calcineurin B-like proteins (CBLs) represent a unique family of calcium sensors in plants. Although extensive studies and remarkable progress have been made in Arabidopsis (Arabidopsis thaliana) CBLs, their functions in other plant species are still quite limited. Here, we report the cloning and functional characterization of ZmCBL4, a novel CBL gene from maize (Zea mays). ZmCBL4 encodes a putative homolog of the Arabidopsis CBL4/SOS3 protein, with novel properties. ZmCBL4 has one copy in maize genome and harbors seven introns in its coding region. ZmCBL4 expressed differentially in various organs of the maize plants at a low level under normal condition, and its expression was regulated by NaCl, LiCl, ABA and PEG treatments. Expression of 35S::ZmCBL4 not only complemented the salt hypersensitivity in Arabidopsis sos3 mutant, but also enhanced the salt tolerance in Arabidopsis wild type at the germination and seedling stages. Moreover, the LiCl tolerance in all of the ZmCBL4-expressing lines increased more significantly as compared with the NaCl tolerance, and in consistent with this, it was found that the expression of Arabidopsis AtNHX8, a putative plasma membrane Li+/H+ antiporter gene identified recently, was induced in these transgenic lines under LiCl stress. The ZmCBL4-expressing Arabidopsis lines accumulated less Na+ and Li+ as compared with the control plants. This study has identified a putative maize CBL gene which functions in the salt stress-elicited calcium signaling and thus in the tolerance to salinity.


Asunto(s)
Arabidopsis/genética , Proteínas de Unión al Calcio/fisiología , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente/efectos de los fármacos , Cloruro de Sodio/farmacología , Zea mays/genética , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Antiportadores/genética , Antiportadores/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio/genética , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Clonación Molecular , Cloruro de Litio/farmacología , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Polietilenglicoles/farmacología , Alineación de Secuencia , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
15.
Plant Cell Rep ; 26(12): 2091-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17668219

RESUMEN

DWF4 encodes a rate-limiting mono-oxygenase that mediates 22alpha-hydroxylation reactions in the BR biosynthetic pathway and it is the target gene in the BR feedback loop. Knockout of DWF4 results in a dwarfed phenotype and other severe defects in Arabidopsis. Here we report on the isolation of the ZmDWF4 gene in maize. Sequence analysis revealed that the open reading frame of ZmDWF4 was 1,518 bp, which encodes a protein composed of 505 amino acid residues with a calculated molecular mass of 57.6 kD and a predicated isoelectric point (pI) of 9.54. Phylogenetic analysis indicated that ZmDWF4 was very close to the Arabidopsis DWF4. In young maize seedlings, the expression of ZmDWF4 in shoots was much higher than that in roots. The highest expression of ZmDWF4 was observed in husk leaves and the lowest in silks during flowering stage. The expression of ZmDWF4 in maize was significantly down regulated by exogenous brassinolide. A heterogeneous complementary experiment demonstrated that the defects of three Arabidopsis DWF4 mutants could be rescued by constitutive expression of ZmDWF4, with leaf expandability, inflorescence stem heights and fertile capabilities all restored to normal levels. Increases in seed and branch number as well as the height of florescence stem were observed in the over-expressed transformants. These findings suggest that ZmDWF4 may be an ortholog gene of Arabidopsis DWF4 and responsible for BR biosynthesis in maize.


Asunto(s)
Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Oxigenasas de Función Mixta/genética , Proteínas de Plantas/genética , Zea mays/genética , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides , Colestanoles/metabolismo , Colestanoles/farmacología , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prueba de Complementación Genética , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacología , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
16.
Plant Cell Rep ; 26(9): 1555-65, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17516072

RESUMEN

By screening a genomic library of maize, a 2.2 kb 5' flanking fragment of Zpu1 gene, encoding the pullulanase-type starch debranching enzyme, was isolated. Promoter fragments of various lengths, including the full 5' flanking sequence (-2267 to -1) (Z1), a 3' deletion (-2267 to -513) (Z5) and three 5' deletions extending to -1943 (Z2), -1143 (Z3) and -516 (Z4) upstream of the translational initiation codon (ATG), were fused to the GUS reporter gene and introduced into tobacco. When these constructs were tested in transgenic tobacco plants, seed-preferred GUS activity was observed in pZ1-transgenic lines. In pZ2-transgenic lines, the GUS activity was not only restricted to seeds, but was also detected in calyxes, petals, stamens and mature leaves. At the same time, negligible GUS activity was detected in roots, stems, young leaves, stigmas and ovaries from the transgenic tobacco plants, which had integrated the full isolated sequence of Zpu1 promoter or its deletions. Deletion analysis indicated that the promoter contained a putative positive cis-regulatory element and the proximal region (-516 to -1) was essential for directing the expression of gus reporter gene. Analysis of GUS activity during the fruit development and seed germination suggested that Zpu1 promoter is active both in starch anabolism and in starch catabolism, which is consistent with the function of the endogenous gene in maize. GUS activity in leaves under light and darkness confirmed that Zpu1 promoter functions in the starch degradation of photosynthetic tissues in the dark phase of the diurnal cycle.


Asunto(s)
Genes de Plantas , Glicósido Hidrolasas/genética , Nicotiana/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Zea mays/genética , Región de Flanqueo 5'/genética , Emparejamiento Base , Secuencia de Bases , Electroforesis en Gel de Agar , Regulación de la Expresión Génica de las Plantas , Germinación , Glucuronidasa/metabolismo , Datos de Secuencia Molecular , Fotosíntesis , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Semillas/fisiología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...