Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1301395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298826

RESUMEN

Climate varies along geographic gradients, causing spatial variations in the effects of energy and water on species richness and the explanatory power of different climatic factors. Species of the Quercus genus are important tree species in China with high ecological and socioeconomic value. To detect whether the effects of energy and water on species richness change along climatic gradients, this study built geographically weighted regression models based on species richness and climatic data. Variation partition analysis and hierarchical partitioning analysis were used to further explore the main climatic factors shaping the richness distribution pattern of Quercus in China. The results showed that Quercus species were mainly distributed in mountainous areas of southwestern China. Both energy and water were associated with species richness, with global slopes of 0.17 and 0.14, respectively. The effects of energy and water on species richness gradually increased as energy and water in the environment decreased. The interaction between energy and water altered the effect of energy, and in arid regions, the effects of energy and water were relatively stronger. Moreover, energy explained more variation in species richness in both the entire study area (11.5%) and different climate regions (up to 19.4%). The min temperature of coldest month was the main climatic variable forming the richness distribution pattern of Quercus in China. In conclusion, cold and drought are the critical climatic factors limiting the species richness of Quercus, and climate warming will have a greater impact in arid regions. These findings are important for understanding the biogeographic characteristics of Quercus and conserving biodiversity in China.

2.
Sci Total Environ ; 903: 166260, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37579809

RESUMEN

Climate change and biological invasions pose significant threats to the conservation of biodiversity and the provision of ecosystem services. With the rapid development of international trade and economy, China has become one of the countries most seriously affected by invasive alien plants (IAPs), especially the Asteraceae IAPs. For this end, we selected occurrence data of 31 Asteraceae IAPs and 33 predictor variables to explore the distribution pattern under current climate using MaxEnt model. Based on future climate data, the changes in distribution dynamics of Asteraceae IAPs were predicted under two time periods (2041-2060 and 2081-2100) and three climate change scenarios (SSP126, SSP245 and SSP585). The results indicated that the potential distribution of IAPs was mainly in the southeast of China under current climate. Climatic variables, including precipitation of coldest quarter (BIO19), temperature annual range (BIO07) and annual precipitation (BIO12) were the main factors affecting the potential distribution. Besides, human footprint (HFP), population (POP) and soil moisture (SM) also had a great contribution for shaping the distribution pattern. With climate change, the potential distribution of IAPs would shift to the northwest and expand. It would also accelerate the expansion of most Asteraceae IAPs in China. The results of our study can help to understand the dynamics change of distributions of Asteraceae IAPs under climate change in advance so that early strategies can be developed to reduce the risk and influence of biological invasions.

3.
Sci Total Environ ; 846: 157424, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35878851

RESUMEN

Sandstorm is a natural meteorological disaster that can appear suddenly and is often extremely destructive. In areas with small number of meteorological observation stations, it is difficult to effectively monitor sandstorm. Moderate Resolution Imaging Spectroradiometer (MODIS) data have the characteristics of high resolution and wide coverage, making it possible to monitor dynamic weather changes in a large area over time, and such data are widely used in sandstorm monitoring. The purpose of our research was to achieve a more accurate identification of sandstorm according to the differences in reflectance and brightness temperature between sandstorm and other phenomena, and to better understand the formation, movement track and driving cause of sandstorm extreme event. Taking the intense sandstorm event that occurred in the Yellow River Basin from March 13th to 18th, 2021 as an example, sandstorm process was analyzed based on MODIS data and meteorological monitoring data. The threshold of Normalized Difference Dust Index (NDDI) and Normalized Brightness Temperature Dust Index (NBTDI) realized accurate sandstorm monitoring and quantification of the sandstorm coverage areas. Sandstorm covered 32.89 % and 37.23 % of the total areas of the Yellow River Basin on March 15th and 16th, 2021, respectively. In addition, observation data from 22 meteorological stations also provided an important reference for further understanding of sandstorm weather. The intense sandstorm event in China on March 15th, 2021 originated from the dust in Mongolia. This sandstorm event caused great damage to the ecological environment and caused serious losses to people's lives and properties. This study improved the monitoring of sandstorm by remote sensing technology, and the results had importance for the long-term monitoring and prevention of sandstorm.


Asunto(s)
Polvo , Ríos , China , Polvo/análisis , Monitoreo del Ambiente/métodos , Humanos , Tecnología de Sensores Remotos , Tiempo (Meteorología)
4.
Chemosphere ; 281: 130996, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34289634

RESUMEN

As one of the main components of combustion of tobacco products occurs (CARB), crotonaldehyde has an acute toxicity and widely exists in the atmosphere, which is harmful to human health. The removal efficiency of VOCs by ozonation can reach 80-90%. Based on the theory of quantum chemistry, the degradation mechanism, kinetics and toxicity of crotonaldehyde by ozonation in gas phase and heterogeneous phase were studied. Ozone was added to the olefins unsaturated double bond to form a five-membered ring primary ozonide, which was further fractured due to its unstable structure to form a Criegee intermediate and an aldehyde compound. The reaction rate constant of crotonaldehyde with ozone was 1.24 × 10-17 cm3 molecule-1 s-1 at 298 K and 1 atm, which was an order of magnitude higher than the experimental value. From toxicity assessment, it was found that the ozonation of crotonaldehyde is beneficial to the removal of toxicity. Mineral dust aerosol exists in the atmosphere in large quantities, and SiO2 is the most abundant component. VOCs are transformed into particle state on their surface through homogeneous nucleation and heterogeneous nucleation. Referring to the crystal structure of SiO2, five hydroxylated silica oligomer cluster structures were simulated and the adsorption configurations of crotonaldehyde on their surface were simulated. The adsorption of crotonaldehyde on the surface of the clusters was achieved by forming hydrogen bonds and had good adsorption effects. The adsorption of hydroxylated silica oligomer clusters didn't change the ozonation mechanism of crotonldehyde, but had a certain effect on the reaction rate.


Asunto(s)
Ozono , Dióxido de Silicio , Adsorción , Aldehídos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...