Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Curr Biol ; 30(19): 3825-3832.e4, 2020 10 05.
Article En | MEDLINE | ID: mdl-32763172

Over five million hectares of tropical forest were cleared across mainland Southeast Asia and sub-Saharan Africa for rubber plantations between 2003 and 2017 [1, 2]. Millions of hectares of further clearance are predicted as rubber demand rises, which will have major consequences for biodiversity [3]. A key question is how to reconcile rubber expansion with biodiversity conservation. We assessed the feasibility of simultaneously meeting global future demand for rubber with conservation of extinction-threatened amphibians, birds, mammals, and reptiles. We compared the spatial congruence of rubber bioclimatic suitability with extinction vulnerability [4] in Africa, Asia, and New Guinea, where large-scale rubber cultivation is viable, and simulated rubber expansion under different scenarios. We found no "win-win" areas with highest rubber suitability and lowest extinction vulnerability. Projected rubber demand could be met by allowing expansion primarily in New Guinea and African Guinea. However, New Guinea has high ecosystem intactness and both regions are rich in endemics. Scenarios suggest converting only areas suitable for cultivation would cause the largest biodiversity losses, including endangered species, whereas prioritizing conservation would result in only the conversion of highly unsuitable land. Compromise scenarios that balance production with conservation could cut biodiversity losses by two-thirds, protecting most endangered species while maintaining high rubber suitability. Development of high-yielding hardy clones expands the amount of win-win areas, as well as suitable areas with high extinction risk. These trade-offs reveal that clonal research and development, strategic corporate and government land-use policies, and rigorous impact assessments are needed to prevent severe biodiversity losses from rubber development.


Conservation of Natural Resources/methods , Hevea/growth & development , Rubber/economics , Africa , Agriculture/methods , Asia , Biodiversity , Ecosystem , Forests , New Guinea
2.
Glob Chang Biol ; 25(11): 3609-3624, 2019 11.
Article En | MEDLINE | ID: mdl-31310673

As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old-growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old-growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old-growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha-1  year-1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha-1  year-1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha-1  year-1 in old-growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large-scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.


Trees , Tropical Climate , Africa , Asia , Biomass , Carbon , Forests , South America
3.
Am J Bot ; 105(5): 898-914, 2018 05.
Article En | MEDLINE | ID: mdl-29874392

PREMISE OF THE STUDY: Underutilized crops and their wild relatives are important resources for crop improvement and food security. Cempedak [Artocarpus integer (Thunb). Merr.] is a significant crop in Malaysia but underutilized elsewhere. Here we performed molecular characterization of cempedak and its putative wild relative bangkong (Artocarpus integer (Thunb). Merr. var. silvestris Corner) to address questions regarding the origin and diversity of cempedak. METHODS: Using data from 12 microsatellite loci, we assessed the genetic diversity and genetic/geographic structure for 353 cempedak and 175 bangkong accessions from Malaysia and neighboring countries and employed clonal analysis to characterize cempedak cultivars. We conducted haplotype network analyses on the trnH-psbA region in a subset of these samples. We also analyzed key vegetative characters that reportedly differentiate cempedak and bangkong. KEY RESULTS: We show that cempedak and bangkong are sister taxa and distinct genetically and morphologically, but the directionality of domestication origin is unclear. Genetic diversity was generally higher in bangkong than in cempedak. We found a distinct genetic cluster for cempedak from Borneo as compared to cempedak from Peninsular Malaysia. Finally, cempedak cultivars with the same names did not always share the same genetic fingerprint. CONCLUSIONS: Cempedak origins are complex, with likely admixture and hybridization with bangkong, warranting further investigation. We provide a baseline of genetic diversity of cempedak and bangkong in Malaysia and found that germplasm collections in Malaysia represent diverse coverage of the four cempedak genetic clusters detected.


Artocarpus/genetics , Biological Evolution , Genetic Variation , Microsatellite Repeats , Asia, Southeastern , Malaysia
4.
Ecology ; 99(6): 1507, 2018 06.
Article En | MEDLINE | ID: mdl-29603730

Forests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO2 ) emitted by anthropogenic activities. Yet, scaling up from field-based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open-access global Forest Carbon database (ForC) containing previously published records of field-based measurements of ecosystem-level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using ForC data should cite this publication and Anderson-Teixeira et al. (2016a) (see Metadata S1). No other copyright or cost restrictions are associated with the use of this data set.


Carbon/analysis , Ecosystem , Biomass , Carbon Cycle , Carbon Dioxide/analysis , Forests , Trees
5.
Glob Chang Biol ; 22(5): 1690-709, 2016 May.
Article En | MEDLINE | ID: mdl-26790568

Tropical forests play a critical role in the global carbon (C) cycle, storing ~45% of terrestrial C and constituting the largest component of the terrestrial C sink. Despite their central importance to the global C cycle, their ecosystem-level C cycles are not as well-characterized as those of extra-tropical forests, and knowledge gaps hamper efforts to quantify C budgets across the tropics and to model tropical forest-climate interactions. To advance understanding of C dynamics of pantropical forests, we compiled a new database, the Tropical Forest C database (TropForC-db), which contains data on ground-based measurements of ecosystem-level C stocks and annual fluxes along with disturbance history. This database currently contains 3568 records from 845 plots in 178 geographically distinct areas, making it the largest and most comprehensive database of its type. Using TropForC-db, we characterized C stocks and fluxes for young, intermediate-aged, and mature forests. Relative to existing C budgets of extra-tropical forests, mature tropical broadleaf evergreen forests had substantially higher gross primary productivity (GPP) and ecosystem respiration (Reco), their autotropic respiration (Ra) consumed a larger proportion (~67%) of GPP, and their woody stem growth (ANPPstem) represented a smaller proportion of net primary productivity (NPP, ~32%) or GPP (~9%). In regrowth stands, aboveground biomass increased rapidly during the first 20 years following stand-clearing disturbance, with slower accumulation following agriculture and in deciduous forests, and continued to accumulate at a slower pace in forests aged 20-100 years. Most other C stocks likewise increased with stand age, while potential to describe age trends in C fluxes was generally data-limited. We expect that TropForC-db will prove useful for model evaluation and for quantifying the contribution of forests to the global C cycle. The database version associated with this publication is archived in Dryad (DOI: 10.5061/dryad.t516f) and a dynamic version is maintained at https://github.com/forc-db.


Carbon Cycle , Forests , Databases, Factual , Tropical Climate
...