Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Animals (Basel) ; 14(2)2024 Jan 17.
Article En | MEDLINE | ID: mdl-38254456

Bile acids (BAs) are crucial for maintaining intestinal epithelial homeostasis. However, the metabolic changes in BAs and the communication between intestinal epithelial cells (IECs) in infants after birth remain unclear. This study aims to elucidate the BA profiles of newborn piglets (NPs) and suckling piglets (SPs), and to investigate their regulatory effects on IEC proliferation and barrier integrity, as well as the potential underlying mechanisms. In this study, compared with NPs, there were significant increases in serum triglycerides, total cholesterol, glucose, and albumin levels for SPs. The total serum BA content in SPs exhibited an obvious increase. Moreover, the expression of BA synthase cytochrome P450 27A1 (CYP27A1) was increased, and the ileal BA receptor Takeda G-coupled protein receptor 5 (TGR5) and proliferation marker Ki-67 were upregulated and showed a strong positive correlation through a Spearman correlation analysis, whereas the expression of farnesoid X receptor (FXR) and occludin was markedly downregulated in SPs and also revealed a strong positive correlation. These findings indicate that the increased synthesis and metabolism of BAs may upregulate TGR5 and downregulate FXR to promote IEC proliferation and influence barrier function; this offers a fresh perspective and evidence for the role of BAs and BA receptors in regulating intestinal development in neonatal pigs.

2.
Food Funct ; 15(4): 1963-1976, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38275075

Oleanolic acid (OA) is a bioactive compound present in plant-based foods known for its beneficial impact on gastrointestinal health, specifically in alleviating diarrhea. Nonetheless, the underlying mechanisms by which OA mitigates gut epithelial damage have yet to be elucidated. In this study, OA significantly markedly ameliorated adverse effects induced by Dextran Sulfate Sodium (DSS), including weight loss and epithelial morphological damage in a murine model. Remarkably, compared to normal mice, standalone administration of OA had no discernible impact on the animals. Concurrently, we identified a significant up-regulation in the expression levels of TGR5 and BAX in the intestines of DSS-exposed mice, coupled with a decline in Bcl2 expression. Correlation analyses revealed a robust association between TGR5 and BAX expression. Oral administration of OA efficaciously counteracted these alterations. To probe the role of TGR5 in cellular apoptosis, further, a lentivirus transfection approach was utilized to induce TGR5 overexpression in intestinal epithelial cells (IPEC-J2). RNA sequencing indicated that TGR5 overexpression significantly influenced biological processes, particularly in modulating cellular activation and intercellular adhesion, in contrast to the control group cells. Functional assays substantiated that TGR5 overexpression compromised cell viability and accelerated apoptosis. Notably, OA treatment in TGR5-overexpressed cells restored cell viability, suppressed TGR5 and BAX expression, and augmented Bcl2 expression. In sum, our data suggest that OA mitigates intestinal epithelial apoptosis and bolsters cellular proliferation by downregulating TGR5. This research provides valuable insights into the prospective utility of OA as a functional food supplement or adjunctive therapeutic agent for enhancing gastrointestinal health.


Oleanolic Acid , Animals , Mice , Oleanolic Acid/pharmacology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , bcl-2-Associated X Protein , Inflammation , Apoptosis
3.
Anim Nutr ; 15: 307-319, 2023 Dec.
Article En | MEDLINE | ID: mdl-38053802

The leaves of Eucommia ulmoides are rich in bioactive constituents that have potential gastrointestinal benefits for animals. In aged laying hens, intestinal health issues contribute to a significant decline in egg-laying capacity during intermediate and later stages. It remains unclear whether E. ulmoides leaf extract (ELE) can improve intestinal health and enhance egg production in elderly laying hens, and the underlying mechanisms are yet to be elucidated. Therefore, we conducted a study with 480 laying hens (65 weeks old) randomly allocated into four groups: a control group fed with the basal diet, and three treatment groups supplemented with 500, 1,000, and 2,000 mg/kg of ELE, respectively. The primary active constituents of ELE include flavonoids, polysaccharides, terpenoids, and phenolic acids. Dietary supplementation with ELE at 1,000 mg/kg (ELE1000) significantly improved laying performance and egg quality compared to the other groups. ELE1000 stimulated the maturation of intestinal epithelial cells, increased villus height, and reduced crypt depth. It also influenced the levels of proteins associated with tight junctions (claudin-1 and claudin-2) and intestinal inflammatory factors (IL-6, IL-1ß, and IL-2) in different intestinal sections. Integrative analysis of serum metabolomics and gut microbiota revealed that ELE1000 improved nutrient metabolism by modulating amino acid and ubiquinone biosynthesis and influenced the abundance of intestinal microbiota by enriching pivotal genera such as Bacteroides and Rikenellaceae_RC9_gut_group. We identified 15 metabolites significantly correlated with both gut microbiota and laying performance, e.g., DL-methionine sulfoxide, THJ2201 N-valerate metabolite, tetracarbonic acid, etc. In conclusion, ELE1000 improved laying performance in elderly laying hens by affecting intestinal morphology, barrier function, microbiota, and serum metabolite profiles. These findings suggest that ELE can be a beneficial feed additive for extending the peak producing period in aged laying hens.

4.
Front Cell Infect Microbiol ; 13: 1255127, 2023.
Article En | MEDLINE | ID: mdl-37915848

Recently, the hybrid Broussonetia papyrifera (BP) has been extensively cultivated and predominantly utilized in ruminants because of its high protein and bioactive compound content. In the present study, the effects of an ethanolic extract of BP leaves (BPE, 200 mg/kg) on mitigating 2% dextran sodium sulfate (DSS)-induced intestinal inflammation in mice were evaluated. BPE is rich in flavonoids, polyphenols, and polysaccharides, and displays potent antioxidant and antibacterial activities against pathogenic strains such as Clostridium perfringens, Salmonella Typhimurium, and Salmonella enterica subsp. enterica in vitro. In a mouse study, oral administration of DSS resulted in weight loss, incidence of diarrhea, enlargement of the liver and spleen, impaired colonic morphology, downregulation of both gene and protein expression related to intestinal antioxidant (Nrf2) and barrier function (ZO-1), decreased diversity of colonic microbiota, and 218 differentially altered colonic metabolites; however, co-treatment with BPE did not restore these modified aspects except for the liver index and colonic bacterial diversity. The singular treatment with BPE did not manifest evident side effects in normal mice but induced a mild occurrence of diarrhea and a notable alteration in the colonic metabolite profile. Moreover, a single BPE administration augmented the abundance of the commensal beneficial bacteria Faecalibaculum and Akkermansia genera. Overall, the extract of BP leaves did not demonstrate the anticipated effectiveness in alleviating DSS-induced intestinal inflammation.


Broussonetia , Colitis , Animals , Mice , Antioxidants/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon/pathology , Inflammation/pathology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Diarrhea/drug therapy , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Disease Models, Animal
5.
J Nutr ; 153(10): 2878-2892, 2023 Oct.
Article En | MEDLINE | ID: mdl-37611831

