Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 38(7): 2392-2400, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35148119

RESUMEN

Two kinds of carbon nanoproducts with different microstructures, namely, carbon nanotubes (CNTs) and carbon nanofibers (CNFs), were grown on the surface of carbon fibers (CFs) by chemical vapor deposition (CVD) at low temperatures to improve the interface bonding between fibers and resins. The short-beam method and the micro-debonding method were used to test the interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of the composites. The results showed that the contribution of CNTs to the improvement of interfacial properties was better than that of CNFs. Specifically, the ILSS and IFSS of the CF-CNFs/epoxy composites increased by 18.59 and 24.39%, respectively, while the ILSS and IFSS of the CF-CNTs/epoxy composites increased by 26.97 and 47.79%, respectively. Compared with CNFs, the high degree of graphitization of CNTs and the π-interactions with the resin can better induce the formation of an interphase between the fiber and the resin, which suppressed the initiation of cracks and extended the propagation path of the cracks in the composites.

2.
Nanotechnology ; 32(28)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823501

RESUMEN

Carbon nanotubes (CNTs) were continuously grown on the surface of the moving carbon fiber by chemical vapor deposition method using a custom-designed production line to prepare composite reinforcements on a large-scale. The systematic study of different parameters affecting the CNT growth revealed simple growth kinetics, which helps to control the surface morphology and structural quality of CNTs. Since hydrogen maintains the activity of the catalyst, it promotes the growth of CNTs in a continuous process. The increase of acetylene partial pressure promotes the accumulation of amorphous or graphite carbon on the catalyst surface, resulting in the decrease of CNT growth rate when acetylene concentration reaches 40%. The growth temperature significantly affects the CNT diameter and structural quality. As the temperature increases, the crystallinity of the tube wall increases obviously, and the CNT diameter increases due to the aggregate growth of the catalyst particles. According to the Arrhenius formula, the apparent activation energy is observed to be 0.67 eV, which proves that both bulk diffusion and surface diffusion exist when activated carbon passes through the catalyst to form CNTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA