Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 144
1.
Avian Pathol ; : 1-24, 2024 Jun 26.
Article En | MEDLINE | ID: mdl-38922304

AbstractThe Avulavirus within the family Paramyxoviridae includes at least 22 different species, and is known to cause different types of infections and even be fatal in multiple avian species. There is limited knowledge of the genetic and biological information of Avulavirus species -2 to 22 in domestic and wild birds and the disease significance of these viruses in birds is not fully determined, although as many as 10 new distinct species have been identified from wild birds and domestic poultry around the world in the last decade. This study aimed to use PCR, virus isolation, and sequencing to genetically and biologically characterize Avian Orthoavulavirus 16 (AOAV-16) in wild birds and domestic poultry collected from different locations in China between 2014 and 2022. Of five isolated AOAV-16 strains (Y1 to Y5), only the Y4 strain had a hemagglutination (HA)-negative result. All of these isolates were low virulent viruses for chickens, except Y3 which was detected simultaneously with avian influenza virus (AIV) of H9N2 subtype. Furthermore, at least four different types of intergenic sequences (IGS) between the HN and L genes junction, and the recombination event as well as interspecific transmission by wild migratory birds, existed within the species AOAV-16. These findings and results of other reported AOAV-16 strains recommend strict control measures to limit contact between wild migratory birds and domestic poultry and imply potential threats to commercial poultry and even public health challenges worldwide.

2.
J Hazard Mater ; 476: 134909, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38905979

Developing highly-efficient electrocatalysts for the nitrate reduction reaction (NITRR) is a persistent challenge. Here, we present the successful synthesis of 14 amorphous/low crystallinity metal nanofilms on three-dimensional carbon fibers (M-NFs/CP), including Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, In, Sn, Pb, Au, or Bi, using rapid thermal evaporation. Among these samples, our study identifies the amorphous Co nanofilm with fine agglomerated Co clusters as the optimal electrocatalyst for NITRR in a neutral medium. The resulting Co-NFs/CP exhibits a remarkable Faradaic efficiency (FENH3) of 91.15 % at - 0.9 V vs RHE, surpassing commercial Co foil (39 %) and Co powder (20 %), despite sharing the same metal composition. Furthermore, during the electrochemical NITRR, the key intermediates on the surface of the Co-NFs/CP catalyst were detected by in situ Fourier-transform infrared (FTIR) spectroscopy, and the possible reaction ways were probed by Density functional theory (DFT) calculations. Theoretical calculations illustrate that the abundant low-coordinate Co atoms of Co-NFs/CP could enhances the adsorption of *NO3 intermediates compared to crystalline Co. Additionally, the amorphous Co structure lowers the energy barrier for the rate-determining step (*NH2→*NH3). This work opens a new avenue for the controllable synthesis of amorphous/low crystallinity metal nano-catalysts for various electrocatalysis reaction applications.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124699, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38909559

The identification and quantification of melatonin (MT) are crucial for early diagnosis of disorders associated with circadian rhythm disruption. Herein, novel blue-emissive carbon dots (BCDs) were synthesized through an improved hydrothermal treatment using serine and malic acid as reductant and carbon source. The excellent optical properties of the as-obtained BCDs were used for ratiometric sensing by strategically constructing a MT sensing system integrating BCDs with C3N4 nanosheets loaded with platinum/ruthenium nanoparticles (PtRu/CN). In this system, H2O2 activated the peroxidase-like activity of PtRu/CN to generate •OH and 1O2 for oxidizing the colorless o-phenylenediamine (OPD) into yellow 2,3-diaminophenazine (DAP) with fluorescence emission at 565 nm. Concurrently, the fluorescence emission of BCDs at 439 nm was quenched by the generated DAP via the static quenching and inner filter effect (IFE) process. However, MT rapidly scavenged the generated free radicals to reverse the ratio fluorescence signal. The developed BCDs/PtRu/CN/OPD/H2O2 sensing platform enabled quantitative analysis of MT at concentrations ranging from 0.06 to 600 µmol/L with a low detection limit of 23.56 nmol/L. Moreover, smartphone-based RGB sensing of MT was successfully developed for rapid visualization and portable processing. More broadly, novel insights into the preparation of carbon dots with sensitive fluorescence sensing properties were presented, promising for future considerations.

4.
Microorganisms ; 12(5)2024 May 11.
Article En | MEDLINE | ID: mdl-38792800

There are significant variations in pathogenicity among different virulent strains of the Newcastle disease virus (NDV). Virulent NDV typically induces severe pathological changes and high mortality rates in infected birds, while avirulent NDV usually results in asymptomatic infection. Currently, the understanding of the specific mechanisms underlying the differences in host pathological responses and symptoms caused by various virulent NDV strains remains limited. Long non-coding RNA (lncRNA) can participate in a range of biological processes and plays a crucial role in viral infection and replication. Therefore, this study employed RNA-Seq to investigate the transcriptional profiles of chicken embryos' visceral tissues (CEVTs) infected with either the virulent NA-1 strain or avirulent LaSota strain at 24 hpi and 36 hpi. Using bioinformatic methods, we obtained a total of 2532 lncRNAs, of which there were 52 and 85 differentially expressed lncRNAs at 24 hpi and 36 hpi, respectively. LncRNA analysis revealed that the severe pathological changes and symptoms induced by virulent NDV infection may be partially attributed to related target genes, regulated by differentially expressed lncRNAs such as MSTRG.1545.5, MSTRG.14601.6, MSTRG.7150.1, and MSTRG.4481.1. Taken together, these findings suggest that virulent NDV infection exploits the host's metabolic resources and exerts an influence on the host's metabolic processes, accompanied by excessive activation of the immune response. This impacts the growth and development of each system of CEVTs, breaches the blood-brain barrier, inflicts severe damage on the nervous system, and induces significant lesions. These observations may be attributed to variations in pathology. Consequently, novel insights were obtained into the intricate regulatory mechanisms governing NDV and host interactions. This will aid in unraveling the molecular mechanisms underlying both virulent and avirulent forms of NDV infection.

5.
JVS Vasc Sci ; 5: 100200, 2024.
Article En | MEDLINE | ID: mdl-38766270

Objective: This study describes a novel swine model of venous thromboembolism (VTE) with reflux-induced venous hypertension. Methods: Six pigs underwent disruption of the tricuspid chordae tendineae to create reflux and venous hypertension in the femoral vein. The vein was traumatized 2 to 3 weeks later by repeated withdrawal of a slightly overinflated occlusion balloon across the lumen, followed by balloon occlusion of the outflow. A small amount of thrombin was injected into the traumatized vein segment immediately after outflow occlusion. Thrombosis of the traumatized vein evolved into an organized thrombus seven weeks later. The histological features of the harvested post-thrombotic femoral vein were studied with hematoxylin and eosin and Trichrome stains. Results: In all six pigs, initial disruption of the chordae tendineae was successfully performed to create tricuspid reflux and venous hypertension. After two-stage sequential procedures, a thrombus formed in the target femoral vein segment. Histology of the harvested thrombotic vein showed features of an organizing thrombus with collagen formation and fibrosis. Conclusions: The novel swine VTE model may serve as a platform for developing and testing human-sized therapeutic procedures and devices in translational venous research. Clinical Relevance: This study describes a swine model of VTE created by incorporating all three elements of Virchow's triad. The model uniquely incorporates reflux-induced venous hypertension, which may be used in studying venous insufficiency and VTE in those with systemic venous hypertension. Likewise, this model may serve as a platform for development and evaluation of diagnostic imaging or therapeutic procedures and devices in subjects with systemic venous hypertension.

6.
Chem Soc Rev ; 53(10): 5149-5189, 2024 May 20.
Article En | MEDLINE | ID: mdl-38566609

The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.

7.
Langmuir ; 40(12): 6550-6561, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38483322

With environmental pollution becoming more serious, developing efficient treatment technologies for all kinds of organic wastewater has become the focus of current research. In this work, the coaxial electrospinning technology was used to one-step fabricate a porous and underwater superoleophobic polyacrylonitrile nanofibrous membrane with an Fe-based metal-organic framework (MIL-100(Fe)). Benefiting from the synergistic effect of two jets, the nanofibers are smaller and denser, which prompt the exposure of more nanomaterial additives (MIL-100(Fe)). The BET surface area increased to 202.888 m2/g, and the membranes demonstrated outstanding underwater superoleophobicity. Moreover, compared with traditional blended matrix membranes by the single-axis method, separation of the modifier and membrane matrix material by coaxial methods also maintained excellent mechanical properties, which enhanced Young's modulus 3.4 times (∼1.34 MPa). As a result, facing soluble dyes, the porous C-PAN/MIL-100(Fe) membrane can demonstrate outstanding and fast adsorptive property (the Qm of MB and CR reached 44.71 and 88.74 mg g-1, respectively). For oily emulsion, the hydrophilic and oleophobic nanofibrous reticular surface provided excellent separation performance (flux: 1124.0-1549.3 L m-2 h-1, R > 98%). Moreover, the porous and underwater superoleophobic C-PAN/MIL-100(Fe)-0.5 membrane can synchronously purify the dye/oil mixture emulsions by one-step filtration. Based on the above performance, we believe that the modified nanofibrous membrane prepared by one-step coaxial electrospinning technology can promote more studies of the development of membrane preparation technology in the field of oily wastewater treatment.

8.
Perfusion ; : 2676591241242641, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38553982

BACKGROUND: The lysine analog tranexamic acid (TXA) is used as a blood protective drug in cardiac surgery, but efficacy and safety outcomes in patients treated with extracorporeal membrane oxygenation (ECMO) after surgery remain poorly understood. METHODS: From January 1, 2017 to December 31, 2022, we retrospectively analyzed patients assisted by ECMO after cardiac surgery and divided them into TXA and control groups depending on whether TXA was used or not. The primary study outcome was red blood cell (RBC) transfusion during ECMO. RESULTS: In total, 321 patients treated with ECMO after cardiac surgery were assessed; 185 patients were eligible for inclusion into to the TXA-intervention group and 136 into to the control group. RBC transfusion during ECMO was 8.0 IU (4.0 IU-14.0 IU) in the TXA group versus 10.0 IU (6.0 IU-16.0 IU) in the control group (p = .034). Median total chest drainage volume after surgery was 1460.0 mL (650.0-2910.0 mL) and 1680.0 mL (900.0-3340.0 mL) in TXA and control groups, respectively (p = .021). Postoperative serum D-dimer levels were significantly lower in the TXA group when compared with the control group; 1.125 µg/mL (0.515-2.176 µg/mL) versus 3.000 µg/mL (1.269-5.862 µg/mL), p < .001. Serious adverse events, including vascular occlusive events, did not differ meaningfully between groups. CONCLUSIONS: In patients treated with ECMO after cardiac surgery, TXA infusion modestly but significantly reduced RBC transfusions and chest tube output when compared with the control group.

9.
Sci Total Environ ; 919: 170824, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38340861

Growing concerns have raised about the microplastic eco-coronas in the ultraviolet (UV) disinfection wastewater, which accelerated the pollution of antibiotic resistance genes (ARGs) in the aquatic environment. As the hotspot of gene exchange, microplastics (MPs), especially for the UV-aged MPs, could alter the spread of ARGs in the eco-coronas and affect the resistance of the environment through adsorbing antibiotic resistant plasmids (ARPs). However, the relationship between the MP adsorption for ARPs and ARG spreading characteristics in MP eco-corona remain unclear. Herein, this study explored the distribution of ARGs in the MP eco-corona through in situ investigations of the discharged wastewater, and the adsorption behaviors of MPs for ARPs by in vitro adsorption experiments and in silico calculations. Results showed that the adsorption capacity of MPs for ARPs was enhanced by 42.7-48.0 % and the adsorption behavior changed from monolayer to multilayer adsorption after UV-aging. It was related to the increased surface roughness and oxygen-containing functional groups of MPs under UV treatment. Moreover, the abundance of ARGs in MP eco-corona of UV-treated wastewater was 1.33-1.55 folds higher than that without UV treatment, promoting the proliferation of drug resistance. DFT and DLVO theoretical calculations indicated that the MP-ARP interactions were dominated by electrostatic physical adsorption, endowing the aged MPs with low potential oxygen-containing groups to increase the electrostatic interaction with ARPs. Besides, due to the desorption of ARPs on MPs driven by the electrostatic repulsion, the bioavailability of ARGs in the MP eco-coronas was increased with pH and decreased with salinity after the wastewater discharge. Overall, this study advanced the understanding of the adsorption behavior of MPs for ARPs and provided inspirations for the evaluation of the resistance spread in the aquatic environment mediated by MP eco-coronas.