BACKGROUND: The effect of hydrogen sulfide (H2S) on glucose homeostasis remains to be elucidated, especially in the state of insulin resistance. OBJECTIVES: In the present study, we aimed to investigate H2S-regulated glucose uptake in the M. pectoralis major (PM) muscle (which mainly consists of fast-twitch glycolytic fibers) and M. biceps femoris (BF) muscle (which mainly consists of slow-twitch oxidative fibers) of the chicken, a potential model of insulin resistance. METHODS: Chicks were subjected to intraperitoneal injection of sodium hydrosulfide (NaHS, 50 µmol/kg body mass/day) twice a day to explore glucose homeostasis. In vitro, myoblasts from PM and BF muscles were used to detect glucose uptake and utilization. Effects of AMP-activated protein kinase (AMPK) phosphorylation, AMPK S-sulfhydration, and mitogen-activated protein kinase (MAPK) pathway induction by NaHS were detected. RESULTS: NaHS enhanced glucose uptake and utilization in chicks (P < 0.05). In myoblasts from PM muscle, NaHS (100 µM) increased glucose uptake by activating AMPK S-sulfhydration, AMPK phosphorylation, and the AMPK/p38 MAPK pathway (P < 0.05). However, NaHS decreased glucose uptake in myoblasts from BF muscle by suppressing the p38 MAPK pathway (P < 0.05). Moreover, NaHS increased S-sulfhydration and, in turn, the phosphorylation of AMPK (P < 0.05). CONCLUSIONS: This study reveals the role of H2S in enhancing glucose uptake and utilization in chicks. The results suggest that NaHS is involved in glucose uptake in skeletal muscle in a fiber type-dependent way. The AMPK/p38 pathway and protein S-sulfhydration promote glucose uptake in fast-twitch glycolytic muscle fibers, which provides a muscle fiber-specific potential therapeutic target to ameliorate glucose metabolism.

6.
Food Funct ; 14(11): 5277-5289, 2023 Jun 06.
Article En | MEDLINE | ID: mdl-37195071

Bile acids, such as taurochenodeoxycholic acid (TCDCA), are considered as functional small molecules involved in nutrition regulation or acting with adjuvant therapeutic effects against metabolic or immune diseases. The homeostasis of the intestinal epithelium depends on the conventional cellular proliferation and apoptosis of cells. Herein, mice and normal intestinal epithelial cells (IPEC-J2, a widely used normal intestinal epithelial cell line derived from porcine) were used as models to explore the regulatory effect of TCDCA on the proliferation of intestinal epithelial cells (IECs). In the mouse study, the oral gavage of TCDCA led to a significant reduction in weight gain, small intestinal weight, and the villus height of the intestinal epithelium while inhibiting the gene expression of Ki-67 in the intestinal epithelial crypts of mice (P < 0.05). TCDCA significantly downregulated the expression of the farnesoid X receptor (FXR) and upregulated the expression of caspase-9 in the jejunum (P < 0.05). The results of real-time quantitative PCR (RT-qPCR) suggested that TCDCA significantly inhibited the expression of tight junction proteins zonula occludens (ZO)-1, occludin, claudin-1, and mucin-2 (P < 0.05). In terms of apoptosis-related genes, TCDCA significantly inhibited the expression of Bcl2 and increased the expression of caspase-9 (P < 0.05). At the protein level, TCDCA decreased the expression of Ki-67 and PCNA, as well as FXR (P < 0.05). Caspase inhibitor Q-VD-OPh and guggulsterone, an FXR antagonist, significantly improved the inhibition of TCDCA-induced cell proliferation. Moreover, guggulsterone enhanced TCDCA-induced cell late apoptosis through flow cytometry and significantly lowered the TCDCA-induced up-regulated gene expression of caspase 9, despite both TCDCA and guggulsterone down-regulating the expression of FXR (P < 0.05). Overall, the effect of TCDCA on the induction of apoptosis is not dependent on FXR, whereas it would function via the activation of the caspase system. This provides a new perspective for the application of TCDCA or bile acid as functional small molecules in food, additives, and medicine.


Intestinal Mucosa , Taurochenodeoxycholic Acid , Mice , Animals , Swine , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/metabolism , Caspase 9/metabolism , Ki-67 Antigen/metabolism , Cell Proliferation , Intestinal Mucosa/metabolism , Bile Acids and Salts/metabolism , Apoptosis
7.
Poult Sci ; 102(5): 102569, 2023 May.
Article En | MEDLINE | ID: mdl-36913757

