Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
Sci Total Environ ; 952: 175946, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39218111

RESUMEN

Marine dinoflagellates are increasingly affected by ongoing global climate changes. While understanding of their physiological and molecular responses to individual stressors anticipated in the future ocean has improved, their responses to multiple concurrent stressors remain poorly understood. Here, we investigated the individual and combined effects of elevated temperature (26 °C relative to 22 °C), increased pCO2 (1000 µatm relative to 400 µatm), and high nitrogen: phosphorus ratio (180:1 relative to 40:1) on a harmful algal bloom-causing dinoflagellate Prorocentrum obtusidens under short-term (28 days) exposure. Elevated temperature was the most dominant stressor affecting P. obtusidens at physiological and transcriptomic levels. It significantly increased cell growth rate and maximum photosynthetic efficiency (Fv/Fm), but reduced chlorophyll a, particulate organic carbon, particulate organic nitrogen, and particulate organic phosphorus. Elevated temperature also interacted with other stressors to produce synergistic positive effects on cell growth and Fv/Fm. Transcriptomic analysis indicated that elevated temperature promoted energy production by enhancing glycolysis, tricarboxylic acid cycle, and nitrogen and carbon assimilation, which supported rapid cell growth but reduced material storage. Increased pCO2 enhanced the expression of genes involved in ionic acid-base regulation and oxidative stress resistance, whereas a high N:P ratio inhibited photosynthesis, compromising cell viability, although the effect was alleviated by elevated temperature. The combined effect of these multiple stressors resulted in increased energy metabolism and up-regulation of material-synthesis pathways compared to the effect caused by elevated temperature alone. Our results underscore ocean warming as the predominant stressor for dinoflagellates and highlight the complex, synergistic effects of multi-stressors on dinoflagellates.


Asunto(s)
Cambio Climático , Dinoflagelados , Floraciones de Algas Nocivas , Dinoflagelados/fisiología , Agua de Mar/química , Nitrógeno , Estrés Fisiológico , Calor/efectos adversos , Fotosíntesis , Temperatura , Dióxido de Carbono
2.
IUBMB Life ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39275910

RESUMEN

Several chemotherapeutics against breast cancer are constrained by their adverse effects and chemoresistance. The development of novel chemotherapeutics to target metastatic breast cancer can bring effective clinical outcomes. Many breast cancer patients present with tumors that are positive for estrogen receptors (ERs), highlighting the importance of targeting the ER pathway in this particular subtype. Although selective estrogen receptor modulators (SERMs) are commonly used, their side effects and resistance issues necessitate the development of new ER-targeting agents. In this study, we report that a newly synthesized compound, TTP-5, a hybrid of pyrimidine, triazole, and tert-butyl-piperazine-carboxylate, effectively binds to estrogen receptor alpha (ERα) and suppresses breast cancer cell growth. We assessed the impact of TTP-5 on cell proliferation using MTT and colony formation assays and evaluated its effect on cell motility through wound healing and invasion assays. We further explored the mechanism of action of this novel compound by detecting protein expression changes using Western blotting. Molecular docking was used to confirm the interaction of TTP-5 with ERα. The results indicated that TTP-5 significantly reduced the proliferation of MCF-7 cells by blocking the ERα signaling pathway. Conversely, although it did not influence the growth of MDA-MB-231 cells, TTP-5 hindered their motility by modulating the expression of proteins associated with epithelial-mesenchymal transition (EMT), possibly via the Wnt/ß-catenin pathway.

