Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.193
1.
Clin Lab ; 70(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38747912

BACKGROUND: The goal was to study the difference of virological, immunologic, and inflammatory indicators between Epstein-Barr associated infectious mononucleosis (EBV-IM) and EBV associated hemophagocytic lymphohistiocytosis (EBV-HLH) and to explore the evaluation indicators for monitoring the therapeutic efficacy of EBV-HLH. METHODS: Twenty children with EBV-IM (IM group) and 10 children with EBV-HLH (HLH group) were selected. Virology indicators were detected; the absolute count of lymphocyte, and lymphocyte subsets were detected; the levels of immunoglobulin and ferritin were assayed. RESULTS: Compared to the IM group, the HLH group showed a decrease in EBV-specific VCA-IgM antibody levels (U = 29.0, p = 0.006) and an increase in EBV-specific NA-IgG antibody levels (U = 17.0, p = 0.001), while there was no significant difference in EB-DNA loads (t = 0.417, p = 0.680). The counts of lymphocytes, and various lymphocyte subsets in the HLH group were lower than those in the IM group. Inflammatory markers in the HLH group were significantly higher than those in IM group. Dynamic monitoring of virological, immunological, and inflammatory indicators in HLH patients during treatment showed that EBV DNA gradually decreased in patients with good prognosis. Inflammatory indicators significantly decreased and returned to normal, lymphocyte count significantly increased and returned to normal during treatment. However, patients with poor prognosis showed rebound increase in EBV DNA and inflammatory indicators in the later stage of treatment, while lymphocyte count further decreased with the recurrence of the disease. CONCLUSIONS: Exhausted and damaged immune function in host by persistent stimulation of EB viral antigen is one of the main pathogeneses of EB-HLH. Lymphocyte count and serum ferritin level are effective indicators to monitor the therapeutic efficacy during the treatment to HLH.


Epstein-Barr Virus Infections , Herpesvirus 4, Human , Infectious Mononucleosis , Lymphohistiocytosis, Hemophagocytic , Humans , Child , Male , Female , Child, Preschool , Herpesvirus 4, Human/immunology , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/virology , Lymphohistiocytosis, Hemophagocytic/blood , Infectious Mononucleosis/immunology , Infectious Mononucleosis/blood , Infectious Mononucleosis/virology , Infectious Mononucleosis/diagnosis , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/blood , DNA, Viral/blood , Inflammation/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Load , Ferritins/blood , Lymphocyte Count , Adolescent , Infant , Lymphocyte Subsets/immunology
2.
Nat Commun ; 15(1): 3893, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719799

Maintaining food safety and quality is critical for public health and food security. Conventional food preservation methods, such as pasteurization and dehydration, often change the overall organoleptic quality of the food products. Herein, we demonstrate a method that affects only a thin surface layer of the food, using beef as a model. In this method, Joule heating is generated by applying high electric power to a carbon substrate in <1 s, which causes a transient increase of the substrate temperature to > ~2000 K. The beef surface in direct contact with the heating substrate is subjected to ultra-high temperature flash heating, leading to the formation of a microbe-inactivated, dehydrated layer of ~100 µm in thickness. Aerobic mesophilic bacteria, Enterobacteriaceae, yeast and mold on the treated samples are inactivated to a level below the detection limit and remained low during room temperature storage of 5 days. Meanwhile, the product quality, including visual appearance, texture, and nutrient level of the beef, remains mostly unchanged. In contrast, microorganisms grow rapidly on the untreated control samples, along with a rapid deterioration of the meat quality. This method might serve as a promising preservation technology for securing food safety and quality.


Food Microbiology , Food Preservation , Animals , Cattle , Food Preservation/methods , Food Microbiology/methods , Meat/microbiology , Hot Temperature , Red Meat/microbiology , Heating , Food Safety/methods
3.
Int Immunopharmacol ; 134: 112219, 2024 May 10.
Article En | MEDLINE | ID: mdl-38733823