Hybrid Broussonetia papyrifera (BP) has been widely planted and commonly used as ruminant forage source after fermentation in China. Very less information is available to know the impact of fermented BP on laying hens, thus, we have investigated effects of dietary supplementation of Lactobacillus plantarum-fermented B. papyrifera (LfBP) on laying performance, egg quality, serum biochemical parameters, lipid metabolism, and follicular development of laying hens. A total of 288 HY-Line Brown hens (age, 23 wk) were randomly assigned into 3 treatment groups: control group (Con, a basal diet), LfBP1 and LfBP5 group (a basal diet supplemented with 1% or 5% LfBP). Each group has 8 replicates of twelve birds each. The results demonstrated that dietary supplementation of LfBP increased average daily feed intake (linear, P < 0.05), feed conversion ratio (linear, P < 0.05), and average egg weight (linear, P < 0.05) during the entire experimental period. In addition, dietary inclusion of LfBP enhanced the egg yolk color (linear, P < 0.01) but decreased the eggshell weight (quadratic, P < 0.05) and eggshell thickness (linear, P < 0.01). In serum, the LfBP supplementation linearly decreased the content of total triglyceride (linear, P < 0.01) but increased the content of high density lipoprotein-cholesterol (linear, P < 0.05). The gene expression related to hepatic lipid metabolism including acetyl-CoA carboxylase, fatty acid synthase, and peroxisome proliferator-activated receptor (PPARα) was down-regulated whereas liver X receptor was up-regulated in LfBP1 group. Moreover, LfBP1 supplementation remarkably reduced the F1 follicle number and ovarian gene expression of reproductive hormone receptors including estrogen receptor, follicle stimulating hormone receptor, luteinizing hormone receptor, progesterone receptor, prolactin receptor, and B cell lymphoma-2. In conclusion, dietary inclusion of LfBP could improve feed intake, egg yolk color, and lipid metabolism, but may cause a decline in eggshell quality with higher inclusion level, herein, 1% is suggested.


Broussonetia , Animals , Female , Chickens , Lipid Metabolism , Dietary Supplements , Diet/veterinary , Animal Feed/analysis
8.
Anim Nutr ; 10: 68-85, 2022 Sep.
Article En | MEDLINE | ID: mdl-35647326

L-Arginine (L-Arg), the precursor of nitric oxide (NO), plays an important role in muscle function. Fast-twitch glycolytic fibres are more susceptible to age-related atrophy than slow-twitch oxidative fibres. The effect of L-Arg/NO on protein metabolism of fast- and slow-twitch muscle fibres was evaluated in chickens. In Exp. 1, 48 chicks at 1 day old were divided into 4 groups of 12 birds and subjected to 4 treatments: basal diet without supplementation or supplemented with 1% L-Arg, and water supplemented with or without L-nitro-arginine methyl ester (L-NAME, 18.5 mM). In Exp. 2, 48 chicks were divided into 4 groups of 12 birds fed with the basal diet and subjected to the following treatments: tap water (control), tap water supplemented with L-NAME (18.5 mM), or molsidomine (MS, 0.1 mM), or 18.5 mM L-NAME + 0.1 mM MS (NAMS). The regulatory effect of L-Arg/NO was further investigated in vitro with myoblasts obtained from chicken embryo pectoralis major (PM) and biceps femoris (BF). In vivo, dietary L-Arg supplementation increased breast (+14.94%, P < 0.05) and thigh muscle mass (+23.40%, P < 0.05); whereas, MS treatment had no detectable influence. However, L-NAME treatment blocked the beneficial influence of L-Arg on muscle development. L-Arg decreased (P < 0.05) protein synthesis rate, phosphorylated mTOR and ribosomal protein S6 kinase beta-1 (p70S6K) levels in breast muscle, which was recovered by L-NAME treatment. In vitro, L-Arg or sodium nitroprusside (SNP) reduced protein synthesis rate, suppressed phosphorylated mTOR/p70S6K and decreased atrogin-1 and muscle RING finger 1 (MuRF1) in myoblasts from PM muscle (P < 0.05). L-NAME abolished the inhibitory effect of L-Arg on protein synthesis and the mTOR/p70S6K pathway. However, myoblasts from BF muscle showed the weak influence. Moreover, blocking the mTOR/p70S6K pathway with rapamycin suppressed protein synthesis of the 2 types of myoblasts; whereas, the protein expression of atrogin-1 and MuRF1 levels were restricted only in myoblasts from PM muscle. In conclusion, L-Arg/NO/mTOR/p70S6K pathway enhances protein accumulation and muscle development in fast-twitch glycolytic muscle in chickens. L-Arg/NO regulates protein turnover in a muscle fibre specific way, which highlights the potential clinical application in fast-twitch glycolytic muscle fibres.