3.
Cancer Med ; 13(16): e70046, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39171859

RESUMEN

BACKGROUND: To explore the efficacy of a prediction model based on diffusion-weighted imaging (DWI) features extracted from deep learning (DL) and radiomics combined with clinical parameters and apparent diffusion coefficient (ADC) values to identify microsatellite instability (MSI) in endometrial cancer (EC). METHODS: This study included a cohort of 116 patients with EC, who were subsequently divided into training (n = 81) and test (n = 35) sets. From DWI, conventional radiomics features and convolutional neural network-based DL features were extracted. Random forest (RF) and logistic regression were adopted as classifiers. DL features, radiomics features, clinical variables, ADC values, and their combinations were applied to establish DL, radiomics, clinical, ADC, and combined models, respectively. The predictive performance was evaluated through the area under the receiver operating characteristic curve (AUC), total integrated discrimination index (IDI), net reclassification index (NRI), calibration curves, and decision curve analysis (DCA). RESULTS: The optimal predictive model, based on an RF classifier, comprised four DL features, three radiomics features, two clinical variables, and an ADC value. In the training and test sets, this model exhibited AUC values of 0.989 (95% CI: 0.935-1.000) and 0.885 (95% CI: 0.731-0.967), respectively, demonstrating different degrees of improvement compared with the clinical, DL, radiomics, and ADC models (AUC-training = 0.671, 0.873, 0.833, and 0.814, AUC-test = 0.685, 0.783, 0.708, and 0.713, respectively). The NRI and IDI analyses revealed that the combined model resulted in improved risk reclassification of the MSI status compared to the clinical, radiomics, DL, and ADC models. The calibration curves and DCA indicated good consistency and clinical utility of this model, respectively. CONCLUSIONS: The predictive model based on DWI features extracted from DL and radiomics combined with clinical parameters and ADC values could effectively assess the MSI status in EC.


Asunto(s)
Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética , Neoplasias Endometriales , Inestabilidad de Microsatélites , Radiómica , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Endometriales/genética , Neoplasias Endometriales/diagnóstico por imagen , Neoplasias Endometriales/patología , Estudios Retrospectivos , Curva ROC
4.
Food Chem ; 461: 140830, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151348

RESUMEN

Herein, we have manufactured a newly designed bifunctional impedimetric and amperometric immunosensor for rapidly detecting erythromycin (ERY) in complicated environments and food stuffs. For this, bimetallic cobalt/cerium-layered double hydroxide nanosheets (CoCe-LDH NSs), which was derived from Co-based zeolite imidazole framework via the structure conversion, was simultaneously utilized as the bioplatform for anchoring the ERY-targeted antibody and for modifying the gold and screen printed electrode. Basic characterizations revealed that CoCe-LDH NSs was composed of mixed metal valences, enrich redox, and abundant oxygen vacancies, facilitating the adhesion on the electrode, the antibody adsorption, and the electron transfers. The manufactured impedimetric and amperometric immunosensor based on CoCe-LDH has showed the comparable sensing performance, having a wide linear detection range from 1.0 fg mL-1 to 1.0 ng mL-1 with the ultralow detection limit toward ERY. Also, the portable, visualized, and efficient analysis of ERY was then attained at the smartphone-assisted CoCe-LDH-based SPE.


Asunto(s)
Técnicas Biosensibles , Cobalto , Técnicas Electroquímicas , Eritromicina , Hidróxidos , Teléfono Inteligente , Cobalto/química , Eritromicina/análisis , Hidróxidos/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Técnicas Biosensibles/instrumentación , Límite de Detección , Electrodos , Contaminación de Alimentos/análisis , Antibacterianos/análisis
5.
J Hazard Mater ; 478: 135529, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154477

RESUMEN

Here, we subjected the marine copepod Tigriopus japonicus to environmentally-relevant concentrations of microplastics (MPs) and mercury (Hg) for three generations (F0-F2) to investigate their physiological and molecular responses. Hg accumulation and phenotypic traits were measured in each generation, with multi-omics analysis conducted in F2. The results showed that MPs insignificantly impacted the copepod's development and reproduction, however, which were significantly compromised by Hg exposure. Interestingly, MPs significantly increased Hg accumulation and consequently aggravated this metal toxicity in T. japonicus, demonstrating their carrier role. Multi-omics analysis indicated that Hg pollution produced numerous toxic events, e.g., induction of apoptosis, damage to cell/organ morphogenesis, and disordered energy metabolism, ultimately resulting in retarded development and decreased fecundity. Importantly, MPs enhanced Hg toxicity mainly via increased oxidative apoptosis, compromised cell/organ morphogenesis, and energy depletion. Additionally, phosphoproteomic analysis revealed extensive regulation of the above processes, and also impaired neuron activity under combined MPs and Hg exposure. These alterations adversely affected development and reproduction of T. japonicus. Overall, our findings should offer novel molecular insights into the response of T. japonicus to long-term exposure to MPs and Hg, with a particular emphasis on the carrier role of MPs on Hg toxicity.