BACKGROUNDS & AIMS: Given its ability to inhibit HBV replication, Interferon alpha (IFN-α) treatment has been confirmed to be effective in managing Chronic Hepatitis B (CHB). However, its underlying mechanisms are incompletely understood. METHODS: Herein, we investigated the antiviral properties of IFN-α by introducing IFN-α expression plasmids into a well-established HBV Hydrodynamic Injection (HDI) mouse model and examined the impact of IFN-α or hepcidin treatment on macrophages derived from THP-1 cells. The cytokine profiles were analyzed using the cytometry microsphere microarray technology, and flow cytometry was used to analyze the polarization of macrophages. Additionally, the IL-6/JAK2/STAT3 signaling pathway and the hepcidin-ferroportin axis were analyzed to better understand the macrophage polarization mechanism. RESULTS: As evidenced by the suppression of HBV replication, injection of an IFN-α expression plasmid and supernatants of IFN-α-treated macrophages exerted anti-HBV effects. The IFN-α treatment up-regulated IL-6 in mice with HBV replication, as well as in IFN-α-treated HepG2 cells and macrophages. Furthermore, JAK2/STAT3 signaling and hepcidin expression was promoted, inducing iron accumulation via the hepcidin-ferroportin axis, which caused the polarization of M1 macrophages. Furthermore, under the effect of IFN-α, IL-6 silencing or blockade downregulated the JAK2/STAT3 signaling pathway and hepcidin, implying that increased hepcidin expression under IFN-α treatment was dependent on the IL-6/JAK2/STAT3 pathway. CONCLUSION: The IL-6/JAK2/STAT3 signaling pathway is activated by IFN-α which induces hepcidin expression. The resulting iron accumulation then induces the polarization of M1 macrophages via the hepcidin-ferroportin axis, yielding an immune response which exerts antiviral effects against HBV replication.

5.
Respir Med ; : 107663, 2024 May 17.
Article En | MEDLINE | ID: mdl-38763445

BACKGROUND: Few evidence exists for the effect of frailty on the patients admitted with an acute exacerbation of chronic obstructive pulmonary disease (AECOPD). OBJECTIVE: We explored the link of frailty and in-hospital death, and whether laboratory indicators mediate this association. METHODS: This was a real-world prospective cohort study including older patients with AECOPD, consisting of two cohorts, training set (n=1356) and validation set (n=478). The independent prognostic factors including frail status were determined by multivariate logistic regression analysis. The relationship between frailty and in-hospital mortality was estimated by multivariable Cox regression. A nomogram was developed to provide the clinician with a quantitative tool to predict the risk of in-hospital death. Mediation analyses for frailty and in-hospital death were conducted. RESULTS: The training set included 1356 patients(aged 86.7±6.6), and 25.0% of them were frail. A nomogram model was created, including ten independent variables: age, sex, frailty, chronic obstructive pulmonary disease grades (COPD grades), severity of exacerbation, mean arterial pressure (MAP), Charlson Comorbidity Index (CCI), Interleukin-6 (IL-6), albumin, and troponin T (TPN-T). The area under the receiver operating characteristic curve (ROCs) was 0.862 and 0.845 for the training set and validation set, respectively. Patients with frailty had higher risk of in-hospital death than those without frailty (HR,1.83, 95%CI: 1.14-2.94; p=0.013). Furthermore, CRP and albumin mediated the associations between frailty with in-hospital death. CONCLUSIONS: Frailty may be an adverse prognostic factor for older patients admitted with an AECOPD. CRP and albumin may be parts of the immunoinflammatory mechanism between frailty and in-hospital death.

6.
Immunobiology ; 229(3): 152810, 2024 May 17.
Article En | MEDLINE | ID: mdl-38772101

BACKGROUND AND AIMS: Activation of the cGAS-STING pathway induces the production of type I interferons, initiating the antiviral immune response, which contributes to the clearance of pathogens. Previous studies have shown that STING agonists promote hepatitis B virus (HBV) clearance; however, few studies have investigated the effect of activating the cGAS-STING pathway in macrophages on HBV. METHODS: The polarization status of HBV particle-stimulated RAW264.7 macrophages was analyzed. After stimulation with HBV particles, the analysis focused on determining whether the DNA sensors in RAW264.7 macrophages recognized the viral double-stranded DNA (dsDNA) and evaluating the activation of the cGAS-STING pathway. Coculture of mouse macrophages and hepatocytes harboring HBV was used to study the antiviral activity of HBV-stimulated RAW264.7 macrophages. RESULTS: After stimulation with HBV particles, HBV relaxed circular DNA (rcDNA) was detected in RAW264.7 macrophages, and the protein expression of phospho-STING, phospho-TBK1, and phospho-IRF3 in the STING pathway was increased, as shown by Western blot analysis, which revealed that M1 polarization of macrophages was caused by increased expression of CD86. RT-PCR analyses revealed elevated expression of M1 macrophage polarization-associated cytokines such as TNFα, IL-1ß, iNOS, and IFNα/ß. In the coculture experiment, both HBsAg and HBeAg expression levels were significantly decreased in AML12-HBV1.3 cells cocultured with the supernatants of HBV-stimulated RAW264.7 macrophages. CONCLUSION: The results suggest that macrophages can endocytose HBV particles. Additionally, viral dsDNA can be recognized by DNA pattern recognition receptors, which in turn activate the cGAS-STING pathway, promoting the M1 polarization of macrophages, while no significant M2 polarization is observed. Macrophages stimulated with HBV particles exhibit enhanced antiviral activity against HBV.

7.
Indian J Ophthalmol ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38767559

PURPOSE: To evaluate the effect of anterior-segment structure on vault and position after implantable collamer lens (ICL) implantation using ultrasound biomicroscopy. METHODS: The retrospective case-control study included insufficient vault eyes (<250 µm), ideal vault eyes (250-750 µm), and excessive vault eyes (>750 µm). The preoperative biometric parameters of the anterior-segment structure and basic data between the three groups were analyzed using one-way analysis of variance. RESULTS: There were significant differences ( P < 0.05) between the three groups in maximum ciliary body thickness (CBT max ), iris-zonule distance (IZD), and trabecular-ciliary angle (TCA). The vault gradually decreased as CBT max decreased and TCA increased. In the pairwise comparison, the CBT max comparison between the insufficient vault (<250 µm) group and the excessive vault (>750 µm) group was statistically significant ( P = 0.024, 95% CI: -0.17-0.017 µm); the TCA comparison between the insufficient vault (<250 µm) group and the excessive vault (>750 µm) group was statistically significant ( P = 0.005, 95% CI: 1.78°-12.15°); The IZD comparison between the insufficient vault (<250 µm) group and the excessive vault (>750 µm) group was statistically significant ( P = 0.037, 95% CI: 0.0027-0.1119 µm). The analysis of 284 ICL haptics locations showed that there were 16.67%, 32.69%, and 70.83% haptics located in the ciliary sulcus in three groups, respectively. CONCLUSION: The vault and ICL haptics position are related to anterior-segment structure. A thinner and posteriorly positioned ciliary body would increase the risk of low vault and fewer ICL haptics located in the ciliary sulcus after ICL implantation. This provides guidance for the selection of the ICL size and placement position before surgery.

8.
J Plant Res ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38739241

Reevesia is an eastern Asian-eastern North American disjunction genus in the family Malvaceae s.l. and comprises approximately 25 species. The relationships within the genus are not well understood. Here, 15 plastomes representing 12 Reevesia species were compared, with the aim of better understanding the species circumscription and phylogenetic relationships within the genus and among genera in the family Malvaceae s.l. The 11 newly sequenced plastomes range between 161,532 and 161, 945 bp in length. The genomes contain 114 unique genes, 18 of which are duplicated in the inverted repeats (IRs). Gene content of these plastomes is nearly identical. All the protein-coding genes are under purifying selection in the Reevesia plastomes compared. The top ten hypervariable regions, SSRs, and the long repeats identified are potential molecular markers for future population genetic and phylogenetic studies. Phylogenetic analysis based on the whole plastomes confirmed the monophyly of Reevesia and a close relationship with Durio (traditional Bombacaceae) in subfamily Helicteroideae, but not with the morphologically similar genera Pterospermum and Sterculia (both of traditional Sterculiaceae). Phylogenetic relationships within Reevesia suggested that two species, R. pubescens and R. thyrsoidea, as newly defined, are not monophyletic. Six taxa, R. membranacea, R. xuefengensis, R. botingensis, R. lofouensis, R. longipetiolata and R. pycnantha, are suggested to be recognized.

9.
Front Med (Lausanne) ; 11: 1293940, 2024.
Article En | MEDLINE | ID: mdl-38751979

Purpose: To evaluate the operability and safety of bronchoscopic domestic one-way endobronchial valves (EBV) on animals. Methods: Nine pigs were randomly assigned (2:1) to receive domestic one-way EBV (the experimental group, n = 6) and Zephyr® EBV (the control group, n = 3). Routine blood tests, arterial blood gases, and CT scans of the lungs were performed 1 day pre-procedure in addition to 1 week and 1 month post-procedure to assess changes in blood markers and lung volumes. At 1 month post-procedure, the animals were sacrificed, followed by removal of all valves via bronchoscopy. Pathological examinations of critical organs were subsequently performed. Results: A total of 15 valves were placed in the experimental group and 6 valves were placed in the control group, without serious complications. Routine blood tests and arterial blood gas examinations at 1 day pre-procedure, 1 week post-procedure, and 1 month post-procedure did not differ significantly in both groups. No EBV displacement was noted under bronchoscopy, and the valve was smoothly removable by bronchoscope at 1 month post-procedure. At 1 week post-procedure, varying degrees of target lung lobe volume reduction were observed on lung CT in both groups. Lung volume reduction was achieved at 1 month post-procedure in both groups, without significant statistical difference. Although 3 cases in the experimental group and 1 case in the control group developed varying degrees of pneumonia, the inflammatory response did not increase over time during the experimental period. Pathological examination revealed no significant abnormal changes in the critical organs for both groups. Conclusion: Our results demonstrate that domestic EBV is safe and reliable for endobronchial application in general-grade laboratory white pigs. The safety of domestic EBV is similar to that of Zephyr® EBV, with good ease of use and operability. This kind of domestic EBV can meet the safety evaluation requirements for animal testing.

10.
Heliyon ; 10(9): e30476, 2024 May 15.
Article En | MEDLINE | ID: mdl-38711633

Qixue Shuangbu prescription (QSP) has been used for the treatment of chronic heart failure (CHF) with remarkable curative effect. Processed QSP (PQSP) could significantly improve the treatment of CHF after traditional Chinese medicine (TCM) processing. This study elucidated the underlying efficacy enhancement mechanism of QSP after TCM processing for treating CHF in vitro and in vivo. The injury of rat cardiomyoblast H9c2 cells was induced by anoxia/reoxygenation to mimic CHF state in vitro. Sixty Sprague-Dawley rats were used to established CHF model by intraperitoneally injecting doxorubicin (the accumulative dose 15 mg/kg). Biochemical examinations were performed in serum and cellular supernatant, respectively. Cardiac functions and histopathological changes were evaluated in CHF model rats. The protein and mRNA levels of ERK1/2, Bcl-2, Bax and Caspase-3 were evaluated by Western blot and RT-PCR, respectively. All above results of low dose crude QSP-treated group (L-CQSP), high dose CQSP-treated group (H-CQSP), low dose PQSP-treated group (L-PQSP), high dose PQSP-treated group (H-PQSP) were compared to systematically explore correlations between TCM processing and the efficacy enhancement for treating CHF of PQSP. Compared with the model group, the L-CQSP group showed significant improvement in cardiac function at 8th weeks, while no significant improvement in cardiomyocyte apoptosis and fibrosis. Both H-CQSP, L-PQSP and H-PQSP exerted beneficial therapeutic effects in injured H9c2 cardiomyocytes and CHF model rats. L-PQSP and H-PQSP significantly increased cell viability and the activity of SOD, decreased the activities of LDH, MDA and NO, up-regulated the expression of ERK1/2 and Bcl-2, down-regulated the expression of Bax and Caspase-3 compared to the same dosage of CQSP. The efficacy enhancement mechanism of PQSP after TCM processing for treating CHF was directly related to the regulation of ERK/Bcl-2/Bax/Caspases-3 signaling pathway.

11.
Anal Chim Acta ; 1307: 342560, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38719398

BACKGROUND: Point-of-care (POC) nucleic acid amplification tests (NAAT) can significantly expand testing coverage, which is critical for infectious disease diagnostics and monitoring. The development of various isothermal amplification techniques greatly simplifies NAATs, but the cumbersome nucleic acid extraction step remains a bottleneck for the POC. Alternatively, extraction-free amplification, where crude samples are directly added into the assay, substantially simplifies the workflow. However, sample dilution is often needed in extraction-free amplification to reduce assay inhibition from sample matrices. Since NAATs are typically run at small volumes around 20 µL, the input sample quantity is therefore limited, resulting in an inevitable sensitivity loss. RESULTS: Here we explore the potential to perform isothermal amplification in larger reaction volumes to accommodate larger sample quantities, thereby improving sensitivity in extraction-free amplification. We demonstrated the approach by developing large-volume reverse transcription loop-mediated isothermal amplification (RT-LAMP) for HIV RNA detection from fingerstick plasma. We found that LAMP at reaction volumes up to 1 mL maintained the same performance. We then identified plasma dilution conditions needed to maintain the limit of detection in RT-LAMP. Subsequently, using inactivated HIV virus, we showed the successful detection of 24 HIV RNA copies in a 500 µL RT-LAMP reaction in the presence of 20 µL plasma (fingerstick volumes), translating to a viral load of 1200 copies per mL. To reduce the increased reagent cost with expanded reaction volumes, we further identified lower-cost reagents with maintained assay performance. Moreover, we showed that large-volume LAMP, compared to 20 µL reactions, could tolerate higher concentrations of various inhibitors in the sample, such as albumin and GuSCN. SIGNIFICANCE AND NOVELTY: NAATs are conventionally conducted at small reaction volumes. Here we demonstrated that LAMP can be run at large reaction volumes (over 100 µL) with maintained assay performance, allowing sample inhibition to be mitigated while accommodating larger sample quantities. The same strategy of expanding reaction volumes could be applied to other isothermal amplification methods and various POC applications, to streamline test workflows and/or improve assay sensitivity.


Nucleic Acid Amplification Techniques , RNA, Viral , Nucleic Acid Amplification Techniques/methods , Humans , RNA, Viral/blood , HIV Infections/blood , HIV Infections/diagnosis , HIV Infections/virology , HIV-1/genetics , HIV-1/isolation & purification , Limit of Detection , Molecular Diagnostic Techniques
12.
J Cancer ; 15(10): 3095-3113, 2024.
Article En | MEDLINE | ID: mdl-38706901

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) is a common gynecologic tumor and patients with advanced and recurrent disease usually have a poor clinical outcome. Angiogenesis is involved in the biological processes of tumors and can promote tumor growth and invasion. In this paper, we created a signature for predicting prognosis based on angiogenesis-related lncRNAs (ARLs). This provides a prospective direction for enhancing the efficacy of immunotherapy in CESC patients. We screened seven OS-related ARLs by univariate and multivariate regression analyses and Lasso analysis and developed a prognostic signature at the same time. Then, we performed an internal validation in the TCGA-CESC cohort to increase the precision of the study. In addition, we performed a series of analyses based on ARLs, including immune cell infiltration, immune function, immune checkpoint, tumor mutation load, and drug sensitivity analysis. Our created signature based on ARLs can effectively predict the prognosis of CESC patients. To strengthen the prediction accuracy of the signature, we built a nomogram by combining signature and clinical features.

13.
J Control Release ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38761856

Since phospholipids have an important effect on the size, surface potential and hardness of liposomes that decide their in vivo fate after inhalation, this research has systematically evaluated the effect of phospholipids on pulmonary drug delivery by liposomes. In this study, liposomes composed of neutral saturated/unsaturated phospholipids, anionic and cationic phospholipids were constructed to investigate how surface potential and the degree of saturation of fatty acid chains determined their mucus and epithelium permeability both in vitro and in vivo. Our results clearly indicated that liposomes composed of saturated neutral and anionic phospholipids possessed high stability and permeability, compared to that of liposomes composed of unsaturated phospholipids and cationic phospholipids. Furthermore, both in vivo imaging of fluorescence-labeled liposomes and biodistribution of salvianolic acid B (SAB) that encapsulated in liposomes were performed to estimate the effect of phospholipids on the lung exposure and retention of inhaled liposomes. Finally, inhaled SAB-loaded liposomes exhibited enhanced therapeutic effects in a bleomycin-induced idiopathic pulmonary fibrosis mice model via inhibition of inflammation and regulation on coagulation-fibrinolytic system. Such findings will be beneficial to the development of inhalable lipid-based nanodrug delivery systems for the treatment of respiratory diseases where inhalation is the preferred route of administration.

14.
Discov Oncol ; 15(1): 161, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739205

The incidence and mortality of cancer is ever-increasing, which poses a significant challengesto human health and a substantial economic burden to patients. At present, chemotherapy is still a primary treatment for various cancers. However, chemotherapy kills tumors but also induces the related side effects, whichadversely impacting patient quality of life and exacerbating suffering. Therefore, there is an urgent need for new and effective treatments that can control tumor growth while reducing the side effects for patients. Arterial chemoembolization has been attracted much attentionwhich attributed to the advantage of ability to embolize tumor vessels to block blood and nutrition supplies. Thus, to achieve local tumor control, it has become an effective means of local tumor control and has been widely used in clinical practice. Despite its efficacy, conventional arterial chemoembolization techniques, limited by embolization materials, have been associated with incomplete embolization and suboptimal drug delivery outcomes. Gradually, researchers have shifted their attention to a new type of embolic material called CalliSperes® drug-eluting embolic bead (DEB). DEB can not only load high doses of drugs, but also has strong sustained drug release ability and good biocompatibility. The integration of DEBs with traditional arterial chemoembolization (DEB-TACE) promises targeted vascular embolization, mitigated tumor ischemia and hypoxia, and direct intravascular chemotherapy delivery. It can prevent cancer cell differentiation and accelerate their death, meanwhile, directly injecting chemotherapy drugs into the target blood vessels reduced the blood concentration of the whole body, thus reduced the toxic and side effects of chemotherapy. Furthermore, DEB-TACE's sustained drug release capability elevates local drug concentrations at the tumor site, amplifying its antitumor efficacy. Therefore, DEB-TACE has become a hot spot in clinical research worldwide. This review introduces the pathogenesis of solid tumors, the background of research and biological characteristics of DEB, and the action mechanism of DEB-TACE, as well as its clinical research in various solid tumors and future prospects. This review aims to provide new ideas for the treatment of DEB-TACE in various solid tumors.

15.
J Inflamm Res ; 17: 2531-2546, 2024.
Article En | MEDLINE | ID: mdl-38689798

Ferroptosis, a type of programmed cell death that relies on iron, is distinct in terms of its morphological, biochemical and genetic features. Unlike other forms of cell death, such as autophagy, apoptosis, necrosis, and pyroptosis, ferroptosis is primarily caused by lipid peroxidation. Cells that die due to iron can potentially trigger an immune response which intensifies inflammation and causes severe inflammatory reactions that eventually lead to multiple organ failure. In recent years, ferroptosis has been identified in an increasing number of medical fields, including neurological pathologies, chronic liver diseases and sepsis. Ferroptosis has the potential to cause an inflammatory tempest, with many of the catalysts and pathological indications of respiratory ailments being linked to inflammatory reactions. The growing investigation into ferroptosis in respiratory disorders has also garnered significant interest to better understand the mechanism of ferroptosis in these diseases. In this review, the recent progress in understanding the molecular control of ferroptosis and its mechanism in different respiratory disorders is examined. In addition, this review discusses current challenges and prospects for understanding the link between respiratory diseases and ferroptosis.

16.
Heliyon ; 10(7): e28060, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38560194

In this research, we unveil the medical potential of pearls by identifying a novel bioactive peptide within them for the first time. The peptide, termed KKCHFWPFPW, emerges as a pioneering angiotensin I-converting enzyme (ACE) inhibitor, originating from the pearl matrix of Pinctada fucata. Employing quadrupole time-of-flight mass spectrometry, this peptide was meticulously selected and pinpointed. With a molecular weight of 1417.5 Da and a theoretical isoelectric point of 9.31, its inhibitory potency was demonstrated through a half-maximal inhibitory concentration (IC50) of 4.17 µM, established via high-performance liquid chromatography. The inhibition of ACE by this peptide was found to be competitive, as revealed by Lineweaver-Burk plot analysis, where an increase in peptide concentration correlated with an enhanced rate of ACE inhibition. To delve into the interaction between KKCHFWPFPW and ACE, molecular docking simulations were conducted using the Maestro 2022-1 Glide software, shedding light on the inhibitory mechanism. This investigation suggests that peptides derived from the P. martensii pearl matrix hold promise as a novel source for antihypertensive agents.

17.
Appl Opt ; 63(9): 2121-2131, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38568563

An integrated path differential absorption (IPDA) lidar can accurately measure regional C O 2 weighted column average concentrations (X C O 2), which are crucial for understanding the carbon cycle in climate change studies. To verify the performance and data inversion methods of space-borne IPDA lidar, in July 2021, we conducted an airborne lidar validation experiment in Dunhuang, Gansu Province, China. An aircraft was equipped with a lidar system developed to measure X C O 2 and an in situ greenhouse gas analyzer (GGA). To minimize measurement errors, energy monitoring was optimized. The system bias error of the DAOD was determined by changing the laser output mode from the off/on to the on/on mode. The X C O 2 inversion results obtained through comparing the schemes of averaging signals before "log (logarithm)" and averaging after "log" indicate that the former performs better. The IPDA lidar measured X C O 2 over the validation site at 405.57 ppm, and both the IPDA lidar and GGA measured sudden changes in the C O 2 concentration. The assimilation data showed a similar trend according to the altitude to the data measured by the in situ instrument. A comparison of the mean X C O 2 derived from the GGA results and assimilation data with the IPDA lidar measurements showed biases of 0.80 and 1.12 ppm, respectively.

18.
Food Chem X ; 22: 101300, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38571574

The composition of volatile compounds in beer is crucial to the quality of beer. Herein, we identified 23 volatile compounds, namely, 12 esters, 4 alcohols, 5 acids, and 2 phenols, in nine different beer types using GC-MS. By performing PCA of the data of the flavor compounds, the different beer types were well discriminated. Ethyl caproate, ethyl caprylate, and phenylethyl alcohol were identified as the crucial volatile compounds to discriminate different beers. PLS regression analysis was performed to model and predict the contents of six crucial volatile compounds in the beer samples based on the characteristic wavelength of the FTIR spectrum. The R2 value of each sample in the prediction model was 0.9398-0.9994, and RMSEP was 0.0122-0.7011. The method proposed in this paper has been applied to determine flavor compounds in beer samples with good consistency compared with GC-MS.

19.
Small ; : e2310158, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38573962

The integration of one-selector-one-resistor crossbar arrays requires the selectors featured with high nonlinearity and bipolarity to prevent leakage currents and any crosstalk among distinct cells. However, a selector with sufficient nonlinearity especially in the frame of device miniaturization remains scarce, restricting the advance of high-density storage devices. Herein, a high-performance memory selector is reported by constructing a graphene/hBN/WSe2 heterostructure. Within the temperature range of 300-80 K, the nonlinearity of this selector varies from ≈103 - ≈104 under forward bias, and increases from ≈300 - ≈105 under reverse bias, the highest reported nonlinearity among 2D selectors. This improvement is ascribed to direct tunneling at low bias and Fowler-Nordheim tunneling at high bias. The tunneling current versus voltage curves exhibit excellent bipolarity behavior because of the comparable hole and electron tunneling barriers, and the charge transport polarity can be effectively tuned from N-type or P-type to bipolar by simply changing source-drain bias. In addition, the conceptual memory selector exhibits no sign of deterioration after 70 000 switching cycles, paving the way for assembling 2D selectors into modern memory devices.

20.
Sci Rep ; 14(1): 7648, 2024 04 01.
Article En | MEDLINE | ID: mdl-38561388

Natural killer (NK) cells play essential roles in the tumor development, diagnosis, and prognosis of tumors. In this study, we aimed to establish a reliable signature based on marker genes in NK cells, thus providing a new perspective for assessing immunotherapy and the prognosis of patients with gastric cancer (GC). We analyzed a total of 1560 samples retrieved from the public database. We performed a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of gastric cancer and identified 377 marker genes for NK cells. By performing Cox regression analysis, we established a 12-gene NK cell-associated signature (NKCAS) for the Cancer Genome Atlas (TCGA) cohort, that assigned GC patients into a low-risk group (LRG) or a high-risk group (HRG). In the TCGA cohort, the areas under curve (AUC) value were 0.73, 0.81, and 0.80 at 1, 3, and 5 years. External validation of the predictive ability for the signature was then validated in the Gene Expression Omnibus (GEO) cohorts (GSE84437). The expression levels of signature genes were measured and validated in GC cell lines by real-time PCR. Moreover, NKCAS was identified as an independent prognostic factor by multivariate analysis. We combined this with a variety of clinicopathological characteristics (age, M stage, and tumor grade) to construct a nomogram to predict the survival outcomes of patients. Moreover, the LRG showed higher immune cell infiltration, especially CD8+ T cells and NK cells. The risk score was negatively associated with inflammatory activities. Importantly, analysis of the independent immunotherapy cohort showed that the LRG had a better prognosis and immunotherapy response when compared with the HRG. The identification of NK cell marker genes in this study suggests potential therapeutic targets. Additionally, the developed predictive signatures and nomograms may aid in the clinical management of GC.


Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Prognosis , Base Sequence , Immunotherapy , RNA , Tumor Microenvironment
...