Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
Funct Integr Genomics ; 23(3): 286, 2023 Aug 31.
Article En | MEDLINE | ID: mdl-37650991

BACKGROUND: Glioblastoma (GBM) is an aggressive and unstoppable malignancy. Natural killer T (NKT) cells, characterized by specific markers, play pivotal roles in many tumor-associated pathophysiological processes. Therefore, investigating the functions and complex interactions of NKT cells is great interest for exploring GBM. METHODS: We acquired a single-cell RNA-sequencing (scRNA-seq) dataset of GBM from Gene Expression Omnibus (GEO) database. The weighted correlation network analysis (WGCNA) was employed to further screen genes subpopulations. Subsequently, we integrated the GBM cohorts from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases to describe different subtypes by consensus clustering and developed a prognostic model by least absolute selection and shrinkage operator (LASSO) and multivariate Cox regression analysis. We further investigated differences in survival rates and clinical characteristics among different risk groups. Furthermore, a nomogram was developed by combining riskscore with the clinical characteristics. We investigated the abundance of immune cells in the tumor microenvironment (TME) by CIBERSORT and single sample gene set enrichment analysis (ssGSEA) algorithms. Immunotherapy efficacy assessment was done with the assistance of Tumor Immune Dysfunction and Exclusion (TIDE) and The Cancer Immunome Atlas (TCIA) databases. Real-time quantitative polymerase chain reaction (RT-qPCR) experiments and immunohistochemical profiles of tissues were utilized to validate model genes. RESULTS: We identified 945 NKT cells marker genes from scRNA-seq data. Through further screening, 107 genes were accurately identified, of which 15 were significantly correlated with prognosis. We distinguished GBM samples into two distinct subtypes and successfully developed a robust prognostic prediction model. Survival analysis indicated that high expression of NKT cell marker genes was significantly associated with poor prognosis in GBM patients. Riskscore can be used as an independent prognostic factor. The nomogram was demonstrated remarkable utility in aiding clinical decision making. Tumor immune microenvironment analysis revealed significant differences of immune infiltration characteristics between different risk groups. In addition, the expression levels of immune checkpoint-associated genes were consistently elevated in the high-risk group, suggesting more prominent immune escape but also a stronger response to immune checkpoint inhibitors. CONCLUSIONS: By integrating scRNA-seq and bulk RNA-seq data analysis, we successfully developed a prognostic prediction model that incorporates two pivotal NKT cells marker genes, namely, CD44 and TNFSF14. This model has exhibited outstanding performance in assessing the prognosis of GBM patients. Furthermore, we conducted a preliminary investigation into the immune microenvironment across various risk groups that contributes to uncover promising immunotherapeutic targets specific to GBM.


Glioblastoma , Natural Killer T-Cells , Humans , Glioblastoma/genetics , Prognosis , Base Sequence , RNA-Seq , Tumor Microenvironment/genetics
2.
J Colloid Interface Sci ; 652(Pt A): 57-68, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37591084

Development of bifunctional hydrazine oxidation and oxygen reduction electrocatalysts with high activity and stability is of great significance for the implementation of direct hydrazine fuel cells. Combining zero-dimensional metal nanoparticles with three-dimensional nitrogen-doped carbon nanosheets is an attractive strategy for balancing performance and cost. However, the precise construction of these composites remains a significant challenge, and thorough study of their interaction mechanisms is lacking. Herein, the CuNPs/CuSA-NPCF catalyst was constructed by anchoring copper nanoparticles on a three-dimensional nitrogen-doped porous carbon nanosheet framework through coordination of polyvinyl pyrrolidone and copper ions. The Schottky barrier of metal-semiconductor matched the Fermi level of the rectifying contact, thus enabling directional electron transfer. The resulting electron-deficient Cu nanoparticles surface exhibited Lewis acidity, which was beneficial to adsorption of hydrazine molecule. While the electron-enriched Cu-N4/carbon surface improved the adsorption of oxygen molecule, and accelerated electron supply from Cu-N4 active sites to various oxygen intermediates. The CuNPs/CuSA-NPCF Mott-Schottky catalyst exhibited excellent catalytic activity for hydrazine oxidation reaction and oxygen reduction reaction in an alkaline media. The directional manipulation of electron transfer in heterogeneous materials was an attractive universal synthesis method, providing new approach for the preparation of efficient and stable hydrazine fuel cell catalysts.

3.
BMC Cancer ; 23(1): 560, 2023 Jun 17.
Article En | MEDLINE | ID: mdl-37330494

BACKGROUND: Cuproptosis is a regulated cell death form associated with tumor progression, clinical outcomes, and immune response. However, the role of cuproptosis in pancreatic adenocarcinoma (PAAD) remains unclear. This study aims to investigate the implications of cuproptosis-related genes (CRGs) in PAAD by integrated bioinformatic methods and clinical validation. METHODS: Gene expression data and clinical information were downloaded from UCSC Xena platform. We analyzed the expression, mutation, methylation, and correlations of CRGs in PAAD. Then, based on the expression profiles of CRGs, patients were divided into 3 groups by consensus clustering algorithm. Dihydrolipoamide acetyltransferase (DLAT) was chosen for further exploration, including prognostic analysis, co-expression analysis, functional enrichment analysis, and immune landscape analysis. The DLAT-based risk model was established by Cox and LASSO regression analysis in the training cohort, and then verified in the validation cohort. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) assays were performed to examine the expression levels of DLAT in vitro and in vivo, respectively. RESULTS: Most CRGs were highly expressed in PAAD. Among these genes, increased DLAT could serve as an independent risk factor for survival. Co-expression network and functional enrichment analysis indicated that DLAT was engaged in multiple tumor-related pathways. Moreover, DLAT expression was positively correlated with diverse immunological characteristics, such as immune cell infiltration, cancer-immunity cycle, immunotherapy-predicted pathways, and inhibitory immune checkpoints. Submap analysis demonstrated that DLAT-high patients were more responsive to immunotherapeutic agents. Notably, the DLAT-based risk score model possessed high accuracy in predicting prognosis. Finally, the upregulated expression of DLAT was verified by RT-qPCR and IHC assays. CONCLUSIONS: We developed a DLAT-based model to predict patients' clinical outcomes and demonstrated that DLAT was a promising prognostic and immunological biomarker in PAAD, thereby providing a new possibility for tumor therapy.


Adenocarcinoma , Pancreatic Neoplasms , Humans , Prognosis , Adenocarcinoma/genetics , Pancreatic Neoplasms/genetics , Dihydrolipoyllysine-Residue Acetyltransferase , Biomarkers , Copper , Apoptosis , Pancreatic Neoplasms
4.
J Environ Manage ; 342: 118327, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37301026

Boosting the coordination and symbiosis of urbanization and forest ecological security is notably critical for promoting regional green and sustainable development and achieving emission peak and carbon neutrality goals. However, there was still a lack of in-depth analysis of the coupling coordination relationship between urbanization and forest ecological security and its impact mechanism. On the basis of the data from 844 counties in the Yangtze River Economic Belt, this paper explored the spatial differences and influencing factors of the coupling coordination degree of urbanization and forest ecological security. The results manifested that: i) There were apparent spatial disparities in the urbanization index, forest ecological security index, comprehensive index, coupling degree and coupling coordination degree of the Yangtze River Economic Belt. Among them, the spatial pattern of coupling coordination degree had a strong consistency with urbanization index, that is, areas with higher urbanization index also had higher coupling coordination degree. ii) Based on coupling feature identification, it was found that 249 'problem areas' were mainly located in Yunnan Province, southeastern Guizhou Province, central Anhui Province, and central and eastern Jiangsu Province. The main factor for the formation was due to the lag of urbanization in coordinated development. iii) Among the socioeconomic indicators, population structure (0.136), per capita year-end financial institutions loan balance (0.409) and per capita fixed asset investment (0.202) all had a positive impact on coupling coordination degree, while location conditions (-0.126) had a negative impact. Among the natural indicators, soil organic matter (-0.212) and temperature (-0.094) had a negative impact on coupling coordination degree. iv) During the process of coordinated development, it was necessary to increase financial investment and financial support, actively formulate policies to attract talents, enhance the education and publicity of ecological civilization, and develop a green circular economy. The above measures can promote the harmonious development of urbanization and forest ecological security in the Yangtze River Economic Belt.


Rivers , Urbanization , China , Forests , Sustainable Development , Economic Development , Cities
5.
Dalton Trans ; 52(17): 5680-5686, 2023 May 02.
Article En | MEDLINE | ID: mdl-37021656

The development of electrode materials with abundant active surface sites is important for large-scale hydrogen production by water electrolysis. In this study, Fe/Ni NWs/NF catalysts were prepared by hydrothermal and electrochemical deposition of iron nanosheets on nickel chain nanowires, initially grown on nickel foam. The synthesized Fe/Ni NWs/NF electrode possessed a 3D layered heterostructure and crystalline-amorphous interfaces, containing amorphous Fe nanosheets, which demonstrated excellent activity in the oxygen evolution reaction (OER). The newly prepared electrode material has a large specific surface area, and its electrocatalytic performance is characterized by a small Tafel slope and an oxygen evolution overpotential of 303 mV at 50 mA cm-2. The electrode was highly stable in alkaline media with no degradation observed after 40 h of continuous OER operation at 50 mA cm-2. The study demonstrates the significant promise of the Fe/Ni NWs/NF electrode material for large-scale hydrogen production by water electrolysis and provides a facile and low-cost approach for the preparation of highly active OER electrocatalysts.

6.
Nanoscale ; 15(18): 8217-8224, 2023 May 11.
Article En | MEDLINE | ID: mdl-37070649

In the process of developing low-cost and high-performance bifunctional electrocatalysts, rational selection of catalytic components and tuning of their electronic structures to achieve synergistic effects is a feasible approach. In this work, CeO2 was composited into Fe/N-doped carbon foam by a molten salt method to improve the electrocatalytic performance of the composite catalyst for the oxygen evolution reaction (OER). The results showed that the excitation of oxygen vacancies in CeO2 accelerated the migration of oxygen species and enhanced the oxygen storage/release capacity of the as-prepared catalyst. Meanwhile, the size effect of CeO2 particles enabled the timely discharge of gas bubbles from the reaction system and thus improved the OER kinetics. In addition, a large number of pyridine-N species were induced by CeO2-doping and sequentially anchored in the carbon matrix. As a result, the Fe2N active state was formed through the strengthened binding of Fe-N elements. Benefiting from the strong electronic interaction between Fe2N and CeO2 components, the optimal CeO2-Fe2N/NFC-2 catalyst sample showed a good OER performance (Ej=10 = 266 mV) and ORR electrocatalytic activity (E1/2 = 0.87 V). The practical feasibility tests indicated that the Zn-air battery assembled by the CeO2-Fe2N/NFC-2 catalyst exhibited a large energy density and an excellent long-term cycling stability.

7.
ACS Appl Mater Interfaces ; 15(16): 20141-20150, 2023 Apr 26.
Article En | MEDLINE | ID: mdl-37058551

Metals and their compounds effectively suppress the polysulfide shuttle effect on the cathodes of a lithium-sulfur (Li-S) battery by chemisorbing polysulfides and catalyzing their conversion. However, S fixation on currently available cathode materials is below the requirements of large-scale practical application of this battery type. In this study, perylenequinone was utilized to improve polysulfide chemisorption and conversion on cobalt (Co)-containing Li-S battery cathodes. According to IGMH analysis, the binding energies of DPD and carbon materials as well as polysulfide adsorption were significantly enhanced in the presence of Co. According to in situ Fourier transform infrared spectroscopy, the hydroxyl and carbonyl groups in perylenequinone are able to form O-Li bonds with Li2Sn, facilitating chemisorption and catalytic conversion of polysulfides on metallic Co. The newly prepared cathode material demonstrated superior rate and cycling performances in the Li-S battery. It exhibited an initial discharge capacity of 780 mAh g-1 at 1 C and a minimum capacity decay rate of only 0.041% over 800 cycles. Even with a high S loading, the cathode material maintained an impressive capacity retention rate of 73% after 120 cycles at 0.2 C.

8.
Inorg Chem ; 62(11): 4648-4661, 2023 Mar 20.
Article En | MEDLINE | ID: mdl-36893334

The development of urea electrolysis technologies toward energy-saving hydrogen production can alleviate the environmental issues caused by urea-rich wastewater. In the current practices, the development of high-performance electrocatalysts in urea electrolysis remains critical. In this work, the NiCu-P/NF catalyst is prepared by anchoring Ni/Cu bimetallic phosphide nanosheets onto Ni foam (NF). In the experiments, the micron-sized elemental Cu polyhedron is first anchored on the surface of the NF substrate to provide more space for the growth of bimetallic nanosheets. Meanwhile, the Cu element adjusted the electron distribution within the composite and formed Ni/P orbital vacancies, which in turn accelerated the kinetic process. As a result, the optimal NiCu-P/NF sample exhibits excellent catalytic activity and cycling stability in a hybrid electrolysis system for the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Further, the alkaline urea-containing electrolyzer is assembled with NiCu-P/NF as two electrodes reached a current density of 50 mA cm-2 with a low driving potential of 1.422 V, which outperforms the typical commercial noble metal electrolyzer (RuO2||Pt/C). Those findings suggest the feasibility of the substrate regulation strategy to increase the growth density of active species in preparation of an efficient bifunctional electrocatalyst for cracking the urea-containing wastewater.

9.
Molecules ; 28(2)2023 Jan 14.
Article En | MEDLINE | ID: mdl-36677912

Electrolysis of seawater using solar and wind energy is a promising technology for hydrogen production which is not affected by the shortage of freshwater resources. However, the competition of chlorine evolution reactions and oxygen evolution reactions on the anode is a major obstacle in the upscaling of seawater electrolyzers for hydrogen production and energy storage, which require chlorine-inhibited oxygen evolution electrodes to become commercially viable. In this study, such an electrode was prepared by growing δ-MnO2 nanosheet arrays on the carbon cloth surface. The selectivity of the newly prepared anode towards the oxygen evolution reaction (OER) was 66.3% after 30 min of electrolyzer operation. The insertion of Fe, Co and Ni ions into MnO2 nanosheets resulted in an increased number of trivalent Mn atoms, which had a negative effect on the OER selectivity. Good tolerance of MnO2/CC electrodes to chlorine evolution in seawater electrolysis indicates its suitability for upscaling this important energy conversion and storage technology.

10.
Nanoscale ; 15(4): 1813-1823, 2023 Jan 27.
Article En | MEDLINE | ID: mdl-36602118

The mass transfer efficiency and structural stability of the electrode are critical for industrialized water electrolysis operations. Herein, the biomimicry-inspired design of Ni3N/FeNi3N/NF nanoarrays with a fish scale-like structure, which endowed the Ni3N/FeNi3N/NF nanoarrays with rapid infiltration of aqueous solution within 60 ms and 169° bubble contact angle, is demonstrated. The optimal Ni3N/FeNi3N/NF sample displayed catalytic activity with hydrogen evolution reaction (HER) overpotentials of only 48 mV at 10 mA cm-2 and 102 mV at 100 mA cm-2. Similarly, the overpotential of the anodic-coupled urea oxidation reaction (UOR) was only 1.3 V at 10 mA cm-2 and 1.35 V at 100 mA cm-2. Besides, the small impact resulting from the rapid bubble extraction within the Ni3N/FeNi3N/NF nanoarrays ensured excellent HER cycling stability over 100 h at a current density of 50 mA cm-2. The further scale-up experiment suggests the industrialization prospects of the prepared Ni3N/FeNi3N/NF electrocatalysts.

11.
J Colloid Interface Sci ; 636: 657-667, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36680956

The development of efficient electrocatalysts for large-scale water electrolysis is crucial and challenging. Research efforts towards interface engineering and electronic structure modulation can be leveraged to enhance the electrochemical performance of the developed catalysts. In this work, a surface-engineered Co-Ni3N/NF heterostructure electrode was prepared based on Kirkendall effect for high-current water electrolysis. In the experiments, the textural feature and intrinsic activity of the Co-Ni3N/NF heterostructure were tuned through cobalt-doping and the creation of structural defects. As a result, the increased surface energy endowed Co-Ni3N/NF heterostructure with superhydrophilic and superaerophobic properties. Meanwhile, the contact area of the gas-liquid-solid three phases was optimized. With a large underwater bubble contact angle (CA) of 169°, the electrolyte solution can infiltrate the Co-Ni3N/NF electrode within 150 ms. Sequentially, the generated gas bubbles were able to detach at high frequency, which ensured the rapid mass exchange. The performance tests showed that the optimal Co-Ni3N/NF electrode sample reached current densities of 100 mA cm-2 and 500 mA cm-2 at the overpotentials of 98 mV and 123 mV, respectively. Benefiting from the reduction of hydrogen embrittlement, the HER performance of the prepared Co-Ni3N/NF electrode sample decreased slightly after 100 h durability test, but the overall structure remained well. Those results allowed us to conclude that the prepared Co-Ni3N/NF electrocatalyst holds the promises for large-scale water electrolysis in industries. More specifically, this work provided a new perspective that the efficiency of electrocatalysts for large-scale water electrolysis can be enhanced by constructing a heterostructure with good wettability and gas repellency.

12.
J Colloid Interface Sci ; 629(Pt A): 1045-1054, 2023 Jan.
Article En | MEDLINE | ID: mdl-36154971

The development of Li-S battery has been seriously hindered by the shuttle effect of polysulfides and the mechanical instability of the sulfur electrode during cycling. Constructing strong-affinity oxide hosts is an effective way to anchor the polysulfides. And then the oxide hosts with sulfur active materials need additional binder to adhere them to the current collector, and they also possess poor ability to suppress the volume change of sulfur cathode. Herein, a bifunctional lithium polysilicate (Li2O·nSiO2, LSO) as highly efficient adhesion agent and anchoring host has been exploited for long-lifespan Li-S battery. Like other oxide hosts, density functional theory (DFT) calculations reveal that LSO also displays strong chemisorption effect towards polysulfides. Specially, the LSO shows impressive adhesive property and mechanical strength, which make it act as a robust binder to improve the mechanical stability of the sulfur electrode. The sulfur cathode with LSO as the highly efficient adhesion agent and anchoring host can give an excellent cycling stability with âˆ¼ 0.076 % capacity decay per cycle at 0.5C for 500 cycles. This work lights a new way to improve the chemical and mechanical stability of sulfur cathodes.

13.
ACS Appl Mater Interfaces ; 14(45): 51222-51233, 2022 Nov 16.
Article En | MEDLINE | ID: mdl-36326106

Rational design and synthesis of high-performance electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are critical for practical application of Zn-air batteries (ZABs). In this work, the bifunctional composite Cu-Fe2O3/PNC was prepared by a simple and effective wet-hydrothermal coupled dry-annealing synthesis strategy. The Cu-Fe2O3/PNC displayed excellent catalytic activity in ORR and OER with a potential difference of 0.63 V. More importantly, the ZAB assembled with Cu-Fe2O3/PNC exhibited a high-power density of 138.00 mW cm-2 and an excellent long-term cyclability. X-ray photoelectron spectroscopy (XPS) demonstrated that the excellent performance is due to the strong electronic interaction between Cu and Fe2O3 that arises as a result of the fast electron transfer through the Cu-O-Fe bond and the higher concentration of surface oxygen vacancies. Meanwhile, the spillover factor Bsp/2zF of Cu/PNC and Cu-Fe2O3/PNC obtained by the rotating disk experiment was 1.00 × 10-7 and 1.10 × 10-7 cm2·s-1, respectively, indicating that the oxygen spillover effect between Cu and Fe2O3 lowers the energy barrier, increases the number of active sites, and alters the rate-determining reaction step. This work demonstrated the significant potential of Cu-Fe2O3/PNC in energy conversion and storage applications, providing a new perspective for the rational design of bifunctional electrocatalysts.

14.
Nanoscale ; 14(44): 16490-16501, 2022 Nov 17.
Article En | MEDLINE | ID: mdl-36278435

Since urea is commonly present in domestic sewage and industrial wastewater, its use in hydrogen production by electrolysis can simultaneously help in water decontamination. To achieve this goal, the development of highly active and inexpensive urea electrolysis catalysts is necessary. This study deals with the preparation of multilayered nickel and copper phosphides/phosphates (NiCu-P/NF and NiCu-Pi/NF) supported on Ni foam (NF) and their application as new electrocatalyst types for the electrolysis of urea-containing wastewaters. In these materials, Cu atoms induce the formation of multilayer nanostructures and modulate electron distribution, allowing for the exposure of additional active sites and acceleration of the process kinetics. NiCu-P/NF is used as a cathode and NiCu-Pi/NF as an anode in an electrolysis cell and exhibits significant catalytic activity and stability in the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER). The NiCu-Pi/NF||NiCu-P/NF electrolysis cell, operating with an alkaline urea-containing aqueous electrolyte, achieves a current density of 10 mA cm- at a potential of 1.41 V, which is less than required by the RuO2||Pt/C cell utilizing commercial noble metal-based electrodes. The study provides a novel strategy for designing efficient catalysts to produce hydrogen by urea electrolysis.

15.
Small ; 18(45): e2204474, 2022 Nov.
Article En | MEDLINE | ID: mdl-36161700

The development of multi-component bi-functional electrocatalysts is necessary for commercialization of high-performance zinc-air batteries. Herein, foamed carbon-supported nickel-iron oxides interspersed with bamboo-like carbon nanotubes are prepared as bi-functional electrocatalysts for this battery type. During high temperature synthesis, edges of carbon sheets comprising the foamed carbon structure become involuted to form short carbon nanotubes. The composite of carbon nanotubes and network carbon confer high specific surface area and high electrical conductivity on the newly prepared materials. The supported NiFe2 O4 phase improves the oxygen reduction reaction (ORR) activity by fixing more N atoms, and high-valent Ni oxide (Ni2 O3 ) promotes the formation of OO bonds, which is conducive to the oxygen evolution reaction (OER). The optimized material exhibits excellent bi-functional electrocatalytic activity toward both ORR and OER, and its use in the assembled zinc-air battery cell results in a high power density of 150 mW cm-2 with long discharge stability.

16.
J Colloid Interface Sci ; 627: 650-660, 2022 Dec.
Article En | MEDLINE | ID: mdl-35872421

In literature, the creation of an interface between a highly conductive crystalline phase and an amorphous phase with unsaturated sites has been proven to be an effective strategy in the design of electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, the procedural complexity and limited formation of interfaces have compromised the envisioned effects. In this work, the dense crystalline Fe2O3/amorphous Cu interface was created simultaneously by the combination of solverthermal and annealing processes. The results showed that the ultra-dispersed Cu nanoparticles attributed to the formation of crystalline-amorphous (c-a) interface sites, which facilitated the electron transfer with the tuned electronic structures as well as the favorable adsorption of surface oxygen species. As a result, the developed Fe2O3/Cu-PNC catalyst outperformed most of the competing bifunctional catalysts reported for both OER and HER operations.

17.
J Colloid Interface Sci ; 628(Pt A): 54-63, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-35908431

Lithium-sulfur batteries (LSB) with high specific energy capacity and low material costs promise to be the next generation of energy storage devices. However, their commercialization is holding back by the poor cycling stability and fast capacity fading resulting from the shuttle effect and slow redox reaction. In this work, the FeCo/Fe3C-CNC composite was prepared by anchoring FeCo/Fe3C nanoparticles onto the crosslinked N-doped Carbon (CNC). The results showed that the addition of Co element improved the electrochemical activity of Co-Fe alloy through tuning the electronic structure of Fe atoms. The carbon nanotubes (CNTs) grown around Co-Fe alloy and Fe3C nanoparticles exhibited a strong affinity to polysulfide species and superior catalytic capability as nano-reactors. The N-doping CNTs/carbon sheets (CS) facilitated the formation of Li2S compound by promoting the Li+ ions transport while hindering the polysulfide shuttle effect. Hence, the issues of slow redox reactions and loss of polysulfide species were effectively rectified. As a result, the composite cathode FeCo/Fe3C-CNC-based LSB delivered a good specific capacity of 1401 mAh g-1 at 0.1C, and a low apacity fading rate of 0.029% per cycle at 1C. Besides, the structural stability of the FeCo/Fe3C-CNC composite confirms its potential for the deployment in LSB applications.

18.
Dalton Trans ; 51(25): 9681-9688, 2022 Jun 27.
Article En | MEDLINE | ID: mdl-35695272

Metal substrates are frequently used as current collectors and supports for electrochemically active materials, but their effect on the physical and electrochemical performance of electrocatalysts is rarely investigated. In this study, the electrodeposition method was used to coat four different metal meshes with three-dimensional nickel porous structures using hydrogen bubbles as a template. The significant influence of the metal substrates on the morphology of deposited nickel was demonstrated. 3D porous structures formed on nickel, iron, copper, and titanium meshes via the hydrogen bubble template method varied significantly. It was found that differences in the physical adsorption of hydrogen and electrochemical hydrogen evolution on metal substrates are the fundamental reasons behind the diverse morphology of the coatings. Lattice matching of the substrate and the active material also plays an important role during the electrodeposition process. Electrocatalytic performance of the newly prepared materials in water electrolysis was evaluated using the hydrogen and oxygen evolution reactions (HER and OER). The results demonstrate the high electrocatalytic activity of Ni/FeM in the OER and HER, and the good stability of Ni/TiM in HER.

19.
Ecotoxicol Environ Saf ; 241: 113747, 2022 Aug.
Article En | MEDLINE | ID: mdl-35709670

The effect of dissolved organic matter (DOM) on metal bioavailability and toxicity is a complex process. Effluents from galvanizing plants containing large amounts of DOM and Zn were selected to investigate the potential influence and mechanism of DOM on Zn bioavailability and its role in inducing thyroid hormone disrupting effects. Thyroid hormone disrupting effects were evaluated using a recombinant thyroid hormone receptor ß gene yeast assay. The results suggest that Zn could be the main metal contributor to the toxic effects. Then, Zn-binding characteristics with different fluorescent components of DOM were analyzed using three-dimensional excitation emission matrix fluorescence spectroscopy (3DEEM) and revealed that Zn was more susceptible to interactions with fulvic-like materials. Furthermore, DOM altered the cellular biouptake and compartmentalization processes of Zn by downregulating Zn transmembrane transport-related genes (ZRT1, ZRT2 and ZAP1) and upregulating detoxification-related genes (COT1 and ZRC1), thus altering thyroid toxicity. These results provide comprehensive insights into the influence and mechanism of DOM on bioavailability and thyroid toxicity of Zn and suggest that the influence is associated with complex physical, chemical and biological processes, indicating that more refined medium constraints along with subtle biological reactions should be considered when predicting the bioavailability and toxicity of Zn in environmental water samples.


Dissolved Organic Matter , Zinc , Biological Availability , Endocrine Disruptors/toxicity , Humic Substances/analysis , Organic Chemicals , Spectrometry, Fluorescence/methods , Thyroid Gland/chemistry , Thyroid Hormones , Water Pollutants/toxicity , Zinc/toxicity
20.
Phys Med Biol ; 67(12)2022 06 08.
Article En | MEDLINE | ID: mdl-35611711

Objective.Locoregional recurrence (LRR) is one of the leading causes of treatment failure in head and neck (H&N) cancer. Accurately predicting LRR after radiotherapy is essential to achieving better treatment outcomes for patients with H&N cancer through developing personalized treatment strategies. We aim to develop an end-to-end multi-modality and multi-view feature extension method (MMFE) to predict LRR in H&N cancer.Approach.Deep learning (DL) has been widely used for building prediction models and has achieved great success. Nevertheless, 2D-based DL models inherently fail to utilize the contextual information from adjacent slices, while complicated 3D models have a substantially larger number of parameters, which require more training samples, memory and computing resources. In the proposed MMFE scheme, through the multi-view feature expansion and projection dimension reduction operations, we are able to reduce the model complexity while preserving volumetric information. Additionally, we designed a multi-modality convolutional neural network that can be trained in an end-to-end manner and can jointly optimize the use of deep features of CT, PET and clinical data to improve the model's prediction ability.Main results.The dataset included 206 eligible patients, of which, 49 had LRR while 157 did not. The proposed MMFE method obtained a higher AUC value than the other four methods. The best prediction result was achieved when using all three modalities, which yielded an AUC value of 0.81.Significance.Comparison experiments demonstrated the superior performance of the MMFE as compared to other 2D/3D-DL-based methods. By combining CT, PET and clinical features, the MMFE could potentially identify H&N cancer patients at high risk for LRR such that personalized treatment strategy can be developed accordingly.


Head and Neck Neoplasms , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Neural Networks, Computer
...