Asunto(s)
Copépodos , Mercurio , Microplásticos , Contaminantes Químicos del Agua , Animales , Copépodos/efectos de los fármacos , Mercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Reproducción/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteómica , Multiómica
6.
Bioorg Med Chem Lett ; 110: 129889, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004318

RESUMEN

Studies have shown that disrupting the formation of the ligand-RET-GFRα complex could be an effective way of treating pain and itch. Compared to traditional high-throughput screens, DNA encoded libraries (DELs) have distinguished themselves as a powerful technology for hit identification in recent years. The present work demonstrates the use of DEL technology identifying compound 16 as the first GFRa2/GFRa3 small molecule inhibitor (0.1/0.2 µM respectively) selective over RET. This molecule represents an opportunity to advance the development of small-molecule inhibitors targeting the GFRα-RET interface for the treatment of pain and itch.


Asunto(s)
ADN , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial , Bibliotecas de Moléculas Pequeñas , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Humanos , ADN/química , ADN/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/antagonistas & inhibidores , Descubrimiento de Drogas , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga
7.
Environ Pollut ; 356: 124310, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838810

RESUMEN

To elucidate the mechanism behind channel catfish feminization induced by high temperature, gonad samples were collected from XY pseudo-females and wild-type females and subjected to high-throughput sequencing for Whole-Genome-Bisulfite-Seq (WGBS) and transcriptome sequencing (RNA-Seq). The analysis revealed 50 differentially methylated genes between wild-type females and XY pseudo-females, identified through the analysis of KEGG pathways and GO enrichment in the promoter of the genome and differentially methylated regions (DMRs). Among these genes, multiple differential methylation sites observed within the srd5a2 gene. Repeatability tests confirmed 7 differential methylation sites in the srd5a2 gene in XY pseudo-females compared to normal males, with 1 specific differential methylation site (16608174) distinguishing XY pseudo-females from normal females. Interestingly, the expression of these genes in the transcriptome showed no difference between wild-type females and XY pseudo-females. Our study concluded that methylation of the srd5a2 gene sequence leads to decreased expression, which inhibits testosterone synthesis while promoting the synthesis of 17ß-estradiol from testosterone. This underscores the significance of the srd5a2 gene in the sexual differentiation of channel catfish, as indicated by the ipu00140 KEGG pathway analysis.


Asunto(s)
Ictaluridae , Animales , Ictaluridae/genética , Femenino , Masculino , Feminización/genética , Calor , Metilación de ADN , Diferenciación Sexual/genética , Transcriptoma , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
8.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894056

RESUMEN

Energy efficiency and data reliability are important indicators to measure network performance in wireless sensor networks. In existing research schemes of routing protocols, the impact of node coverage on the network is often ignored, and the possibility that multiple sensor nodes may sense the same spatial point is not taken into account, which results in a waste of network resources, especially in large-scale networks. Apart from that, the blindness of geographic routing in data transmission has been troubling researchers, which means that the nodes are unable to determine the validity of data transmission. In order to solve the above problems, this paper innovatively combines the routing protocol with the coverage control technique and proposes the node collaborative scheduling algorithm, which fully considers the correlation characteristics between sensor nodes to reduce the number of active working nodes and the number of packets generated, to further reduce energy consumption and network delay and improve packet delivery rate. In order to solve the problem of unreliability of geographic routing, a highly reliable link detection and repair scheme is proposed to check the communication link status and repair the invalid link, which can greatly improve the packet delivery rate and throughput of the network, and has good robustness. A large number of experiments demonstrate the effectiveness and superiority of our proposed scheme and algorithm.

9.
J Hazard Mater ; 474: 134789, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843636

RESUMEN

Despite the great interest in the consequences of global change stressors on marine organisms, their interactive effects on cadmium (Cd) bioaccumulation/biotoxicity are very poorly explored, particularly in combination with the toxicokinetic model and molecular mechanism. According to the projections for 2100, this study investigated the impact of elevated pCO2 and increased temperature (isolated or joint) on Cd uptake dynamics and transcriptomic response in the marine copepod Tigriopus japonicus. Toxicokinetic results showed significantly higher Cd uptake in copepods under increased temperature and its combination with elevated pCO2 relative to the ambient condition, linking to enhanced Cd bioaccumulation. Transcriptome analysis revealed that, under increased temperature and its combination with elevated pCO2, up-regulated expression of Cd uptake-related genes but down-regulation of Cd exclusion-related genes might cause increased cellular Cd level, which not only activated detoxification and stress response but also induced oxidative stress and concomitant apoptosis, demonstrating aggravated Cd biotoxicity. However, these were less pronouncedly affected by elevated pCO2 exposure. Therefore, temperature seems to be a primary factor in increasing Cd accumulation and its toxicity in the future ocean. Our findings suggest that we should refocus the interactive effects between climate change stressors and Cd pollution, especially considering temperature as a dominant driver.


Asunto(s)
Cadmio , Copépodos , Contaminantes Químicos del Agua , Cadmio/toxicidad , Cadmio/farmacocinética , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/farmacocinética , Copépodos/efectos de los fármacos , Copépodos/metabolismo , Copépodos/genética , Dióxido de Carbono/toxicidad , Dióxido de Carbono/metabolismo , Toxicocinética , Transcriptoma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Cambio Climático , Temperatura , Calor
10.
Exp Ther Med ; 28(1): 298, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38868614

RESUMEN

The present study reports a rare case of an exaggerated placental site (EPS) in a caesarean scar that was misdiagnosed as gestational trophoblastic neoplasia (GTN) by imaging, resulting in unnecessary surgical treatment. A 38-year-old woman underwent hysteroscopic resection of a cesarean scar pregnancy (CSP). The patient's serum ß-human chorionic gonadotropin (ß-hCG) level was elevated (76,196 mIU/ml) at the 24-day postoperative follow-up visit. On postoperative day 51, the patient experienced vaginal bleeding for three days and ß-hCG levels were 2,799 mIU/ml. Ultrasonography and MRI revealed a heterogeneous mass and hypervascularity. The patient was diagnosed with a GTN in a cesarean scar and treated with methotrexate (MTX). ß-hCG levels decreased after 3 MTX doses, but the mass did not change in size and was still hypervascular on imaging. Total hysterectomy was performed due to the serious side effects of chemotherapy and the lack of desire to preserve fertility. The histological findings supported the diagnosis of an EPS reaction. The present case is unique because of the rare intrauterine mass and possibility of retained trophoblastic changes causing EPS. EPS differs from GTN both clinically and pathologically and should be considered a possible diagnosis in any woman who has irregular bleeding following CSP resection.

11.
Sci Total Environ ; 945: 174128, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908593

RESUMEN

With the continuous increase in global air transportation, the impact of ultrafine particulate matter (PM) emissions from aviation on human health and environmental pollution is becoming increasingly severe. In addition to carbon reduction throughout the lifecycle, Sustainable Aviation Fuels (SAF) also represent a significant pathway for reducing PM emissions. However, due to issues such as airworthiness safety and adaptability, existing research has mostly focused on the emission performance of SAF when blended with traditional fuels at <50 %, leaving the emission characteristics of higher blending ratios to be explored. In this study, using measurement methods recommended by the International Civil Aviation Organization (ICAO), the PM emission reduction characteristics of small turbofan engines fueled with 100 % Hydroprocessed Esters and Fatty Acids (HEFA)-SAF were experimentally evaluated and compared with traditional fuels RP-3 and Diesel, while avoiding the interference of lubricant blending combustion. The results showed that the peak number concentration of particle size distribution (PSD), PM total number, as well as the number and mass concentration of non-volatile particulate matter (nvPM) decreased initially and then increased with rising thrust conditions. HEFA-SAF exhibits PSD with smaller diameters, and the Geometric Mean Diameter (GMD) ranges from 7.7 nm to 20.3 nm under all conditions. Both volatile particulates (vPM) and nvPM from HEFA-SAF are significantly reduced, with nvPM number emission index (EIn) being 92 % and 71 % lower than Diesel and RP-3, respectively. The nvPM mass emission index (EIm) also shows reductions of 96 % and 89 % compared to Diesel and RP-3. Microscopic characterization also indicated that using HEFA-SAF emitted fewer and smaller PMs. This study establishes a foundation for evaluating the effectiveness of 100 % SAF in reducing PM emissions within the aviation sector, and contributes to the airworthiness regulations development related to the use of SAF in a variety of application environments, alongside enhancing environmental protection measures.

12.
Environ Pollut ; 355: 124214, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38801883

RESUMEN

Fenpropidin (FPD), a widely employed chiral fungicide, is frequently detected in diverse environments. In an in vitro rat liver microsomes cultivation (RLMs), the metabolism exhibited the order of R-FPD > S-FPD, with respective half-lives of 10.42 ± 0.11 and 12.06 ± 0.15 min, aligning with kinetic analysis results. CYP3A2 has been demonstrated to be the most significant oxidative enzyme through CYP450 enzyme inhibition experiments. Molecular dynamics simulations unveiled the enantioselective metabolic mechanism, demonstrating that R-FPD forms hydrogen bonds with the CYP3A2 protein, resulting in a higher binding affinity (-6.58 kcal mol-1) than S-FPD. Seven new metabolites were identified by Liquid chromatography time-of-flight high-resolution mass spectrometry, which were mainly generated through oxidation, reduction, hydroxylation, and N-dealkylation reactions. The toxicity of the major metabolites predicted by the TEST procedure was found to be stronger than the predicted toxicity of FPD. Moreover, the enantioselective fate of FPD was studied by examining its degradation in three soils with varying physical and chemical properties under aerobic, anaerobic, and sterile conditions. Enantioselective degradation of FPD occurred in soils without enantiomeric transformation, displaying a preference for R-FPD degradation. R-FPD is a low-risk stereoisomer both in the environment and in mammals. The research presented a systematic and comprehensive method for analyzing the metabolic and degradation system of FPD enantiomers. This approach aids in understanding the behavior of FPD in the environment and provides valuable insights into their potential risks to human health.


Asunto(s)
Fungicidas Industriales , Microsomas Hepáticos , Microsomas Hepáticos/metabolismo , Animales , Ratas , Fungicidas Industriales/metabolismo , Fungicidas Industriales/química , Humanos , Contaminantes del Suelo/metabolismo , Estereoisomerismo , Medición de Riesgo
13.
Sci Total Environ ; 942: 173585, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38810735

RESUMEN

Marine ecosystem has been experiencing multiple stressors caused by anthropogenic activities, including ocean acidification (OA) and nickel (Ni) pollution. Here, we examined the individual/combined effects of OA (pCO2 1000 µatm) and Ni (6 µg/L) exposure on a marine copepod Tigriopus japonicus for six generations (F1-F6), followed by one-generation recovery (F7) in clean seawater. Ni accumulation and several important phenotypic traits were measured in each generation. To explore within-generation response and transgenerational plasticity, we analyzed the transcriptome profile for the copepods of F6 and F7. The results showed that Ni exposure compromised the development, reproduction and survival of copepods during F1-F6, but its toxicity effects were alleviated by OA. Thus, under OA and Ni combined exposure, due to their antagonistic interaction, the disruption of Ca2+ homeostasis, and the inhibition of calcium signaling pathway and oxytocin signaling pathway were not found. However, as a cost of acclimatization/adaption potential to long-term OA and Ni combined exposure, there was a loss of transcriptome plasticity during recovery, which limited the resilience of copepods to previously begin environments. Overall, our work fosters a comprehensive understanding of within- and transgenerational effects of climatic stressor and metal pollution on marine biota.


Asunto(s)
Copépodos , Níquel , Agua de Mar , Transcriptoma , Contaminantes Químicos del Agua , Animales , Copépodos/efectos de los fármacos , Copépodos/fisiología , Níquel/toxicidad , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Agua de Mar/química , Concentración de Iones de Hidrógeno , Acidificación de los Océanos
14.
J Nanobiotechnology ; 22(1): 141, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561739

RESUMEN

Osteosarcoma (OS) is an aggressive bone tumor with strong invasiveness, rapid metastasis, and dreadful mortality. Chemotherapy is a commonly used approach for OS treatment but is limited by the development of drug resistance and long-term adverse effects. To date, OS still lacks the curative treatment. Herein, we fabricated pyrite-based nanoparticles (FeS2@CP NPs) as synergetic therapeutic platform by integrating photothermal therapy (PTT) and chemo-dynamic therapy (CDT) into one system. The synthetic FeS2@CP NPs showed superior Fenton reaction catalytic activity. FeS2@CP NPs-based CDT efficaciously eradicated the tumor cells by initiating dual-effect of killing of apoptosis and ferroptosis. Furthermore, the generated heat from FeS2@CP under near-infrared region II (NIR-II) laser irradiation could not only inhibit tumor's growth, but also promote tumor cell apoptosis and ferroptosis by accelerating •OH production and GSH depletion. Finally, the photothermal/NIR II-enhanced CDT synergistic therapy showed excellent osteosarcoma treatment effects both in vitro and in vivo with negligible side effects. Overall, this work provided a high-performance and multifunctional Fenton catalyst for osteosarcoma synergistic therapy, which provided a pathway for the clinical application of PTT augmented CDT.


