Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38474030

Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus causing a large economic impact on the swine industry. The structural protein GP5 of PRRSV plays a pivotal role in its pathogenicity and immune evasion. Virus-host interactions play a crucial part in viral replication and immune escape. Therefore, understanding the interactions between GP5 and host proteins are significant for porcine reproductive and respiratory syndrome (PRRS) control. However, the interaction network between GP5 and host proteins in primary porcine alveolar macrophages (PAMs) has not been reported. In this study, 709 GP5-interacting host proteins were identified in primary PAMs by immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis revealed that these proteins were involved in multiple cellular processes, such as translation, protein transport, and protein stabilization. Subsequently, immunoprecipitation and immunofluorescence assay confirmed that GP5 could interact with antigen processing and presentation pathways related proteins. Finally, we found that GP5 may be a key protein that inhibits the antigen processing and presentation pathway during PRRSV infection. The novel host proteins identified in this study will be the candidates for studying the biological functions of GP5, which will provide new insights into PRRS prevention and vaccine development.


Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/metabolism , Macrophages, Alveolar/metabolism , Proteomics/methods , Chromatography, Liquid , Tandem Mass Spectrometry
2.
J Colloid Interface Sci ; 662: 748-759, 2024 May 15.
Article En | MEDLINE | ID: mdl-38377694

The increase of reaction temperature of electrocatalysts and the construction of heterogeneous structures is regarded as an efficient method to improve the electrocatalytic water splitting activity. Here, we report an approach to enhance the local heat and active sites of the catalyst by building a heterostructure with Co9S8 to significantly improve its electrocatalytic performance. The as-fabricated Co9S8@Ce-NiCo LDH/NF electrode possesses a notable photothermal ability, as it effectively converts near-infrared (NIR) light into the local heat, owing to its significant optical absorption. Leveraging these favorable qualities, the prepared Co9S8@Ce-NiCo LDH/NF electrode showed impressive performance in both hydrogen evolution reaction (HER) (η100 = 144 mV) and oxygen evolution reaction (OER) (η100 = 229 mV) under NIR light. Compared to the absence of the NIR light, the presence of NIR irradiation leads to a 24.6 % increase in catalytic efficiency for HER and a 15.8 % increase for OER. Additionally, other dual-functional electrocatalysts like NiCo-P, NiFeMo, and NiFe(OH)x also demonstrated significantly enhanced photothermal effects and improved catalytic performance owing to the augmented photothermal conversion when combined with Co9S8. This work offers novel pathways for the development of photothermal-electrocatalytic systems that facilitate economically efficient and energy-conserving overall water splitting processes.

3.
Virus Res ; 341: 199328, 2024 03.
Article En | MEDLINE | ID: mdl-38262569

The outbreak of African Swine Fever (ASF) has caused huge economic losses to the pig industry. There are no safe and effective vaccines or diagnostics available. The p30 protein serves as a key target for the detection of ASFV antibodies and is an essential antigenic protein for early serological diagnosis. Here, the p30 protein was purified after being expressed in E. coli and its immunogenicity was verified in sera from pigs naturally infected with ASFV. Furthermore, a monoclonal antibody (McAb) designated as McAb 1B4G2-4 (subtype IgG1/kappa-type) was produced and it was verified to specifically recognize the ASFV Pig/HLJ/2018/strain and eukaryotic recombinant ASFV p30 protein. The epitope identified by McAb 1B4G2-4, defining the unique B-cell epitope 164HNFIQTI170, was located using peptide scanning. Comparing amino acid (aa) sequence revealed that this epitope is conserved in all reference ASFV strains from different regions of China, including the highly pathogenic strain Georgia 2007/1 (NC_044959.2) that is widely distributed. It is also exposed to the surface of the p30 protein, suggesting that it could be an important B-cell epitope. Our study may serve as a basis for the development of serological diagnostic methods and subunit vaccines.


African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , Epitopes, B-Lymphocyte/genetics , Viral Proteins/metabolism , Antibodies, Monoclonal , Escherichia coli/metabolism , Recombinant Proteins , Antibodies, Viral
4.
Appl Microbiol Biotechnol ; 108(1): 78, 2024 Dec.
Article En | MEDLINE | ID: mdl-38194141

African swine fever virus (ASFV) is a complex DNA virus and the only member of the Asfarviridae family. It causes high mortality and severe economic losses in pigs. The ASFV pB602L protein plays a key role in virus assembly and functions as a molecular chaperone of the major capsid protein p72. In addition, pB602L is an important target for the development of diagnostic tools for African swine fever (ASF) because it is a highly immunogenic antigen against ASFV. In this study, we expressed and purified ASFV pB602L and validated its immunogenicity in serum from naturally infected pigs with ASFV. Furthermore, we successfully generated an IgG2a κ subclass monoclonal antibody (mAb 7E7) against pB602L using hybridoma technology. Using western blot and immunofluorescence assays, mAb 7E7 specifically recognized the ASFV Pig/HLJ/2018/strain and eukaryotic recombinant ASFV pB602L protein in vitro. The 474SKENLTPDE482 epitope in the ASFV pB602L C-terminus was identified as the minimal linear epitope for mAb 7E7 binding, with dozens of truncated pB602l fragments characterized by western blot assay. We also showed that this antigenic epitope sequence has a high conservation and antigenic index. Our study contributes to improved vaccine and antiviral development and provides new insights into the serologic diagnosis of ASF. KEY POINTS: • We developed a monoclonal antibody against ASFV pB602L, which can specifically recognize the ASFV Pig/HLJ/2018/ strain. • This study found one novel conserved B-cell epitope 474SKENLTPDE482. • In the 3D structure, 474SKENLTPDE482 is exposed on the surface of ASFV pB602L, forming a curved linear structure.


African Swine Fever Virus , African Swine Fever , Animals , Swine , African Swine Fever Virus/genetics , Epitopes, B-Lymphocyte/genetics , Antibodies, Monoclonal , Blotting, Western
5.
J Nanobiotechnology ; 21(1): 424, 2023 Nov 14.
Article En | MEDLINE | ID: mdl-37964304

The African swine fever (ASF) pandemics pose a significant threat to the global swine industry, and the development of safe and effective vaccines is a daunting but necessary challenge. The level and persistence of immunity are very important for the effectiveness of the vaccine. Targeting antigens to antigen presenting cells (APCs) can greatly enhance immunogenicity. In this study, we developed a self-assembled nano-ASFV vaccine candidate (NanoFVax) targeting DCs, by covalently coupling the self-assembled 24-mer ferritin with the dominant B and T cell epitopes of the highly immunogenic ASFV antigen (p72, CD2v, pB602L and p30) and fused with the chemokine receptor XCL1 (a DC targeting molecule) through the SpyTag/SpyCatcher protein ligase system. Compared to monomeric protein, the nanoparticle vaccines can induce a more robust T-cell response, and the high-level antibody response against ASFV can last for more than 231 days. Therefore, the NanoFVax is a novel and promising vaccine candidate for ASFV.


African Swine Fever Virus , African Swine Fever , Animals , Swine , African Swine Fever/prevention & control , Nanovaccines , Epitopes, T-Lymphocyte , Immunity
6.
Viruses ; 15(9)2023 08 30.
Article En | MEDLINE | ID: mdl-37766252

African swine fever (ASF) is an acute, virulent, and highly fatal infectious disease caused by the African swine fever virus (ASFV). There is no effective vaccine or diagnostic method to prevent and control this disease currently, which highlights the significance of ASF early detection. In this study, we chose an early antigen and a late-expressed antigen to co-detect the target antibody, which not only helps in early detection but also improves accuracy and sensitivity. CP204L and B602L were successfully expressed as soluble proteins in an Escherichia coli vector system. By optimizing various conditions, a dual-antigen indirect ELISA for ASFV antibodies was established. The assay was non-cross-reactive with antibodies against the porcine reproductive and respiratory syndrome virus, classical swine fever virus, porcine circovirus type 2, and pseudorabies virus. The maximum serum dilution for detection of ASFV-positive sera was 1:1600. The intra-batch reproducibility coefficient of variation was <5% and the inter-batch reproducibility coefficient of variation was <10%. Compared with commercial kits, the dual-antigen indirect ELISA had good detection performance. In conclusion, we established a detection method with low cost, streamlined production process, and fewer instruments. It provides a new method for the serological diagnosis of ASF.


African Swine Fever Virus , African Swine Fever , Animals , Swine , African Swine Fever/diagnosis , Reproducibility of Results , Antibodies , Enzyme-Linked Immunosorbent Assay , Escherichia coli
7.
Adv Mater ; 35(44): e2304532, 2023 Nov.
Article En | MEDLINE | ID: mdl-37595959

The efficient catalysis of nitrogen (N2 ) into high-value N-containing products plays a crucial role in the N economic cycle. However, weak N2 adsorption and invalid N2 activation remain two major bottlenecks in rate-determining steps, leading to low N2 fixation performance. Herein, an effective dual active sites photocatalyst of polyoxometalates (POMs)-based metal-organic frameworks (MOFs) is highlighted via altering coordination microenvironment and inducing directional shunting of photogenerated carriers to facilitate N2 /catalyst interaction and enhance oxidation performance. MOFs create more open unsaturated metal cluster sites with unoccupied d orbital possessing Lewis acidity to accept electrons from the 3σg bonding orbital of N2 for storage by combining with POMs to replace bidentate linkers. POMs act as electron sponges donating electrons to MOFs, while the holes directional flow to POMs. The hole-rich POMs with strong oxidation capacity are easily involved in oxidizing adsorbed N2 . Taking UiO-66 (C48 H28 O32 Zr6 ) and Mo72 Fe30 ([Mo72 Fe30 O252 (CH3 COO)12 {Mo2 O7 (H2 O)}2 {H2 Mo2 O8 (H2 O)}(H2 O)91 ]·150H2 O) as an example, Mo72 Fe30 @UiO-66 shows twofold enhanced adsorption of N2 (250.5 cm3  g-1 ) than UiO-66 (122.9 cm3 g-1 ) at P/P0  = 1. And, the HNO3 yield of Mo72 Fe30 @UiO-66 is 702.4 µg g-1  h-1 , ≈7 times and 24 times higher than UiO-66 and Mo72 Fe30 . This work provides reliable value for the storage and relaying artificial N2 fixation.

8.
Int J Biol Macromol ; 232: 123264, 2023 Mar 31.
Article En | MEDLINE | ID: mdl-36706875

African swine fever virus (ASFV) poses a serious threat to domestic pigs and wild boars, which is responsible for substantial production and economic losses. A dominant ASFV specific linear B cell epitope that reacted with the convalescent serum was explored and identified with the help of immune informatics techniques. It is essential in understanding the host immunity and in developing diagnostic technical guidelines and vaccine design. The confirmation of dominant epitopes with a positive serological matrix is feasible. To improve the immunogenicity of the epitope, we designed the dominant epitope of CD2v in the form of 2 branch Multiple-Antigen peptide (MAPs-2), CD2v-MAPs-2. Notably, CD2v peptide can be taken up by dendritic cells (DCs) to activate T lymphocytes and induce highly effective valence antibodies in BALB/c mice. The specific CD8+ T cell response were observed. The dominant epitope peptide identified in this study was able to effectively activate humoral and cellular immunity in mice model.


African Swine Fever Virus , Mice , Swine , Animals , Epitopes, B-Lymphocyte , Viral Proteins/metabolism , Sus scrofa/metabolism
9.
Viruses ; 14(10)2022 09 30.
Article En | MEDLINE | ID: mdl-36298725

African swine fever (ASF), the highly lethal swine infectious disease caused by the African swine fever virus (ASFV), is a great threat to the swine industry. There is no effective vaccine or diagnostic method to prevent and control this disease currently. The p30 protein of ASFV is an important target for serological diagnosis, expressed in the early stage of viral replication and has high immunogenicity and sequence conservatism. Here, the CP204L gene was cloned into the expression vector pET-30a (+), and the soluble p30 protein was successfully expressed in the E. coli prokaryotic expression system and then labeled with horseradish peroxidase (HRP) to be the enzyme-labeled antigen. Using the purified recombinant p30 protein, a double-antigen sandwich ELISA for ASFV antibody detection was developed. This method exhibits excellent specificity, sensitivity and reproducibility in clinical sample detection with lower cost and shorter production cycles. Taken together, this study provides technical support for antibody detection for ASFV.


African Swine Fever Virus , African Swine Fever , Swine , Animals , Reproducibility of Results , Escherichia coli/metabolism , Viral Proteins/genetics , Phosphoproteins , Enzyme-Linked Immunosorbent Assay , Antibodies, Viral , Recombinant Proteins/genetics , Horseradish Peroxidase
10.
Materials (Basel) ; 13(23)2020 Nov 24.
Article En | MEDLINE | ID: mdl-33255316

In view of the devastating outcomes of fires and explosions, it is imperative to research the dynamic responses of concrete structures at high temperatures. For this purpose, the effects of the strain rate and high temperatures on the dynamic tension behavior and energy characteristics of high-strength concrete were investigated in this paper. Dynamic tests were conducted on high-strength concrete after exposure to the temperatures of 200, 400, and 600 °C by utilizing a 74 mm diameter split Hopkinson pressure bar (SHPB) apparatus. We found that the quasi-static and dynamic tensile strength of high-strength concrete gradually decreased and that the damage degree rose sharply with the rise of temperature. The dynamic tensile strength and specific energy absorption of high-strength concrete had a significant strain rate effect. The crack propagation law gradually changed from directly passing through the coarse aggregate to extending along the bonding surface between the coarse aggregate and the mortar matrix with the elevation of temperature. When designing the material ratio, materials with high-temperature resistance and high tensile strength should be added to strengthen the bond between the mortar and the aggregate and to change the failure mode of the structure to resist the softening effect of temperature.

...