Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
Biomimetics (Basel) ; 9(4)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38667232

Precision control of multiple robotic fish visual navigation in complex underwater environments has long been a challenging issue in the field of underwater robotics. To address this problem, this paper proposes a multi-robot fish obstacle traversal technique based on the combination of cross-modal variational autoencoder (CM-VAE) and imitation learning. Firstly, the overall framework of the robotic fish control system is introduced, where the first-person view of the robotic fish is encoded into a low-dimensional latent space using CM-VAE, and then different latent features in the space are mapped to the velocity commands of the robotic fish through imitation learning. Finally, to validate the effectiveness of the proposed method, experiments are conducted on linear, S-shaped, and circular gate frame trajectories with both single and multiple robotic fish. Analysis reveals that the visual navigation method proposed in this paper can stably traverse various types of gate frame trajectories. Compared to end-to-end learning and purely unsupervised image reconstruction, the proposed control strategy demonstrates superior performance, offering a new solution for the intelligent navigation of robotic fish in complex environments.

2.
Biochem Pharmacol ; 223: 116122, 2024 May.
Article En | MEDLINE | ID: mdl-38467377

Cutaneous melanoma is the deadliest form of skin cancer, and its incidence is continuing to increase worldwide in the last decades. Traditional therapies for melanoma can easily cause drug resistance, thus the treatment of melanoma remains a challenge. Various studies have focused on reversing the drug resistance. As tumors grow and progress, cancer cells face a constantly changing microenvironment made up of different nutrients, metabolites, and cell types. Multiple studies have shown that metabolic reprogramming of cancer is not static, but a highly dynamic process. There is a growing interest in exploring the relationship between melanoma andmetabolic reprogramming, one of which may belipid metabolism. This review frames the recent research progresses on lipid metabolism in melanoma.In addition, we emphasize the dynamic ability of metabolism during tumorigenesis as a target for improving response to different therapies and for overcoming drug resistance in melanoma.


Melanoma , Skin Neoplasms , Humans , Melanoma/metabolism , Skin Neoplasms/metabolism , Lipid Metabolism , Metabolic Reprogramming , Drug Resistance , Lipids , Tumor Microenvironment
3.
Front Plant Sci ; 15: 1367773, 2024.
Article En | MEDLINE | ID: mdl-38481397

Microorganisms are important members of seagrass bed ecosystems and play a crucial role in maintaining the health of seagrasses and the ecological functions of the ecosystem. In this study, we systematically quantified the assembly processes of microbial communities in fragmented seagrass beds and examined their correlation with environmental factors. Concurrently, we explored the relative contributions of species replacement and richness differences to the taxonomic and functional ß-diversity of microbial communities, investigated the potential interrelation between these components, and assessed the explanatory power of environmental factors. The results suggest that stochastic processes dominate community assembly. Taxonomic ß-diversity differences are governed by species replacement, while for functional ß-diversity, the contribution of richness differences slightly outweighs that of replacement processes. A weak but significant correlation (p < 0.05) exists between the two components of ß-diversity in taxonomy and functionality, with almost no observed significant correlation with environmental factors. This implies significant differences in taxonomy, but functional convergence and redundancy within microbial communities. Environmental factors are insufficient to explain the ß-diversity differences. In conclusion, the assembly of microbial communities in fragmented seagrass beds is governed by stochastic processes. The patterns of taxonomic and functional ß-diversity provide new insights and evidence for a better understanding of these stochastic assembly rules. This has important implications for the conservation and management of fragmented seagrass beds.

4.
Biology (Basel) ; 12(12)2023 Nov 25.
Article En | MEDLINE | ID: mdl-38132292

Sophora japonica L. is an important landscaping and ornamental tree species throughout southern and northern parts of China. The most common color of S. japonica petals is yellow and white. In this study, S. japonica flower color mutants with yellow and white flag petals and light purple-red wing and keel petals were used for transcriptomics and metabolomics analyses. To investigate the underlying mechanisms of flower color variation in S. japonica 'AM' mutant, 36 anthocyanin metabolites were screened in the anthocyanin-targeting metabolome. The results demonstrated that cyanidins such as cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside in the 'AM' mutant were the key metabolites responsible for the red color of the wing and keel petals. Transcriptome sequencing and differentially expressed gene (DEG) analysis identified the key structural genes and transcription factors related to anthocyanin biosynthesis. Among these, F3'5'H, ANS, UFGT79B1, bHLH, and WRKY expression was significantly correlated with the cyanidin-type anthocyanins (key regulatory factors affecting anthocyanin biosynthesis) in the flag, wing, and keel petals in S. japonica at various flower development stages.

5.
ACS Nano ; 17(22): 23160-23168, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-37926969

The discovery of ferromagnetism in two-dimensional (2D) van der Waals crystals has generated widespread interest. The seeking of robust 2D ferromagnets with high Curie temperature (Tc) is vitally important for next-generation spintronic devices. However, owing to the enhanced spin fluctuation and weak exchange interaction upon the reduced dimensionalities, the exploring of robust 2D ferromagnets with Tc > 300 K is highly demanded but remains challenging. In this work, we fabricated air-stable 2D Cr5Te8/CrTe2 vertical heterojunctions with Tc above 400 K by the chemical vapor deposition method. Transmission electron microscopy demonstrates a high-quality-crystalline epitaxial structure between tri-Cr5Te8 and 1T-CrTe2 with striped moiré patterns and a superior ambient stability over six months. A built-in dual-axis strain together with strong interfacial coupling cooperatively leads to a record-high Tc for the CrxTey family. A temperature-dependent spin-flip process induces the easy axis of magnetization to rotate from the out-of-plane to the in-plane direction, indicating a phase-dependent proximity coupling effect, rationally interpreted by first-principles calculations of the magnetic anisotropy of a tri-Cr5Te8 and 1T-CrTe2 monolayer. Our results provide a material realization of effectively enhancing the transition temperature of 2D ferromagnetism and manipulating the spin-flip of the easy axis, which will facilitate future spintronic applications.

6.
Ecotoxicol Environ Saf ; 267: 115669, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37944464

Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is one of the most destructive insect pests owned strong resistance to different insecticides. Indoxacarb as a novel oxadiazine insecticide becomes the main pesticide against S. litura. DIMBOA [2,4-dihydroxy-7-methoxy-2 H-1,4-benz-oxazin-3(4 H)-one] is involved in important chemical defense processes in corn plants. However, the insects' adaptation mechanism to insecticides when exposed to defensive allelochemicals in their host plants remains unclear. Here, we assessed multi-resistance, and resistance mechanisms based on S. litura life history traits. After 18 generations of selection, indoxacarb resistance was increased by 61.95-fold (Ind-Sel) and 86.06-fold (Dim-Sel) as compared to the Lab-Sus. Also, DIMBOA-pretreated larvae developed high resistance to beta-cypermethrin, chlorpyrifos, phoxim, chlorantraniliprole, and emamectin benzoate. Meanwhile, indoxacarb (LC50) was applied to detect its impact on thirty-eight detoxification-related genes expression. The transcripts of SlituCOE073, SlituCOE009, SlituCOE074, and SlituCOE111 as well as SlGSTs5, SlGSTu1, and SlGSTe13 were considerably raised in the Ind-Sel strain. Among the twenty-three P450s, CYP6AE68, CYP321B1, CYP6B50, CYP9A39, CYP4L10, and CYP4S9v1 transcripts denoted significantly higher levels in the Ind-Sel strain, suggesting that CarEs, GSTs and P450s genes may be engaged in indoxacarb resistance. These outcomes further highlighted the importance of detoxification enzymes for S. litura gene expression and their role in responses to insecticides and pest management approaches.


Insecticides , Animals , Spodoptera/physiology , Insecticides/pharmacology , Nicotiana/metabolism , Benzoxazines , Larva/metabolism , Gene Expression , Insecticide Resistance/genetics
7.
Biomimetics (Basel) ; 8(7)2023 Nov 06.
Article En | MEDLINE | ID: mdl-37999170

The attainment of accurate motion control for robotic fish inside intricate underwater environments continues to be a substantial obstacle within the realm of underwater robotics. This paper presents a proposed algorithm for trajectory tracking and obstacle avoidance planning in robotic fish, utilizing nonlinear model predictive control (NMPC). This methodology facilitates the implementation of optimization-based control in real-time, utilizing the present state and environmental data to effectively regulate the movements of the robotic fish with a high degree of agility. To begin with, a dynamic model of the robotic fish, incorporating accelerations, is formulated inside the framework of the world coordinate system. The last step involves providing a detailed explanation of the NMPC algorithm and developing obstacle avoidance and objective functions for the fish in water. This will enable the design of an NMPC controller that incorporates control restrictions. In order to assess the efficacy of the proposed approach, a comparative analysis is conducted between the NMPC algorithm and the pure pursuit (PP) algorithm in terms of trajectory tracking. This comparison serves to affirm the accuracy of the NMPC algorithm in effectively tracking trajectories. Moreover, a comparative analysis between the NMPC algorithm and the dynamic window approach (DWA) method in the context of obstacle avoidance planning highlights the superior resilience of the NMPC algorithm in this domain. The proposed strategy, which utilizes NMPC, demonstrates a viable alternative for achieving precise trajectory tracking and efficient obstacle avoidance planning in the context of robotic fish motion control within intricate surroundings. This method exhibits considerable potential for practical implementation and future application.

8.
BMC Musculoskelet Disord ; 24(1): 641, 2023 Aug 09.
Article En | MEDLINE | ID: mdl-37559076

BACKGROUND: After the COVID-19 outbreak, many Chinese high school students have increased their dependence on electronic devices for studying and life, which may affect the incidence of neck and shoulder pain (NSP) in Chinese adolescents. METHODS: To evaluate the prevalence of NSP in high school students and its associated risk factors during COVID-19, a survey was conducted among 5,046 high school students in Shanghai, Qinghai, Henan and Macao during the second semester and summer vacation of the 2019-2020 academic year. The questionnaire included questions regarding demographic characteristics, the prevalence of NSP and lifestyle factors such as sedentary behavior, poor posture and electronic device usage. Univariable and multivariable logistic regression was used to analyze the possible influencing factors for neck and shoulder pain. RESULTS: A total of 4793 valid questionnaires (95.0%) were collected. The results indicated that the prevalence of NSP was 23.7% among high school students. Binary logistic regression analysis revealed that female gender (P < 0.05, OR = 1.82), grade (P < 0.05, range OR 1.40-1.51) and subject selection (P < 0.05, range OR 0.49-0.68) were risk factors for NSP in high school students. Sedentary behavior (P < 0.05, range OR 1.74-2.36), poor posture (P < 0.05, range OR 1.19-2.56), backpack weight (P < 0.05, range OR 1.17-1.88), exercise style and frequency (P < 0.05, range OR 1.18-1.31; P < 0.05, range OR 0.76-0.79, respectively), and the time spent using electronic devices (P < 0.05, range OR 1.23-1.38)had a significant correlation with NSP in high school students. CONCLUSIONS: NSP is currently very common among high school students during the outbreak of COVID-19. Sedentary behavior, poor posture and other factors have a great impact on the occurrence of NSP in high school students. Education regarding healthy lifestyle choices should be advocated for to decrease NSP among high school students, such as more physical activity, changing poor postures and reducing the amount of time spent using electronic devices.


COVID-19 , Shoulder Pain , Adolescent , Humans , Female , Shoulder Pain/diagnosis , Shoulder Pain/epidemiology , Shoulder Pain/etiology , Cross-Sectional Studies , Neck Pain/etiology , Prevalence , China/epidemiology , COVID-19/epidemiology , Risk Factors , Students , Surveys and Questionnaires
9.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1696-1709, 2023 Apr 25.
Article Zh | MEDLINE | ID: mdl-37154333

The purpose of this study was to clone and characterize the ZFP36L1 (zinc finger protein 36-like 1) gene, clarify its expression characteristics, and elucidate its expression patterns in different tissues of goats. Samples of 15 tissues from Jianzhou big-eared goats, including heart, liver, spleen, lung and kidney were collected. Goat ZFP36L1 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR), then the gene and protein sequence were analyzed by online tools. Quantitative real-time polymerase chain reaction (qPCR) was used to detect the expression level of ZFP36L1 in intramuscular preadipocytes in different tissues and adipocytes of goat at different differentiation stages. The results showed that the length of ZFR36L1 gene was 1 224 bp, and the coding sequence (CDS) region was 1 017 bp, encoding 338 amino acids, which was a non-secretory unstable protein mainly located in nucleus and cytoplasm. Tissue expression profile showed that ZFP36L1 gene was expressed in all selected tissues. In visceral tissues, the small intestine showed the highest expression level (P < 0.01). In muscle tissue, the highest expression level was presented in longissimus dorsi muscle (P < 0.01), whereas the expression level in subcutaneous adipose tissue was significantly higher than that in other tissues (P < 0.01). The results of induced differentiation showed that the expression of this gene was up-regulated during adipogenic differentiation of intramuscular precursor adipocytes (P < 0.01). These data may help to clarify the biological function of the ZFP36L1 gene in goat.


Goats , Liver , Animals , Goats/genetics , Amino Acid Sequence , Cloning, Molecular
10.
Front Microbiol ; 14: 1140752, 2023.
Article En | MEDLINE | ID: mdl-37138634

The insoluble phosphorus in the soil is extremely difficult to be absorbed and used directly through the potato root system. Although many studies have reported that phosphorus-solubilizing bacteria (PSB) can promote plant growth and uptake of phosphorus, the molecular mechanism of phosphorus uptake and growth by PSB has not been investigated yet. In the present study, PSB were isolated from rhizosphere soil in soybean. The data of potato yield and quality revealed that the strain P68 was the most effective In the present study, PSB identification, potato field experiment, pot experiment and transcriptome profiling to explored the role of PSB on potato growth and related molecular mechanisms. The results showed that the P68 strain (P68) was identified as Bacillus megaterium by sequencing, with a P-solubilizing ability of 461.86 mg·L-1 after 7-day incubation in National Botanical Research Institute's Phosphate (NBRIP) medium. Compared with the control group (CK), P68 significantly increased the yield of potato commercial tubers by 17.02% and P accumulation by 27.31% in the field. Similarly, pot trials showed that the application of P68 significantly increased the biomass, total phosphorus content of the potato plants, and available phosphorus of the soil up by 32.33, 37.50, and 29.15%, respectively. Furthermore, the transcriptome profiling results of the pot potato roots revealed that the total number of bases was about 6G, and Q30 (%) was 92.35-94.8%. Compared with the CK, there were a total of 784 differential genes (DEGs) regulated when treated with P68, which 439 genes were upregulated and 345 genes were downregulated. Interestingly, most of the DEGs were mainly related to cellular carbohydrate metabolic process, photosynthesis, and cellular carbohydrate biosynthesis process. According to the KEGG pathway analysis, a total of 46 categorical metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were annotated to 101 DEGs found in potato roots. Compared with the CK, most of the DEGs were mainly enriched in glyoxylate and dicarboxylate metabolism (sot00630), nitrogen metabolism (sot00910), tryptophan metabolism (sot00380), and plant hormone signal transduction (sot04075), and these DEGs might be involved in the interactions between Bacillus megaterium P68 and potato growth. The qRT-PCR analysis of differentially expressed genes showed that inoculated treatments P68 significantly upregulated expression of the phosphate transport, nitrate transport, glutamine synthesis, and abscisic acid regulatory pathways, respectively, and the data from qRT-PCR were consistent with that obtained from RNA-seq. In summary, PSB may be involved in the regulation of nitrogen and phosphorus nutrition, glutaminase synthesis, and abscisic acid-related metabolic pathways. This research would provide a new perspective for studying the molecular mechanism of potato growth promotion by PSB in the level of gene expression and related metabolic pathways in potato roots under the application of Bacillus megaterium P68.

11.
Phys Chem Chem Phys ; 25(3): 2462-2467, 2023 Jan 18.
Article En | MEDLINE | ID: mdl-36601881

We report the structure, magnetic and electrical/thermal transport properties of the antiferromagnet MnSn2. Importantly, the existence of the two antiferromagnetic states below TN2 (∼320 K) is confirmed by magnetism and electrical transport measurements. An unsaturated positive magnetoresistance up to 150% at ∼9 T was observed at 5 K, whereas the magnetoresistance becomes negative in the whole range at high temperatures (T > 74 K). Systematic investigations of the Hall transport and thermoelectric properties reveal that the hole-type carriers are the majority carriers in MnSn2. The kink around 320 K in the Seebeck coefficient originates from the effect of the antiferromagnetic phase on the band structure, while the pronounced peak around 231 K is attributed to the phonon-drag effect. The results suggest that the spin arrangement plays a vital role in the magnetic, electrical, and thermal transport properties in MnSn2.

12.
Anim Biotechnol ; 34(7): 3063-3073, 2023 Dec.
Article En | MEDLINE | ID: mdl-36244042

PDZK1-interacting protein 1(PDZK1IP1), also known as MAP17, is encoded by the PDZK1IP1 gene and is a membrane-associated protein. PDZK1IP1 have been proven to be a potent regulator of cancer cell proliferation. However, the role of PDZK1IP1 in regulating goat subcutaneous preadipocyte proliferation is unknown. Here, we cloned the full-length coding sequence of PDZK1IP1 gene, investigated the potential functional of PDZK1IP1 in goat subcutaneous preadipocyte proliferation by gaining or losing function in vitro. Our results indicated that goat PDZK1IP1 gene consists of 345 bp, encoding a protein of 114 amino acids containing a typical PDZK1IP1 (MAP17) super family domain. Overexpression of PDZK1IP1 significantly increased the number of EdU-positive cells and cell viability, and also upregulated mRNA expression of cell proliferation-associated genes including CCND1 and CDK2 in vitro cultured cells. Conversely, knockdown of PDZK1IP1 mediated by siRNA technique significantly inhibited subcutaneous preadipocyte proliferation and downregulated mRNA expression of cell proliferation-associated genes including CCNE1, CCND1 and CDK2. Collectively, these results suggested that PDZK1IP1 can promote proliferation of goat subcutaneous preadipocyte.


Goats , Transcription Factors , Animals , Goats/physiology , Cells, Cultured , Transcription Factors/metabolism , Cell Proliferation/genetics , RNA, Messenger/metabolism
13.
Bioresour Technol ; 367: 128241, 2023 Jan.
Article En | MEDLINE | ID: mdl-36332871

Chicken manure is a source of antibiotic resistance genes (ARGs) and pathogenic microbes. Mikania micrantha Kunth (MM) is an invasive plant containing phytochemicals as antimicrobial agents. To explore its impacts on ARGs and pathogen-host interactions (PHIs), MM was added to composting mixtures. The findings indicated that compared with control (CK), MM significantly improved the phytochemical abundances, particularly stilbenoids and diarylheptanoids (4.87%), and ubiquinones (2.66%) in the treatment (T) compost. Besides, significant ARGs reduction was noted, where rpoB2, RbpA, FosB1, vatC, and vatB were removed from T compost. PHIs significantly declined in T compost, where the growth of Xanthomonas citri, Streptococcus pneumoniae, Fusarium graminearum, Vibrio cholerae, and Xanthomonas campestris were inhibited. Multiple variable analyses demonstrated that temperature and pH revealed a significant role in ARGs and PHIs decline. Accordingly, this study considerably recommends MM as a promising compost additive in terms of its antimicrobial potential toward pathogenic microbes and ARGs.


Composting , Mikania , Animals , Manure/analysis , Chickens/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial/genetics , Phytochemicals
14.
Pestic Biochem Physiol ; 187: 105215, 2022 Oct.
Article En | MEDLINE | ID: mdl-36127062

Herbivore-induced plant volatiles (HIPVs) have been associated with plant-plant-herbivorous-natural enemies communication and an enhanced response to the subsequent attack. Spodoptera litura is a serious cosmopolitan pest that has developed a high level of resistance to many insecticides. However, the underlying molecular and biochemical mechanism by which HIPV priming reduces S. litura larval sensitivity to insecticides remains largely unknown. This study was conducted to explore the potential of volatile from undamaged, or artificially damaged, or S. litura-damaged tomato plants on the susceptibility of S. litura to the insecticides beta-cypermethrin indoxacarb and chlorpyrifos. We found that larvae exposed to volatile from S. litura-damaged or artificially damaged tomato plants were significantly less susceptible to the three insecticides than those exposed to volatile from undamaged tomato plants. Elevated activities of detoxifying enzymes [cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and esterases (ESTs)], were expressed in S. litura larvae exposed to volatile from S. litura-damaged tomato plants than those exposed to volatile from undamaged tomato plants. Similarly, seven detoxification-related genes [GSTs (SlGSTe1, SlGSTo1, and SlGSTe3) and P450s (CYP6B48, CYP9A40, CYP321A7, and CYP321B1)] in the midgut and fat body of larvae were up-regulated under exposure to volatile from S. litura-damaged tomato plants. Increased volatile organic compounds emissions were detected in the headspace of tomato plants damaged by S. litura compared to the undamaged plants. Collectively, these findings suggest that HIPVs can considerably reduce caterpillar susceptibility to insecticides, possibly through induction-enhanced detoxification mechanisms, and provide valuable information for implementing an effective integrated pest management strategy.


Chlorpyrifos , Insecticides , Solanum lycopersicum , Volatile Organic Compounds , Animals , Chlorpyrifos/pharmacology , Cytochrome P-450 Enzyme System/genetics , Esterases , Glutathione , Herbivory , Insecticides/toxicity , Larva , Spodoptera , Transferases/pharmacology , Volatile Organic Compounds/pharmacology
15.
Sci Rep ; 12(1): 14262, 2022 08 22.
Article En | MEDLINE | ID: mdl-35995832

The determination of length of time from the last drinking is critical for cases like drunk driving, sexual assault victims, and also postmortem suspected poisoning cases. The study was aimed to established a method of estimating the time of last drinking through the pharmacokinetic study of conjugation metabolites of alcohol in blood after a single oral dose. Twenty-six volunteers (14 males) consumed alcohol with food at a fixed dose of 0.72 g/kg after fasting for 12 h. Five milliliters of blood were collected 120 h after the start of drinking, and all samples were analyzed with headspace-gas chromatography and high-performance liquid chromatography-tandem mass spectrometry. The time point of last drinking was estimated through the relationship between the concentration ratio of ethyl glucuronide to ethyl sulphate and the length of time after drinking. Pharmacokinetic parameters were analyzed by a pharmacokinetic software DAS according to the non-compartment model. A good correlation model was obtained from the relationship between concentration ratio of ethyl glucuronide to ethyl sulphate in blood and the time of alcohol use, and the margin of error was mostly lower than 10%. The time of maximum concentration, maximum concentration, and elimination half-life of ethyl glucuronide in blood were 4.12 ± 1.07 h, 0.31 ± 0.11 mg/L and 2.56 ± 0.89 h; the time of maximum concentration, maximum concentration, and elimination half-life of ethyl sulphate in blood were 3.02 ± 0.70 h, 0.17 ± 0.04 mg/L, and 2.04 ± 0.76 h. The study established a potential method to estimate the length of time after a moderate oral dose, and provided pharmacokinetic parameters of ethyl glucuronide and ethyl sulphate in Chinese population.


Alcohol Drinking , Glucuronates , Alcohol Drinking/metabolism , Biomarkers , Ethanol , Gas Chromatography-Mass Spectrometry , Humans , Male , Sulfuric Acid Esters
16.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2959-2973, 2022 Aug 25.
Article Zh | MEDLINE | ID: mdl-36002424

In this study, we cloned the complete sequence coding for aminoacids in protein (CDS) of goat ST13 gene, analyzed the bioinformation of it, and explored the expression pattern in different goat tissues and goat subcutaneous preadipocytes at different differentiation stages. To be specific, ST13 gene was cloned by reverse transcription PCR (RT-PCR), and the bioinformation was analyzed by online tools or software. The expression in various goat tissues and subcutaneous preadipocytes at different differentiation stages was detected by quantitative reverse transcription PCR (qRT-PCR). The results showed that the cloned goat ST13 gene was 1 380 bp, with CDS of 1 101 bp, encoding 366 amino acids. Protein prediction results showed that ST13 had 26 phosphorylation sites and that some sequences were highly hydrophilic and unstable. Moreover, ST13 was a non-transmembrane and non-secretory protein. Subcellular localization demonstrated that ST13 was mostly distributed in the nucleus (69.6%). Phylogeny analysis suggested that goat ST13 had the highest identity to sheep ST13. Tissue expression pattern showed that ST13 gene expressed in all of the collected 13 tissues of goat, including heart, liver, spleen, lung and kidney, especially in triceps brachii and subcutaneous fat (P < 0.01) and that the expression among heart, liver, spleen, lung, kidney, large intestine, small intestine and pancreas was insignificantly different (P > 0.05). In addition, according to the temporal expression pattern in adipocytes, the expression of ST13 was up-regulated in differentiated adipocytes, and the expression was the highest at the 108th hour of induction, significantly higher than that at other time points (P < 0.01). In conclusion, this gene expresses in various tissues of goat and regulates the differentiation of goat subcutaneous adipocytes.


Adipocytes , Goats , Animals , Cloning, Molecular , Goats/genetics , Liver , Phylogeny , Real-Time Polymerase Chain Reaction , Sheep
17.
Front Pharmacol ; 13: 877924, 2022.
Article En | MEDLINE | ID: mdl-35800450

Lipid metabolism disorders are a prominent characteristic in the pathological development of non-alcoholic fatty liver disease (NAFLD). Danshen zexie decoction (DZD) is a Chinese herbal medicine that is based on zexie decoction and has an effect of regulating lipid mechanism. However, the anti-NAFLD effect and mechanism of DZD remain unclear. In this study, we observed the therapeutic effect of DZD on NAFLD rats and investigated its possible mechanisms. Sixty Sprague Dawley rats were randomly assigned to six groups: control group, model group, Yishanfu (polyene phosphatidylcholine) group, and low, medium and high-dose DZD groups. High-fat diet (HFD) was fed to the rats to establish an NAFLD model, and each treatment group was given corresponding drugs at the same time for eight consecutive weeks. The results revealed that the obvious lipid metabolism disorder and liver injury induced by HFD were alleviated by treatment with DZD, which was verified by decreased serum TC, TG, ALT, AST, liver TC, TG, and FFA, as well as the alleviation of hepatic steatosis. The production of ROS in rats was reduced after treatment with DZD. The SOD activity and GSH content were increased with DZD treatment, while the MDA level was decreased. The administration of DZD could decrease serum IL-1ß and IL-18 contents. Moreover, DZD upregulated the expressions of Nrf2, HO-1, GCLC, and GCLM, while it suppressed the expressions of NLRP3, caspase-1, GSDMD, and GSDMD-N. In conclusion, the data showed that DZD can reduce lipid accumulation, alleviate oxidative stress and inflammation, and inhibit pyroptosis in NAFLD rats, which might be ascribed to suppression of the ROS/NLRP3/IL-1ß signaling pathway by activation of Nrf2. Overall, these results indicated that DZD is expected to be a therapeutic drug for NAFLD.

18.
Environ Pollut ; 307: 119549, 2022 Aug 15.
Article En | MEDLINE | ID: mdl-35644429

Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were -40%, -60%, -57%, -55%, -42%, and -44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (-17%), moisture content (MC) (-18%), and C/N ratio (-19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.


Composting , Metals, Heavy , Biological Availability , Manure/analysis , Metals, Heavy/analysis , Sewage/chemistry , Soil/chemistry
19.
Environ Sci Pollut Res Int ; 29(40): 60198-60211, 2022 Aug.
Article En | MEDLINE | ID: mdl-35414161

Many species of devastating insect pests have acquired a high degree of resistance to insecticides in the field during the last few decades. Spodoptera exigua, for example, is the most damaging pests of economic crops with a worldwide spread. In a present study, the comparative growth, reproduction, and detoxification enzyme activity were evaluated along with exposure to three insecticides at low lethal doses of lufenuron, indoxacarb, and spinosad as compared to the control. Results indicate that the larval developmental time was significantly extended on lufenuron (21.5 ± 29 days) followed by indoxacarb (20.28 ± 0.24 days) and spinosad (19.74 ± 0.23 days) as compared to that on the control (18.13 ± 0.13 days). Similarly, the lowest number of eggs of S. exigua females were recorded on lufenuron (328.75 ± 50.81 eggs) followed by spinosad (367 ± 36.4 eggs) and indoxacarb (411.58 ± 42.38 eggs) as compared to that on the control (560.2 ± 13.47). Interestingly, the lowest intrinsic rate of increase (r) (0.121 ± 0.009) and highest mean generation time (T) (36.2 ± 0.35 days) were observed when larvae were treated to a low lethal concentration (LC20) of lufenuron as compared to that of indoxacarb, spinosad, and control. In addition, considerably lower activity of all detoxification enzymes in larvae was recorded on lufenuron after control as compared to that on indoxacarb and spinosad. Our study serves as a reference and basis for the toxicity and low lethal evaluation of lufenuron, indoxacarb, and spinosad on life table parameters and enzymatic properties in S. exigua, which may contribute to identifying targets for effective control of S. exigua.


Insecticides , Animals , Female , Insecticides/pharmacology , Larva , Spodoptera
20.
Pestic Biochem Physiol ; 178: 104946, 2021 Oct.
Article En | MEDLINE | ID: mdl-34446184

Spodoptera litura (Fabricius) is a widely distributed, highly polyphagous pest that can cause severe damage to a variety of economically important crops. Various populations have developed resistance to different classes of insecticides. In this study, we report on two indoxacarb-resistant S. litura populations, namely Ind-R (resistance ratio = 18.37-fold) derived from an indoxacarb-susceptible (Ind-S) population and a population caught from a field (resistance ratio = 46.72-fold). A synergist experiment showed that piperonyl butoxide (PBO) combined with indoxacarb produced higher synergistic effects (synergist ratio = 5.29) in the Ind-R population as compared to Ind-S (synergist ratio = 3.08). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for Ind-R (2.15-fold) and the Field-caught population (4.03-fold) as compared to Ind-S, while only minor differences were noticed in the activities of esterases and glutathione S-transferases. Furthermore, expression levels of P450 genes of S. litura were determined by quantitative reverse transcription PCR to explore differences among the three populations. The results showed that the mRNA levels of CYP6AE68, a novel P450 gene belonging to the CYP6 family, were constitutively overexpressed in Ind-R (32.79-fold) and in the Field-caught population (68.11-fold). CYP6AE68 expression in S. litura was further analyzed for different developmental stages and in different tissues. Finally, we report that RNA interference-mediated silencing of CYP6AE68 increased the mortality of fourth-instar larvae exposed to indoxacarb at the LC50 dose level (increase by 33.89%, 29.44% and 22.78% for Ind-S, Ind-R and the Field-caught population, respectively). In conclusion, the findings of this study indicate that expression levels of CYP6AE68 in S. litura larvae are associated with indoxacarb resistance and that CYP6AE68 may play a significant role in detoxification of indoxacarb.


Insecticides , Moths , Animals , Cytochrome P-450 Enzyme System/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Larva/genetics , Oxazines/pharmacology , Spodoptera/genetics
...