Asunto(s)
Neoplasias Óseas , Nanopartículas , Neoplasias , Osteosarcoma , Sulfuros , Humanos , Terapia Fototérmica , Osteosarcoma/tratamiento farmacológico , Hierro , Neoplasias Óseas/tratamiento farmacológico , Línea Celular Tumoral , Peróxido de Hidrógeno
15.
Environ Sci Technol ; 58(15): 6487-6498, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38579165

RESUMEN

The current understanding of multistress interplay assumes stresses occur in perfect synchrony, but this assumption is rarely met in the natural marine ecosystem. To understand the interplay between nonperfectly overlapped stresses in the ocean, we manipulated a multigenerational experiment (F0-F3) to explore how different temporal scenarios of ocean acidification will affect mercury toxicity in a marine copepod Pseudodiaptomus annandalei. We found that the scenario of past acidification aggravated mercury toxicity but current and persistent acidification mitigated its toxicity. We specifically performed a proteomics analysis for the copepods of F3. The results indicated that current and persistent acidification initiated the energy compensation for development and mercury efflux, whereas past acidification lacked the barrier of H+ and had dysfunction in the detoxification and efflux system, providing a mechanistic understanding of mercury toxicity under different acidification scenarios. Furthermore, we conducted a meta-analysis on marine animals, demonstrating that different acidification scenarios could alter the toxicity of several other metals, despite evidence from nonsynchronous scenarios remaining limited. Our study thus demonstrates that time and duration of ocean acidification modulate mercury toxicity in marine copepods and suggests that future studies should move beyond the oversimplified scenario of perfect synchrony in understanding multistress interaction.


Asunto(s)
Mercurio , Animales , Mercurio/toxicidad , Agua de Mar , Ecosistema , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Metales
16.
Mar Pollut Bull ; 202: 116306, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574500

RESUMEN

In this study, we investigated the combined effects of hypoxia and NPs on the water flea Daphnia magna, a keystone species in freshwater environments. To measure and understand the oxidative stress responses, we used acute toxicity tests, fluorescence microscopy, enzymatic assays, Western blot analyses, and Ingenuity Pathway Analysis. Our findings demonstrate that hypoxia and NPs exhibit a negative synergy that increases oxidative stress, as indicated by heightened levels of reactive oxygen species and antioxidant enzyme activity. These effects lead to more severe reproductive and growth impairments in D. magna compared to a single-stressor exposure. In this work, molecular investigations revealed complex pathway activations involving HIF-1α, NF-κB, and mitogen-activated protein kinase, illustrating the intricate molecular dynamics that can occur in combined stress conditions. The results underscore the amplified physiological impacts of combined environmental stressors and highlight the need for integrated strategies in the management of aquatic ecosystems.


Asunto(s)
Daphnia magna , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Daphnia magna/efectos de los fármacos , Daphnia magna/fisiología , Hipoxia , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad
17.
J Agric Food Chem ; 72(3): 1509-1515, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38190123

RESUMEN

Phenylpyrazole insecticides are widely used as chiral pesticides. However, the enantioselective toxicity and potential endocrine-disrupting effects of these insecticides on aquatic organisms remain unclear. Herein, the enantioselective toxicity and potential endocrine-disrupting effects of flufiprole and ethiprole were investigated by using zebrafish embryos/larvae as a model. The acute toxicity of R-flufiprole and R-ethiprole toward zebrafish embryos and larvae was 1.8-3.1-fold higher than that of the S-configuration. Additionally, R-flufiprole and R-ethiprole had a greater effect on the expression of genes related to the hypothalamus-pituitary-gonad axis in zebrafish compared with the S-configuration. Nevertheless, both S-flufiprole and S-ethiprole exhibited a greater interference effect on the expression of genes related to the hypothalamus-pituitary-thyroid axis and a greater teratogenic effect on zebrafish than the R-configuration. Thus, this study demonstrates that both flufiprole and ethiprole exhibit enantioselective acute toxicity and developmental toxicity toward zebrafish. Furthermore, those pesticides potentially possess enantioselective endocrine-disrupting effects.


Asunto(s)
Insecticidas , Plaguicidas , Pirazoles , Contaminantes Químicos del Agua , Animales , Insecticidas/metabolismo , Pez Cebra/metabolismo , Estereoisomerismo , Plaguicidas/metabolismo , Larva , Contaminantes Químicos del Agua/metabolismo
18.
J Hazard Mater ; 466: 133448, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244454

RESUMEN

Rapid, anthropogenic activity-induced global warming is a severe problem that not only raises water temperatures but also shifts aquatic environments by increasing the bioavailability of heavy metals (HMs), with potentially complicated effects on aquatic organisms, including small aquatic invertebrates. For this paper, we investigated the combined effects of temperature (23 and 28 °C) and methylmercury (MeHg) by measuring physiological changes, bioaccumulation, oxidative stress, antioxidants, and the mitogen-activated protein kinase signaling pathway in the marine rotifer Brachionus plicatilis. High temperature and MeHg adversely affected the survival rate, lifespan, and population of rotifers, and bioaccumulation, oxidative stress, and biochemical reactions depended on the developmental stage, with neonates showing higher susceptibility than adults. These findings demonstrate that increased temperature enhances potentially toxic effects from MeHg, and susceptibility differs with the developmental stage. This study provides a comprehensive understanding of the combined effects of elevated temperature and MeHg on rotifers. ENVIRONMENTAL IMPLICATION: Methylmercury (MeHg) is a widespread and harmful heavy metal that can induce lethal effects on aquatic organisms in even trace amounts. The toxicity of metals can vary depending on various environmental conditions. In particular, rising temperatures are considered a major factor affecting bioavailability and toxicity by changing the sensitivity of organisms. However, there are few studies on the combinational effects of high temperatures and MeHg on aquatic animals, especially invertebrates. Our research would contribute to understanding the actual responses of aquatic organisms to complex aquatic environments.


Asunto(s)
Metales Pesados , Compuestos de Metilmercurio , Rotíferos , Contaminantes Químicos del Agua , Animales , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/metabolismo , Temperatura , Organismos Acuáticos , Estrés Oxidativo , Metales Pesados/metabolismo , Contaminantes Químicos del Agua/metabolismo
19.
Ecotoxicol Environ Saf ; 272: 116019, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295734

RESUMEN

Agricultural production relies heavily on pesticides. However, factors like inefficient application, pesticide resistance, and environmental conditions reduce their effective utilization in agriculture. Subsequently, pesticides transfer into the soil, adversely affecting its physicochemical properties, microbial populations, and enzyme activities. Different pesticides interacting can lead to combined toxicity, posing risks to non-target organisms, biodiversity, and organism-environment interactions. Pesticide exposure may cause both acute and chronic effects on human health. Biochar, with its high specific surface area and porosity, offers numerous adsorption sites. Its stability, eco-friendliness, and superior adsorption capabilities render it an excellent choice. As a versatile material, biochar finds use in agriculture, environmental management, industry, energy, and medicine. Added to soil, biochar helps absorb or degrade pesticides in contaminated areas, enhancing soil microbial activity. Current research primarily focuses on biochar produced via direct pyrolysis for pesticide adsorption. Studies on functionalized biochar for this purpose are relatively scarce. This review examines biochar's pesticide absorption properties, its characteristics, formation mechanisms, environmental impact, and delves into adsorption mechanisms, functionalization methods, and their prospects and limitations.


Asunto(s)
Plaguicidas , Contaminantes del Suelo , Humanos , Plaguicidas/química , Adsorción , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Suelo/química , Biodiversidad
20.
Foods ; 13(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38254506

RESUMEN

Chlorantraniliprole (CAP) is a new type of diamide insecticide that is mainly used to control lepidopteran pests. However, it has been proven to be hazardous to nontarget organisms, and the effects of its residues need to be monitored. In this study, five hybridoma cell lines were developed that produced anti-CAP monoclonal antibodies (mAbs), of which the mAb originating from the cell line 5C5B9 showed the highest sensitivity and was used to develop a gold nanoparticle-based lateral flow immunoassay (AuNP-LFIA) for CAP. The visible limit of detection of the AuNP-LFIA was 1.25 ng/mL, and the detection results were obtained in less than 10 min. The AuNP-LFIA showed no cross-reactivity for CAP analogs, except for tetraniliprole (50%) and cyclaniliprole (5%). In the detection of spiked and blind samples, the accuracy and reliability of the AuNP-LFIA were confirmed by a comparison with spiked concentrations and verified by ultra-performance liquid chromatography-tandem mass spectrometry. Thus, this study provides the core reagents for establishing CAP immunoassays and a AuNP-LFIA for the detection of residual CAP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA