Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 338
1.
J Nutr Health Aging ; 28(8): 100264, 2024 May 20.
Article En | MEDLINE | ID: mdl-38772098

BACKGROUND: An association between the gut microbiome and cognitive function has been demonstrated in prior studies. However, whether the oral microbiome, the second largest microbial habitant in humans, has a role in cognition remains unclear. DESIGN, SETTING, PARTICIPANTS: Using weighted data from the 2011 to 2012 National Health and Nutrition Examination Survey, we examined the association between oral microbial composition and cognitive function in older adults. The oral microbiome was characterized by 16S ribosomal RNA gene sequencing. Cognitive status was assessed using the Consortium to Establish a Registry for Alzheimer's Disease immediate recall and delayed recall, Animal Fluency Test, and Digit Symbol Substitution Test (DSST). Subjective memory changes over 12 months were also assessed. Linear and logistic regression models were conducted to quantify the association of α-diversity with different cognitive measurements controlling for potential confounding variables. Differences in ß-diversity were analyzed using permutational analysis of variance. RESULTS: A total of 605 participants aged 60-69 years were included in the analysis. Oral microbial α-diversity was significantly and positively correlated with DSST (ß, 2.92; 95% CI, 1.01-4.84). Participants with higher oral microbial α-diversity were more likely to have better cognitive performance status based on DSST (adjusted odds ratio, 2.35; 95% CI, 1.28-4.30) and were less likely to experience subjective memory changes (adjusted odds ratio, 0.43; 95% CI, 0.25-0.74). In addition, ß-diversity was statistically significant for the cognitive performance status based on DSST (P = 0.031) and subjective memory changes (P = 0.023). CONCLUSIONS: Oral microbial composition was associated with executive function and subjective memory changes among older adults among older U.S. adults in a nationally representative population sample. Oral dysbiosis is a potential biomarker or therapeutic target for cognitive decline. Further work is needed to elucidate the mechanisms underpinning the association between the oral microbiome and cognitive function.

2.
Toxicol Appl Pharmacol ; 486: 116942, 2024 May.
Article En | MEDLINE | ID: mdl-38692360

Organotins have been widely used in various industrial applications. This study investigated the structure-activity relationship as inhibitors of human, pig, and rat gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD). Human KGN cell, pig, and rat testis microsomes were utilized to assess the inhibitory effects of 18 organotins on the conversion of pregnenolone to progesterone. Among them, diphenyltin, triethyltin, and triphenyltin exhibited significant inhibitory activity against human 3ß-HSD2 with IC50 values of 114.79, 106.98, and 5.40 µM, respectively. For pig 3ß-HSD, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin demonstrated inhibitory effects with IC50 values of 172.00, 100.19, 87.00, 5.75, and 1.65 µM, respectively. Similarly, for rat 3ß-HSD1, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin displayed inhibitory activity with IC50 values of 81.35, 43.56, 55.55, 4.09, and 0.035 µM, respectively. They were mixed inhibitors of pig and rat 3ß-HSD, while triphenyltin was identified as a competitive inhibitor of human 3ß-HSD2. The mechanism underlying the inhibition of organotins on 3ß-HSD was explored, revealing that they may disrupt the enzyme activity by binding to cysteine residues in the catalytic sites. This proposition was supported by the observation that the addition of dithiothreitol reversed the inhibition caused by all organotins except for triethyltin, which was partially reversed. In conclusion, this study provides valuable insights into the structure-activity relationship of organotins as inhibitors of human, pig, and rat gonadal 3ß-HSD. The mechanistic investigation suggests that these compounds likely exert their inhibitory effects through binding to cysteine residues in the catalytic sites.