Microplastics , Plastics , Wastewater , Adsorption , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents , Oxygen , Genes, Bacterial
10.
Chinese Journal of Biologicals ; (12): 138-142, 2024.
Article Zh | WPRIM | ID: wpr-1006851

@#Objective To express and identify recombinant adenovirus type 5-Norovirus(NoV)GⅡ.4-VP1 virus-like particles(VLPs)in 293T cells. Methods The recombinant adenovirus plasmids pAd5-eGFP and pAd5-NoV-GⅡ.4-VP1 were transfected into 293T cells respectively,and the recombinant adenovirus rAd5-eGFP and rAd5-NoV-GⅡ.4-VP1 were rescued. The rAd5-eGFP was subcultured in 293T cells to verify the function of the vector. The rAd5-NoV-GⅡ.4-VP1 was subcultured in293T cells,expressed and purified,and then NoV-GⅡ.4-VLP was formed by self-assembly,which was detected by Western blot,ELISA and observed by transmission electron microscope. Results The green fluorescence of the recombinant adenovirus rAd5-eGFP of various generations was observed under microscope,and the brightness increased with the increase of generations. NoV-GⅡ.4-VP1 protein was expressed in the harvested solution of recombinant adenovirus rAd5-NoV-GⅡ.4-VP1 of various generations,with a relative molecular mass of about 58 900. NoV-GⅡ.4-VLP showed specific binding to the rabbit anti-NoV-GⅡ.4-VP1 serum;it had similar conformation to natural NoV virus particles and can effectively identify NoV receptors in volunteer saliva samples;microscopic observation showed that the morphology was complete and spherical,with a diameter of 43. 5 — 58. 3 nm,while there were a few protrusions on the surface of the particles,which might be the P domain exposedon the particle surface during self-assembly of VP1. Conclusion The expressed recombinant adenovirus NoV-GⅡ. 4-VLP has complete VLP structure and good specificity,and is expected to be used in the related research of NoV adenovirus vector vaccine.

11.
ACS Appl Mater Interfaces ; 16(1): 1712-1718, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38113293

Herein, an adenosine triphosphate (ATP)-induced enzyme-catalyzed cascade reaction system based on metal-organic framework/alkaline phosphatase (MOF/ALP) nanocomposites was designed to establish a surface-enhanced Raman spectroscopy (SERS) biosensor for use in rapid, sensitive ATP detection. Numerous ALP molecules were first encapsulated using ZIF-90 to temporarily deactivate the enzyme activity, similar to a lock. Au nanostars (AuNSs), as SERS-enhancing substrates, were combined with o-phenylenediamine (OPD) to form AuNSs@OPD, which could significantly improve the Raman signal of OPD. When the target ATP interacted with the MOF/ALP nanocomposites, ATP could act as a key to open the MOF structure, releasing ALP, which should further catalyze the conversion of OPD to oxOPD with the aid of ascorbic acid 2-phosphate. Therefore, with the increasing concentrations of ATP, more ALP was released to catalyze the conversion of OPD, resulting in the reduced intensity of the Raman peak at 1262 cm-1, corresponding to the level of OPD. Based on this principle, the ATP-induced enzyme-catalyzed cascade reaction SERS biosensor enabled the ultrasensitive detection of ATP, with a low detection limit of 0.075 pM. Consequently, this study provides a novel strategy for use in the ultrasensitive, rapid detection of ATP, which displays considerable potential for application in the fields of biomedicine and disease diagnosis.


Metal Nanoparticles , Metal-Organic Frameworks , Phenylenediamines , Metal-Organic Frameworks/chemistry , Alkaline Phosphatase/chemistry , Adenosine Triphosphate/chemistry , Spectrum Analysis, Raman/methods , Immunoassay , Catalysis , Gold/chemistry , Metal Nanoparticles/chemistry
12.
Front Bioeng Biotechnol ; 11: 1298621, 2023.
Article En | MEDLINE | ID: mdl-38076433

Objective: Real-time accurate venous lesion characterization is needed during endovenous interventions for stent deployment. The goal of this study is to validate a novel device for venoplasty sizing and compliance measurements. Methods: A compliance measuring sizing balloon (CMSB) uses real-time electrical conductance measurements based on Ohm's Law to measure the venous size and compliance in conjunction with pressure measurement. The sizing accuracy and repeatability of the CMSB system were performed with phantoms on the bench and in a swine model with an induced post thrombotic (PT) stenosis in the common femoral vein of swine. Results: The accuracy and repeatability of the CMSB system were validated with phantom bench studies of known dimensions in the range of venous diameters. In 9 swine (6 experimental and 3 control animals), the luminal cross-sectional areas (CSA) increased heterogeneously along the PT stenosis when the CMSB system was inflated by stepwise pressures. The PT stenosis showed lower compliance compared to the non-PT vein segments (5 mm2 vs. 10 mm2 and 13 mm2 at a pressure change of 40 cm H2O). Compliance had no statistical difference between venous hypertension (VHT) and Control. Compliance at PT stenosis, however, was significantly smaller than that at Control and VHT (p < 0.05, ANOVA). Conclusion: The CMSB system provides accurate, repeatable, real-time measurements of CSA and compliance for assessment of venous lesions to guide interventions. These findings provide the impetus for future first-in-human studies.

13.
J Transl Med ; 21(1): 900, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-38082327

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. METHODS: IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/ß-catenin pathway. SKL2001, an activator of ß-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS: It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/ß-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS: Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.


Bile Duct Neoplasms , Cholangiocarcinoma , Mitochondrial Diseases , Humans , Wnt Signaling Pathway , beta Catenin/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Mitochondrial Diseases/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism
14.
PLoS One ; 18(12): e0296005, 2023.
Article En | MEDLINE | ID: mdl-38127896

To enhance the concrete confinement ability of circular-ended aluminum alloy tubes, carbon fiber reinforced polymer (CFRP) was bonded onto the tube surface to form CFRP confined concrete columns with circular ends (RCFCAT). Eight specimens were designed with number of CFRP layers and section aspect ratio as variables. Axial loading test and finite element analysis were carried out. Results showed CFRP delayed buckling of the aluminum alloy tube flat surfaces, transforming inclined shear buckling failure into CFRP fracture failure. Specimens with aspect ratio above 4 experienced instability failures. Under same cross-section, CFRP increased axial compression bearing capacity and ductility by up to 30.8% and 43.4% respectively. As aspect ratio increased, enhancement coefficients of bearing capacity and ductility gradually decreased, the aspect ratio is restrictive when it is less than 2.5. CFRP strengthening increased initial axial compression stiffness of specimens by up to 117.9%. The stiffness decreased gradually with increasing aspect ratio, with most significant increase at aspect ratio of 4. Strain analysis showed CFRP bonding remarkably reduced circumferential and longitudinal strains. Confinement effect was optimal at aspect ratio around 2.0. The rationality of the refined FE model established has been verified in terms of load displacement curves, capturing circular aluminum tube oblique shear buckling, concrete "V" shaped crushing, and CFRP tearing during specimen failure. The parameter analysis showed that increasing the number of CFRP layers is one of the most effective methods for improving the ultimate bearing capacity of RCFCAT.


Aluminum , Polymers , Carbon Fiber , Alloys
15.
ACS Nano ; 17(23): 24170-24186, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37991484

Chemodynamic therapy based on the Fenton-like catalysis ability of Fe3O4 has the advantages of no involvement of chemical drugs and minimal adverse effects as well as the limitation of depletable efficacy. Radiotherapy based on high-energy radiation offers the convenience of treatment and cost-effectiveness but lacks precision and cellular adaptation of tumor cells. Approaching such dilemmas from a nanoscale materials perspective, we aim to bridge the weaknesses of both treatment methods by combining the principles of two therapeutics reciprocally. We have designed a camouflaged Fe3O4@HfO2 composite nanoreactor (FHCM), which combines a chemodynamic therapeutic agent Fe3O4 and a radiosensitizer HfO2 that both has passed clinical trials and was inspired by a cell membrane biomimetic technique. FHCM is employed as conceived radiotherapy-adjuvant chemodynamic synergistic therapy of malignant tumors, which has undergone dual scrutiny from both the physical and biological aspects. Experimental results obtained at different levels, including theory, material characterizations, and in vitro and in vivo verifications, suggest that FHCM effectively impaired tumor cells through physical and molecular biological mechanisms involving a HfO2-Fe3O4 photoelectron-electron transfer chain and DNA damage-ferroptosis-immunity chain. It is worth noting that compared to single therapies such as only chemodynamic therapy or radiotherapy, FHCM-mediated radiotherapy-adjuvant chemodynamic synergistic therapy exhibits stronger tumor inhibition efficacy. It significantly addresses the inherent limitations of chemodynamic therapy and radiotherapy and underscores the feasibility and importance of using existing clinical weapons, such as radiotherapy, as auxiliary strategies to overcome certain flaws of emerging antitumor therapeutics like chemodynamic therapy.


Nanoparticles , Neoplasms , Radiation-Sensitizing Agents , Humans , Adjuvants, Immunologic , Combined Modality Therapy , Biomimetics , Nanotechnology , Neoplasms/drug therapy , Cell Line, Tumor , Hydrogen Peroxide , Tumor Microenvironment
16.
ACS Omega ; 8(39): 35800-35808, 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37810683

Al nanoparticles (ANPs) have high reactivity and can improve the system's combustion performance. However, ANPs are susceptible to inactivation by external oxidants. Here, we use ethanol and ether molecules to coat ANPs and then compare and discuss the combustion process between coated ANPs and bare ANPs. Our results show that the ethanol/ether coating can adsorb more H2O molecules and increase the active Al atom number and the Al core area in the ignition stage. The combustion phase can be divided into four stages according to the rate of the combustion temperature. The ethanol/ether coating can enable ANPs to deliver a better combustion performance, reducing the ignition delay time of particles, greatly increasing the combustion temperature, and making the whole system enter the gas phase combustion stage. These will enable the ethanol/ether-ANPs systems to release more energy and improve the combustion efficiency of the system.

17.
Cell Death Discov ; 9(1): 338, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37679322

An essential protein regulatory system in cells is the ubiquitin-proteasome pathway. The substrate is modified by the ubiquitin ligase system (E1-E2-E3) in this pathway, which is a dynamic protein bidirectional modification regulation system. Deubiquitinating enzymes (DUBs) are tasked with specifically hydrolyzing ubiquitin molecules from ubiquitin-linked proteins or precursor proteins and inversely regulating protein degradation, which in turn affects protein function. The ubiquitin-specific peptidase 32 (USP32) protein level is associated with cell cycle progression, proliferation, migration, invasion, and other cellular biological processes. It is an important member of the ubiquitin-specific protease family. It is thought that USP32, a unique enzyme that controls the ubiquitin process, is closely linked to the onset and progression of many cancers, including small cell lung cancer, gastric cancer, breast cancer, epithelial ovarian cancer, glioblastoma, gastrointestinal stromal tumor, acute myeloid leukemia, and pancreatic adenocarcinoma. In this review, we focus on the multiple mechanisms of USP32 in various tumor types and show that USP32 controls the stability of many distinct proteins. Therefore, USP32 is a key and promising therapeutic target for tumor therapy, which could provide important new insights and avenues for antitumor drug development. The therapeutic importance of USP32 in cancer treatment remains to be further proven. In conclusion, there are many options for the future direction of USP32 research.

18.
Front Cardiovasc Med ; 10: 1213398, 2023.
Article En | MEDLINE | ID: mdl-37600031

Objective: Bovine pericardium is common biological material for bioprosthetic heart valve. There remains a significant need, however, to improve bioprosthetic valves for longer-term outcomes. This study aims to evaluate the chronic performance of bovine pulmonary visceral pleura (PVP) as bioprosthetic valve cusps. Methods: The PVP was extracted from the bovine lung and fixed in 0.625% glutaraldehyde overnight at room temperature. The PVP valve cusps for the bioprosthetic valve were tailored using a laser cutter. Three leaflets were sewn onto a nitinol stent. Six PVP bioprosthetic valves were loaded into the test chamber of the heart valve tester to complete 100 million cycles. Six other PVP bioprosthetic valves were transcardially implanted to replace pulmonary artery valve of six pigs. Fluoroscopy and intracardiac echocardiography were used for in vivo assessments. Thrombosis, calcification, inflammation, and fibrosis were evaluated in the terminal study. Histologic analyses were used for evaluations of any degradation or calcification. Results: All PVP bioprosthetic valves completed 100 million cycles without significant damage or tears. In vivo assessments showed bioprosthetic valve cusps open and coaptation at four months post-implant. No calcification and thrombotic deposits, inflammation, and fibrosis were observed in the heart or pulmonary artery. The histologic analyses showed complete and compact elastin and collagen fibers in the PVP valve cusps. Calcification-specific stains showed no calcific deposit in the PVP valve cusps. Conclusions: The accelerated wear test demonstrates suitable mechanical strength of PVP cusps for heart valve. The swine model demonstrates that the PVP valve cusps are promising for valve replacement.

19.
Article En | MEDLINE | ID: mdl-37239516

Dichloromethane (DCM) is recognized as a very harmful air pollutant because of its strong volatility and difficulty to degrade. Ionic liquids (ILs) are considered as potential solvents for absorbing DCM, while it is still a challenge to develop ILs with high absorption performances. In this study, four carboxyl-functionalized ILs-trioctylmethylammonium acetate [N1888][Ac], trioctylmethylammonium formate [N1888][FA], trioctylmethylammonium glycinate [N1888][Gly], and trihexyl(tetradecyl)phosphonium glycinate [P66614][Gly]-were synthesized for DCM capture. The absorption capacity follows the order of [P66614][Gly] > [N1888][Gly] > [N1888][FA] > [N1888][Ac], and [P66614][Gly] showed the best absorption capacity, 130 mg DCM/g IL at 313.15 K and a DCM concentration of 6.1%, which was two times higher than the reported ILs [Beim][EtSO4] and [Emim][Ac]. Moreover, the vapor-liquid equilibrium (VLE) of the DCM + IL binary system was experimentally measured. The NRTL (non-random two-liquid) model was developed to predict the VLE data, and a relative root mean square deviation (rRMSD) of 0.8467 was obtained. The absorption mechanism was explored via FT-IR spectra, 1H-NMR, and quantum chemistry calculations. It showed a nonpolar affinity between the cation and the DCM, while the interaction between the anion and the DCM was a hydrogen bond. Based on the results of the study of the interaction energy, it was found that the hydrogen bond between the anion and the DCM had the greatest influence on the absorption process.


Ionic Liquids , Methylene Chloride , Spectroscopy, Fourier Transform Infrared , Anions
20.
Viruses ; 15(4)2023 04 21.
Article En | MEDLINE | ID: mdl-37113008

Outbreaks of hand, foot and mouth disease (HFMD) have occurred frequently in the Asian-Pacific region over the last two decades, caused mainly by the serotypes in Enterovirus A species. High-quality monoclonal antibodies (mAbs) are needed to improve the accuracy and efficiency of the diagnosis of enteroviruses associated HFMD. In this study, a mAb 1A11 was generated using full particles of CV-A5 as an immunogen. In indirect immunofluorescence and Western blotting assays, 1A11 bound to the viral proteins of CV-A2, CV-A4, CV-A5, CV-A6, CV-A10, CV-A16, and EV-A71 of the Enterovirus A and targeted VP3. It has no cross-reactivity to strains of Enterovirus B and C. By mapping with over-lapped and truncated peptides, a minimal and linear epitope 23PILPGF28 was identified, located at the N-terminus of the VP3. A BLAST sequence search of the epitope in the NCBI genus Enterovirus (taxid: 12059) protein database indicates that the epitope sequence is highly conserved among the Enterovirus A species, but not among the other enterovirus species, first reported by us. By mutagenesis analysis, critical residues for 1A11 binding were identified for most serotypes of Enterovirus A. It may be useful for the development of a cost-effective and pan-Enterovirus A antigen detection for surveillance, early diagnosis and differentiation of infections caused by the Enterovirus A species.


Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Humans , Enterovirus/genetics , Epitopes , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Enterovirus A, Human/genetics , Antigens, Viral , China/epidemiology
...