9.
Food Funct ; 13(14): 7507-7519, 2022 Jul 18.
Article En | MEDLINE | ID: mdl-35678708

The nicotinamide adenine dinucleotide (NAD+) level shows a temporal decrease during the aging process, which has been deemed as an aging hallmark. Nicotinamide mononucleotide (NMN), a key NAD+ precursor, shows the potential to retard the age-associated functional decline in organs. In the current study, to explore whether NMN has an impact on the intestine during the aging process, the effects of NMN supplementation on the intestinal morphology, microbiota, and NAD+ content, as well as its anti-inflammatory, anti-oxidative and barrier functions were investigated in aging mice and D-galactose (D-gal) induced senescent IPEC-J2 cells. The results showed that 4 months of NMN administration had little impact on the colonic microbiota and NAD+ content in aging mice, while it significantly increased the jejunal NAD+ content and improved the jejunal structure including increasing the villus length and shortening the crypt. Moreover, NMN supplementation significantly up-regulated the mRNA expression of SIRT3, SIRT6, nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), the catalytic subunit of glutamate-cysteine ligase (GCLC), superoxide dismutase 2 (SOD2), occludin, and claudin-1, but down-regulated the mRNA expression of tumor necrosis factor alpha (TNF-α). Specifically, in the D-gal induced senescent IPEC-J2 cells, 500 µM NMN restored the increased mRNA expression of interleukin 6 (IL6ST), IL-1A, nuclear factor (NF-κB1), and claudin-1 to normal levels to some extent. Furthermore, NMN treatment significantly affected the mRNA expression of antioxidant enzymes including NQO1, GCLC, SOD 2 and 3, and GSH-PX1, 3 and 4. In addition, 200 µM NMN enhanced the cell viability and total antioxidant capacity and lowered the reactive oxygen species level of senescent IPEC-J2 cells. Notably, NMN restored the down-regulated protein expression of occludin and claudin-1 induced by D-gal. The above data demonstrated the potential of NMN in ameliorating the structural and functional decline in the intestine during aging.


Nicotinamide Mononucleotide , Sirtuins , Aging , Animals , Antioxidants/pharmacology , Cellular Senescence , Claudin-1/genetics , Dietary Supplements , Galactose/pharmacology , Mice , NAD/metabolism , NAD/pharmacology , Nicotinamide Mononucleotide/metabolism , Nicotinamide Mononucleotide/pharmacology , Occludin , RNA, Messenger
10.
J Anim Sci Biotechnol ; 13(1): 18, 2022 Jan 22.
Article En | MEDLINE | ID: mdl-35074004

BACKGROUND: Enteromorpha prolifera (E. prolifera) polysaccharide has become a promising feed additive with a variety of physiological activities, such as anti-oxidant, anti-cancer, anti-diabetic, immunomodulatory, hypolipidemic, and cation chelating ability. However, whether Enteromorpha polysaccharide-trace element complex supplementation regulates amino acid and fatty acid metabolism in chicken is largely unknown. This study was conducted to investigate the effects of E. prolifera polysaccharide (EP)-Zn supplementation on growth performance, amino acid, and fatty acid metabolism in chicken. METHODS: A total of 184 one-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with 8 replicates, 12 chickens per replicate, and fed either the basal diet (control group) or basal diet plus E. prolifera polysaccharide-Zinc (400 mg EP-Zn/kg diet). RESULTS: Dietary EP-Zn supplementation significantly increased (P < 0.05) the body weight, average daily gain, muscle antioxidant activity, serum HDL level, and reduced serum TG and LDL concentration. In addition, dietary EP-Zn supplementation could modulate ileal amino acid digestibility and upregulate the mRNA expression of amino acid transporter genes in the jejunum, ileum, breast muscle, and liver tissues (P < 0.05). Compared with the control group, breast meat from chickens fed EP-Zn had higher (P < 0.05) Pro and Asp content, and lower (P < 0.05) Val, Phe, Gly, and Cys free amino acid content. Furthermore, EP-Zn supplementation upregulated (P < 0.05) the mRNA expressions of mTOR and anti-oxidant related genes, while down-regulated protein degradation related genes in the breast muscle. Breast meat from EP-Zn supplemented group had significantly lower (P < 0.05) proportions of Σn-3 PUFA, and a higher percentage of Σn-6 PUFA and the ratio of n-6/n-3 PUFA. Besides, EP-Zn supplementation regulated lipid metabolism by inhibiting the gene expression of key enzymes involved in the fatty acid synthesis and activating genes that participated in fatty acid oxidation in the liver tissue. CONCLUSIONS: It is concluded that EP-Zn complex supplementation regulates apparent ileal amino acid digestibility, enhances amino acid metabolism, and decreases oxidative stress-associated protein breakdown, thereby improving the growth performance. Furthermore, it promotes fatty acid oxidation and restrains fat synthesis through modulating lipid metabolism-related gene expression.

11.
Vet Res ; 53(1): 3, 2022 Jan 10.
Article En | MEDLINE | ID: mdl-35012652

Trueperella pyogenes (T. pyogenes) is an opportunistic pathogen associated with a variety of diseases in many domestic animals. Therapeutic treatment options for T. pyogenes infections are becoming limited due to antimicrobial resistance, in which efflux pumps play an important role. This study aims to evaluate the inhibitory activity of luteolin, a natural flavonoid, on the MsrA efflux pump and investigate its mechanism. The results of antimicrobial susceptibility testing indicated that the susceptibility of msrA-positive T. pyogenes isolates to six macrolides increased after luteolin treatment, while the susceptibility of msrA-negative isolates showed no change after luteolin treatment. It is suspected that luteolin may increase the susceptibility of T. pyogenes isolates by inhibiting MsrA activity. After 1/2 MIC luteolin treatment for 36 h, the transcription level of the msrA gene and the expression level of the MsrA protein decreased by 55.0-97.7% and 36.5-71.5%, respectively. The results of an affinity test showed that the equilibrium dissociation constant (KD) of luteolin and MsrA was 6.462 × 10-5 M, and hydrogen bonding was predominant in the interaction of luteolin and MsrA. Luteolin may inhibit the ATPase activity of the MsrA protein, resulting in its lack of an energy source. The current study illustrates the effect of luteolin on MsrA in T. pyogenes isolates and provides insight into the development of luteolin as an innovative agent in combating infections caused by antimicrobial-resistant bacteria.


Actinomycetaceae , Drug Resistance, Bacterial , Luteolin , Macrolides , Actinomycetaceae/drug effects , Animals , Animals, Domestic , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/drug effects , Luteolin/pharmacology , Macrolides/pharmacology , Microbial Sensitivity Tests/veterinary
12.
J Ethnopharmacol ; 278: 114225, 2021 Oct 05.
Article En | MEDLINE | ID: mdl-34038799