Enzyme Inhibitors , Organotin Compounds , Testis , Animals , Humans , Structure-Activity Relationship , Organotin Compounds/pharmacology , Organotin Compounds/chemistry , Rats , Male , Testis/enzymology , Testis/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Swine , 3-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 3-Hydroxysteroid Dehydrogenases/metabolism , Molecular Docking Simulation , Progesterone/pharmacology , Progesterone/metabolism , Microsomes/enzymology , Microsomes/drug effects , Rats, Sprague-Dawley
3.
Nutrients ; 16(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38613008

Sn-2 palmitate is widely used in infant formula. However, little is known about its effects on metabolism and body composition in middle-aged and elderly adults. In a double-blinded, randomized controlled trial, we enrolled Chinese adults aged 45-75 years with self-reported constipation. Individuals were randomly assigned in a 1:1 ratio to a 1,3-dioleoyl-2-palmitoyl-glycerol (OPO)-enriched oil (66% palmitic acid in the sn-2 position) or a control vegetable oil (24% palmitic acid in the sn-2 position) daily for 24 weeks. Skim milk powder was used as the carrier for both fats. Interviews and body composition were performed at baseline, week 4, week 12 and week 24. A fasting blood draw was taken except at week 4. This study was a secondary analysis and considered exploratory. A total of 111 adults (83 women and 28 men, mean age 64.2 ± 7.0 years) were enrolled, of whom 53 were assigned to the OPO group and 57 to the control group. During the intervention, blood glucose, triglyceride, the triglyceride-glucose index, total cholesterol, low-density lipoprotein cholesterol and remnant cholesterol remained stable, while high-density lipoprotein cholesterol decreased in both groups (p = 0.003). No differences in change were observed between the groups (all p > 0.05). From baseline to week 24, the level of visceral fat increased slightly (p = 0.017), while body weight, total body water, protein, soft lean mass, fat-free mass, skeletal muscle and skeletal muscle mass index (SMI) decreased in two groups (p < 0.01). At weeks 4, 12 and 24, the SMI decreased less in the OPO group than in the control group, with a trend towards significance (p = 0.090). A 24-week daily intake of sn-2-palmitate-enriched oil had no adverse impact on fasting blood glucose, lipids and body composition compared with the control vegetable oil in Chinese adults (funded by Chinese Nutrition Society National Nutrition Science Research Grant, National Key Research and Development Program of China and Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd.; ChiCTR1900026480).


Blood Glucose , Palmitates , Aged , Female , Humans , Male , Middle Aged , Body Composition , China , Cholesterol, HDL , Palmitic Acid , Plant Oils , Triglycerides , East Asian People
4.
Food Chem ; 444: 138675, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38335688

Inadequate Se intake can enhance vulnerability to certain health risks, with supplementation lessening these risks. This study investigated the bioavailability of Se and Se species in five Se compounds and in Se-rich Cardamine violifolia using in vitro digestion coupled with a Caco-2 cell monolayer model, which enabled the study of Se transport and uptake. Translocation results showed that SeCys2 and MeSeCys had high translocation rates in C. violifolia leaves (CVLs). The uptake rate of organic Se increased with time, and MeSeCys exhibited a higher uptake rate than that for SeCys2 and SeMet. The translocation mechanisms of SeMet, Se(IV), and Se(VI) were passive transport, whereas those of SeCys2 and MeSeCys were active transport. The bioavailability of organic Se was higher than that of inorganic Se, with a total Se bioavailability in CVLs of 49.11 %. This study would provide a theoretical basis for the application of C. violifolia in the functional food.


Cardamine , Selenium Compounds , Selenium , Humans , Caco-2 Cells , Biological Availability , Digestion
5.
Br J Cancer ; 130(4): 694-700, 2024 03.
Article En | MEDLINE | ID: mdl-38177659

BACKGROUND: Neoadjuvant chemo-immunotherapy combination has shown remarkable advances in the management of esophageal squamous cell carcinoma (ESCC). However, the identification of a reliable biomarker for predicting the response to this chemo-immunotherapy regimen remains elusive. While computed tomography (CT) is widely utilized for response evaluation, its inherent limitations in terms of accuracy are well recognized. Therefore, in this study, we present a novel technique to predict the response of ESCC patients before receiving chemo-immunotherapy by testing volatile organic compounds (VOCs) in exhaled breath. METHODS: This study employed a prospective-specimen-collection, retrospective-blinded-evaluation design. Patients' baseline breath samples were collected and analyzed using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). Subsequently, patients were categorized as responders or non-responders based on the evaluation of therapeutic response using pathology (for patients who underwent surgery) or CT images (for patients who did not receive surgery). RESULTS: A total of 133 patients were included in this study, with 91 responders who achieved either a complete response (CR) or a partial response (PR), and 42 non-responders who had stable disease (SD) or progressive disease (PD). Among 83 participants who underwent both evaluations with CT and pathology, the paired t-test revealed significant differences between the two methods (p < 0.05). For the breath test prediction model using breath test data from all participants, the validation set demonstrated mean area under the curve (AUC) of 0.86 ± 0.06. For 83 patients with pathological reports, the breath test achieved mean AUC of 0.845 ± 0.123. CONCLUSIONS: Since CT has inherent weakness in hollow organ assessment and no other ideal biomarker has been found, our study provided a noninvasive, feasible, and inexpensive tool that could precisely predict ESCC patients' response to neoadjuvant chemo-immunotherapy combination using breath test based on HPPI-TOFMS.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Neoplasms/therapy , Esophageal Neoplasms/drug therapy , Retrospective Studies , Prospective Studies , Neoadjuvant Therapy , Breath Tests/methods , Biomarkers
6.
Redox Biol ; 69: 102976, 2024 Feb.
Article En | MEDLINE | ID: mdl-38052106

Cold atmospheric plasma (CAP) holds promise as a cancer-specific treatment that selectively kills various types of malignant cells. We used CAP-activated media (PAM) to utilize a range of the generated short- and long-lived reactive species. Specific antibodies, small molecule inhibitors and CRISPR/Cas9 gene-editing approaches showed an essential role for receptor tyrosine kinases, especially epidermal growth factor (EGF) receptor, in mediating triple negative breast cancer (TNBC) cell responses to PAM. EGF also dramatically enhanced the sensitivity and specificity of PAM against TNBC cells. Site-specific phospho-EGFR analysis, signal transduction inhibitors and reconstitution of EGFR-depleted cells with EGFR-mutants confirmed the role of phospho-tyrosines 992/1173 and phospholipase C gamma signaling in up-regulating levels of reactive oxygen species above the apoptotic threshold. EGF-triggered EGFR activation enhanced the sensitivity and selectivity of PAM effects on TNBC cells. The proposed approach based on the synergy of CAP and EGFR-targeted therapy may provide new opportunities to improve the clinical management of TNBC.


Epidermal Growth Factor , Triple Negative Breast Neoplasms , Humans , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , Signal Transduction
8.
Eur J Neurol ; 31(1): e16096, 2024 01.
Article En | MEDLINE | ID: mdl-37877685

BACKGROUND AND PURPOSE: The aim was to investigate the neurological complications associated with coronavirus disease 19 (COVID-19) during the 2022 Omicron wave. METHODS AND ANALYSIS: The medical records of a cohort of people admitted to neurological wards of three participating tertiary centres in Sichuan from 12 December 2022 to 12 January 2023 were reviewed. Demographics and clinical data were obtained and analysed with an interest in COVID-19-related new-onset or worse neurological symptoms. The current data were also compared in two centres with similar data from the same period 12 months earlier. RESULTS: In all, 790 people were enrolled, of whom 436 were positive for COVID-19. Ninety-nine had new onset COVID-related neurological problems, or their known neurological condition deteriorated during the wave. There was a significant difference in demographics from the findings amongst admissions 12 months earlier as there was an increase in the average age, the incidence of encephalitis and encephalopathy, and mortality rates. One hundred and one received COVID-specific antivirals, intravenous glucocorticoids and intravenous immunoglobulin therapy. No differences were seen between these and those who did not use them. CONCLUSION: New-onset neurological conditions, particularly encephalitis and encephalopathy, increased significantly during this period. Deterioration of existing neurological conditions, such as seizure exacerbation, was also observed. A large-scale treatment trial of people with COVID-19 infection presenting with neurological disorders is still needed.


Brain Diseases , COVID-19 , Encephalitis , Humans , Cohort Studies , COVID-19/complications , COVID-19/epidemiology , China/epidemiology , Seizures
9.
PLoS One ; 18(12): e0293471, 2023.
Article En | MEDLINE | ID: mdl-38127853

Nitrogen (N) and rhizosphere pH are the two main factors restricting the growth of winter wheat (Triticum aestivum L.) in North China Plain. Soil nutrient availability is affected by soil acidity and alkalinity. In order to understand the effect of rhizosphere pH value on wheat nitrogen metabolism and the response of wheat growth to pH value at seedling stage, winter wheat varieties 'Aikang 58' (AK58) and 'Bainong 4199' (BN4199) were tested in hydroponics under three pH treatments (pH = 4.0, 6.5, and 9.0). The results showed that the accumulation of dry matter in root and above ground under pH 4.0 and pH 9.0 treatments was lower than that under pH 6.5 treatments, and the root/shoot ratio increased with the increase of pH value. Regardless of pH value, 'BN4199' had higher root dry weight, root length, root surface area, root activity and root tip than 'AK58'. Therefore, wheat that is tolerant to extreme pH is able to adapt to the acid-base environment by changing root characteristics. At pH 4.0, the net H+ outflow rate of wheat roots was significantly lower than that of the control group, and the net NO3- flux of wheat roots was also low. The net H+ outflow occurred at pH 6.5 and 9.0, and at the same time, the net NO3- flux of roots also increased, and both increased with the increase of pH. The activity of nitrate reductase (NR) in stem of pH 9.0 treatment was significantly higher than that of other treatments, while the activity of glutamine synthetase (GS) in root and stem of pH 6.5 treatment was significantly higher than that of other treatments. Under pH 4.0 and pH 9.0 treatments, the activities of NR and GS in 'BN4199' were higher than those in 'AK58', The root respiration of 'BN4199' was significantly higher than that of 'AK58' under pH 4.0 and pH 9.0 treatment, and 'BN4199' had higher NO3- net flux, key enzyme activity of root nitrogen metabolism and root respiration. Therefore, we believe that 'BN4199' has strong resistance ability to extreme pH stress, and high root/shoot ratio and strong root respiration can be used as important indicators for wheat variety screening adapted to the alkaline environment at the seedling stage.


Seedlings , Triticum , Seedlings/metabolism , Nitrogen/metabolism , Proton-Motive Force , Nitrate Reductase/metabolism , Glutamate-Ammonia Ligase/metabolism , Soil
10.
Plants (Basel) ; 12(24)2023 Dec 06.
Article En | MEDLINE | ID: mdl-38140408

Actinidia chinensis Planch. is a fruit tree originating from China that is abundant in the wild. Actinidia eriantha Benth. is a type of A. chinensis that has emerged in recent years. The shape of A. eriantha is an elongated oval, and the skin is covered with dense, non-shedding milk-white hairs. The mature fruit has flesh that is bright green in colour, and the fruit has a strong flavour and a grass-like smell. It is appreciated for its rich nutrient content and unique flavour. Vitamin C, sugar, and organic acids are key factors in the quality and flavour composition of A. eriantha but have not yet been systematically analysed. Therefore, we sequenced the transcriptome of A. eriantha at three developmental stages and labelled them S1, S2, and S3, and comparisons of S1 vs. S2, S1 vs. S3, and S2 vs. S3 revealed 1218, 4019, and 3759 upregulated differentially expressed genes and 1823, 3415, and 2226 downregulated differentially expressed genes, respectively. Furthermore, the upregulated differentially expressed genes included 213 core genes, and Gene Ontology enrichment analysis showed that they were enriched in hormones, sugars, organic acids, and many organic metabolic pathways. The downregulated differentially expressed genes included 207 core genes, which were enriched in the light signalling pathway. We further constructed the metabolic pathways of sugars, organic acids, and vitamin C in A. eriantha and identified the genes involved in vitamin C, sugar, and organic acid synthesis in A. eriantha fruits at different stages. During fruit development, the vitamin C content decreased, the carbohydrate compound content increased, and the organic acid content decreased. The gene expression patterns were closely related to the accumulation patterns of vitamin C, sugars, and organic acids in A. eriantha. The above results lay the foundation for the accumulation of vitamin C, sugars, and organic acids in A. eriantha and for understanding flavour formation in A. eriantha.

11.
Adv Sci (Weinh) ; 10(33): e2303377, 2023 11.
Article En | MEDLINE | ID: mdl-37870208

Neural interfaces for stable access to the spinal cord (SC) electrical activity can benefit patients with motor dysfunctions. Invasive high-density electrodes can directly extract signals from SC neuronal populations that can be used for the facilitation, adjustment, and reconstruction of motor actions. However, developing neural interfaces that can achieve high channel counts and long-term intraspinal recording remains technically challenging. Here, a biocompatible SC hyperflexible electrode array (SHEA) with an ultrathin structure that minimizes mechanical mismatch between the interface and SC tissue and enables stable single-unit recording for more than 2 months in mice is demonstrated. These results show that SHEA maintains stable impedance, signal-to-noise ratio, single-unit yield, and spike amplitude after implantation into mouse SC. Gait analysis and histology show that SHEA implantation induces negligible behavioral effects and Inflammation. Additionally, multi-unit signals recorded from the SC ventral horn can predict the mouse's movement trajectory with a high decoding coefficient of up to 0.95. Moreover, during step cycles, it is found that the neural trajectory of spikes and low-frequency local field potential (LFP) signal exhibits periodic geometry patterns. Thus, SHEA can offer an efficient and reliable SC neural interface for monitoring and potentially modulating SC neuronal activity associated with motor dysfunctions.


Movement , Neurons , Humans , Mice , Animals , Electrodes , Neurons/physiology , Movement/physiology , Electroencephalography/methods
12.
Epilepsy Res ; 197: 107245, 2023 11.
Article En | MEDLINE | ID: mdl-37864968

OBJECTIVE: To investigate the initial treatment of patients with convulsive status epilepticus (CSE) in a resource-limited region of China, and to discuss the difference of in-hospital outcomes and economic costs between those with guideline-recommended initial treatment and those without. METHODS: In this retrospective study, we screened adult patients discharged with the diagnosis of CSE in four centers in west China. Individuals with different exposure to the initial drug were divided into benzodiazepine (BDZ) and non-BDZ group for outcome comparison. The primary outcomes were seizure control, and the ratio of patients who developed refractory SE. The secondary outcomes included in-hospital mortality, the modified Rankin Scale (mRS) score at discharge, in-hospital respiratory support rate, length, and cost of the stay. RESULTS: Three-hundred and thirteen patients (127, 40.6% were women) with CSE were included. The median age was 43 (range 16-92). There were 152 (48.6%) patients initially treated with BDZ. Among the 36 who received midazolam as initial treatment, twenty-six received an insufficient dose. The other 116 (76.3%) patients in the BDZ group chose diazepam as initial treatment. Fifteen of them (12.9%) were treated underdose. In the non-BDZ group (161, 51.4%), antiseizure medications (ASMs) and/or coma-induced drugs were used as initial treatment. Among those initially administrated ASMs, intramuscular phenobarbital (38,37.6%) and valproate (46, 52.3%) were most frequently seen. There was a significant difference in the time latency to initial treatment and etiology between BDZ and non-BDZ group. The non-BDZ group reported a higher cessation rate after initial treatment compared to the BDZ group (P = 0.012). No significant difference in other primary and secondary outcomes. SIGNIFICANCE: Non-adherence and underdosing of the initial treatment of SE were common in China. However, the non-BDZ group showed a better seizure control rate. The effect came from early aggressive medication, that is, the combination of ASMs and anesthesia. Non-BDZ group was not inferior to BDZs in terms of seizure control, the occurrence of in-hospital death, and poor outcome at discharge. More robust evidence is needed in developing settings when choosing the initial treatment.


Anticonvulsants , Status Epilepticus , Adult , Humans , Female , Male , Anticonvulsants/therapeutic use , Retrospective Studies , Hospital Mortality , Status Epilepticus/diagnosis , Status Epilepticus/drug therapy , Status Epilepticus/etiology , Seizures/drug therapy , Seizures/complications , China
13.
Bioengineering (Basel) ; 10(8)2023 Aug 03.
Article En | MEDLINE | ID: mdl-37627810

Chemodynamic therapy (CDT) has garnered significant interest as an innovative approach for cancer treatment, owing to its notable tumor specificity and selectivity, minimal systemic toxicity and side effects, and absence of the requirement for field stimulation during treatment. This treatment utilizes nanocatalytic medicines containing transitional metals to release metal ions within tumor cells, subsequently initiating Fenton and Fenton-like reactions. These reactions convert hydrogen peroxide (H2O2) into hydroxyl radical (•OH) specifically within the acidic tumor microenvironment (TME), thereby inducing apoptosis in tumor cells. However, insufficient endogenous H2O2, the overexpressed reducing substances in the TME, and the weak acidity of solid tumors limit the performance of CDT and restrict its application in vivo. Therefore, a variety of nanozymes and strategies have been designed and developed in order to potentiate CDT against tumors, including the application of various nanozymes and different strategies to remodel TME for enhanced CDT (e.g., increasing the H2O2 level in situ, depleting reductive substances, and lowering the pH value). This review presents an overview of the design and development of various nanocatalysts and the corresponding strategies employed to enhance catalytic drug targeting in recent years. Additionally, it delves into the prospects and obstacles that lie ahead for the future advancement of CDT.

14.
J Am Chem Soc ; 145(34): 18865-18876, 2023 Aug 30.
Article En | MEDLINE | ID: mdl-37589666

Beyond lithium-ion technologies, lithium-sulfur batteries stand out because of their multielectron redox reactions and high theoretical specific energy (2500 Wh kg-1). However, the intrinsic irreversible transformation of soluble lithium polysulfides to solid short-chain sulfur species (Li2S2 and Li2S) and the associated large volume change of electrode materials significantly impair the long-term stability of the battery. Here we present a liquid sulfur electrode consisting of lithium thiophosphate complexes dissolved in organic solvents that enable the bonding and storage of discharge reaction products without precipitation. Insights garnered from coupled spectroscopic and density functional theory studies guide the complex molecular design, complexation mechanism, and associated electrochemical reaction mechanism. With the novel complexes as cathode materials, high specific capacity (1425 mAh g-1 at 0.2 C) and excellent cycling stability (80% retention after 400 cycles at 0.5 C) are achieved at room temperature. Moreover, the highly reversible all-liquid electrochemical conversion enables excellent low-temperature battery operability (>400 mAh g-1 at -40 °C and >200 mAh g-1 at -60 °C). This work opens new avenues to design and tailor the sulfur electrode for enhanced electrochemical performance across a wide operating temperature range.

15.
AMB Express ; 13(1): 85, 2023 Aug 12.
Article En | MEDLINE | ID: mdl-37573278

Enterococcus faecalis is one of the main pathogens that causes hospital-acquired infections because it is intrinsically resistant to some antibiotics and often is capable of biofilm formation, which plays a critical role in resisting the external environment. Therefore, attacking biofilms is a potential therapeutic strategy for infections caused by E. faecalis. Current research indicates that diacerein used in the treatment of osteoarthritis showed antimicrobial activity on strains of gram-positive cocci in vitro. In this study, we tested the MICs of diacerein using the broth microdilution method, and successive susceptibility testing verified that E. faecalis is unlikely to develop resistance to diacerein. In addition, we obtained a strain of E. faecalis HE01 with strong biofilm-forming ability from an eye hospital environment and demonstrated that diacerein affected the biofilm development of HE01 in a dose-dependent manner. Then, we explored the mechanism by which diacerein inhibits biofilm formation through qRT-PCR, extracellular protein assays, hydrophobicity assays and transcriptomic analysis. The results showed that biofilm formation was inhibited at the initial adhesion stage by inhibition of the expression of the esp gene, synthesis of bacterial surface proteins and reduction in cell hydrophobicity. In addition, transcriptome analysis showed that diacerein not only inhibited bacterial growth by affecting the oxidative phosphorylation process and substance transport but also inhibited biofilm formation by affecting secondary metabolism, biosynthesis, the ribosome pathway and luxS expression. Thus, our findings provide compelling evidence for the substantial therapeutic potential of diacerein against E. faecalis biofilms.

16.
Seizure ; 111: 158-163, 2023 Oct.
Article En | MEDLINE | ID: mdl-37634354

AIM: To assess the effectiveness and safety of lacosamide (LCM) as the first add-on therapy for children with focal epilepsy at multiple centres in China. METHOD: Children aged 4-16 years with focal epilepsy from 13 epilepsy centres were included in this study. All patients were treated with LCM as the first add-on treatment and followed up for 26 weeks. The seizure frequency, seizure-free rate, ≥50% response rate, retention rate, and incidence of adverse drug reactions after the addition of LCM were analysed. RESULTS: Ninety-nine children (58 males; aged 4-16 years; mean age 8.51 ± 2.95 years) were enroled. The mean age at first seizure was 5.74 ± 3.12 years. All patients were administered LCM as the first add-on treatment for focal epilepsy. Twenty-eight patients (28/99, 28.28%) did not experience seizures during the follow-up period. The ≥50% response rates were 80.81% (80/99), 93.88% (92/98), 98.98% (97/98), and 100.0% (98/98) at 6 weeks (visit two), 10 weeks (visit three), 18 weeks (visit four), and 26 weeks (visit five), respectively, compared to that at baseline (visit one). The intelligence scores decreased in 12 participants, remained unchanged in 64, and increased in 16. Adverse events occurred in three participants during the trial, all of which were mild. INTERPRETATION: LCM was effective as the first add-on therapy in this real-life multi-centre study of a paediatric population with focal epilepsy. Further prospective studies with long-term follow-up periods are needed to confirm the effectiveness and tolerability of LCM.

17.
Adv Mater ; 35(39): e2302108, 2023 Sep.
Article En | MEDLINE | ID: mdl-37518813

The development of high-temperature structural materials, such as ceramics, is limited by their extremely high melting points and the difficulty in building complicated architectures. Four-dimensional (4D) printing helps enhance the geometrical flexibility of ceramics. However, ceramic 4D printing systems are limited by the separate processes for shape and material transformations, low accuracy of morphing systems, low resolution of ceramic structures, and their time-intensive nature. Here, a paradigm for a one-step shape/material transformation, high-2D/3D/4D-precision, high-efficiency, and scalable 4D additive-subtractive manufacturing of shape memory ceramics is developed. Original/reverse and global/local multimode shape memory capabilities are achieved using macroscale SiOC-based ceramic materials. The uniformly deposited Al2 O3 -rich layer on the printed SiOC-based ceramic lattice structures results in an unusually high flame ablation performance of the complex-shaped ceramics. The proposed framework is expected to broaden the applications of high-temperature structural materials in the aerospace, electronics, biomedical, and art fields.

18.
Methods Mol Biol ; 2695: 181-193, 2023.
Article En | MEDLINE | ID: mdl-37450119

Limited knowledge has been reported regarding the performance of plasma metabolomics for predicting lung cancer prognosis. In this chapter, we compared the plasma metabolomics of lung cancer patients with differential disease-free survival (DFS, <3 years vs. >4 years) using liquid chromatography-mass spectrometry. We identified 29 survival-related aqueous metabolites but no lipid metabolites. Amino acids and organic acids constitute the majority of these metabolites. The metabolic pathways of these metabolites were cysteine and methionine metabolism and arginine biosynthesis. The Cox proportional hazards regression models confirmed the predictive values of 18 metabolites for DFS, while the phosphocholine and xanthine showed independent predictive values. Regarding cancer phenotypes, thelephoric acid, phosphocholine, inosine, 3-hydroxyanthranilic acid, hypoxanthine, xanthine, and 4-hydroxybenzoic acid showed good correction with lymph node metastasis. Taken together, plasma metabolomics is a powerful tool for identifying prognostic metabolites of lung cancer.


Lung Neoplasms , Phosphorylcholine , Humans , Lung Neoplasms/diagnosis , Metabolomics/methods , Mass Spectrometry , Xanthine
19.
Nanoscale ; 15(28): 11813-11833, 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37427536

Cancer seriously threatens human health. As compared to normal tissue cells, tumor cells are generally more susceptible to oxidative stress and accumulate higher concentrations of reactive oxygen species (ROS). Accordingly, nanomaterials-based therapies that boost intracellular ROS generation have recently been effective in targeting and eliminating cancer cells by causing programmed death. This review presents a comprehensive analysis of ROS-generation induced by nanoparticles and critically examines the associated therapies which can be categorized as uni-modal (chemodynamic therapy, photodynamic therapy, sonodynamic therapy) and multi-modal (uni-modal therapy + chemotherapy, uni-modal therapy + uni-modal therapy) therapies. Comparison of the relative tumor volume ratio between the experimental and initial tumor volumes shows that multi-modal therapy significantly outperformed other treatments. However, the limitations of multi-modal therapy are in the difficulties of materials preparation and sophisticated operation protocols, thus limiting its applications in clinical practice. As an emerging treatment modality, cold atmospheric plasma (CAP) is a reliable source of ROS, light, and electromagnetic fields that can be used to implement multi-modal treatments in a simple setting. Therefore, the field of tumor precision medicine is expected to increasingly benefit from these promising and rapidly emerging multi-modal therapies based on ROS-generating nanomaterials and reactive media such as CAPs.


Nanoparticles , Neoplasms , Photochemotherapy , Humans , Reactive Oxygen Species , Photochemotherapy/methods , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Cell Line, Tumor
20.
Bioeng Transl Med ; 8(4): e10528, 2023 Jul.
Article En | MEDLINE | ID: mdl-37476066

Periodontitis is an infection-induced inflammation, evidenced by an increase in inflammatory macrophage infiltration. Recent research has highlighted the role of plasma-activated medium (PAM) as a regulator of the innate immune system, where macrophages are the main effector cells. This study therefore aims to investigate the immunomodulatory effects of PAM on macrophages and its potential applications for periodontitis management. PAM was generated using an argon jet and applied to culture macrophages. Proinflammatory macrophage markers were significantly reduced after PAM stimulation, and this was correlated with the activation of autophagy via the Akt signaling pathway. Further investigations on the proregenerative effects of PAM-treated macrophages on periodontal ligament cells (PDLCs) revealed a significant increase in the expression of osteogeneis/cementogenesis-associated markers as well as mineralization nodule formation. Our findings suggest that PAM is an excellent candidate for periodontal therapeutic applications.

...