ETHNOPHARMACOLOGICAL RELEVANCE: Tribulus terrestris L., as an annual herb plant from Zygophyllaceae, exhibits many biological activities, and its main chemical constituents are saponins. However, the extraction process, chemical compositions, anti-inflammatory effect and mechanism of total saponins from Tribulus terrestris L. leaves are still unclear. AIM OF THE STUDY: The present study extensively evaluated the extraction process, major components, anti-inflammatory action and mechanism of Tribulus terrestris L. leaves saponins. MATERIALS AND METHODS: The ultrasonic extraction and response surface methods were adopted for optimization of extraction technology of total saponins from Tribulus terrestris L. leaves, and its compositions were detected with LC-MSn method. The anti-inflammatory activity of total saponins was studied by lipopolysaccharide induced RAW 264.7 cells and acute lung injury mice models. RESULTS: The ultrasonic extraction parameters of saponins fraction, including ethanol concentration 30%, extraction time 55 min, ratio of solvent to material 35:1 ml/g and extraction temperature 46 °C, were screened by response surface method with the extracting rate 5.49%, and thirty compositions were detected with LC-MSn method. Moreover, saponins fraction can play a stronger anti-inflammatory effect by reducing the phagocytic activity and pulmonary edema, and protection of morphology of RAW 264.7 cells and lung tissues, and decreasing the content of NO and TNF-α. Moreover, it was revealed that total saponins extract can exert the anti-inflammatory action by the inhibition of the activation of the TLR4-TRAF6-NF-κB signalling pathway. CONCLUSION: These studies imply that Tribulus terrestris L. leaves saponins may be an important anti-inflammatory drug in clinic.


Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Saponins/pharmacology , Acute Lung Injury/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Chromatography, High Pressure Liquid , Disease Models, Animal , Lipopolysaccharides , Male , Mice , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Leaves , RAW 264.7 Cells , Saponins/chemistry , Saponins/isolation & purification , Spectrometry, Mass, Electrospray Ionization , Tribulus/chemistry , Ultrasonics
13.
J Pharm Pharmacol ; 73(1): 110-117, 2021 Mar 01.
Article En | MEDLINE | ID: mdl-33791807

OBJECTIVES: Inflammation widely exists in many diseases and poses a great threat to human and animal health. Rutin, quercetin-3-rhamnosyl glucoside, has a variety of pharmacological effects, including anti-oxidant, anti-inflammatory, antibacterial, anticancer and radioresistance effects. The current study focused on evaluation of its anti-inflammatory activity and described the mechanism of rutin in lipopolysaccharide-induced RAW 264.7 cells. METHODS: The related gene and protein expression levels were investigated by quantification real-time PCR and western blotting, respectively. KEY FINDINGS: This study revealed that rutin can decrease inducible nitric oxide synthase (iNOS) gene and protein expression levels, effectively increase IκB gene expression, reduce toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), tumour necrosis factor receptor-associated factor 6 (TRAF6) and p65 gene expression and inhibit the phosphorylation of IκB and p65 and the proteins expression of TLR4, MyD88 and TRAF6. CONCLUSIONS: These results suggest that rutin might exert anti-inflammatory effect on LPS-stimulated RAW 264.7 cells and will be potentially useful as an adjuvant treatment for inflammatory diseases.


Anti-Inflammatory Agents/pharmacology , Inflammation , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Rutin/pharmacology , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 4/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Inflammation/chemically induced , Inflammation/prevention & control , Lipopolysaccharides , Macrophages/drug effects , Macrophages/metabolism , Mice , Phosphorylation , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , RAW 264.7 Cells , Rutin/therapeutic use , Signal Transduction
14.
Pharm Biol ; 57(1): 514-518, 2019 Dec.
Article En | MEDLINE | ID: mdl-31401916

Context: ALI is a common disease characterized by acute pulmonary inflammatory disorder. Abutilon theophrasti Medik. (Malvaceae), as a Chinese traditional medicine, is used for the treatment of inflammation. Its main constituents are flavonoid compounds. Objective: This study investigates the regulatory effect of a TFE from Abutilon theophrasti leaves on gene expression in LPS-induced ALI mice via the NF-κB and MAPK signaling pathways. Materials and methods: Kunming mice were intragastrically administered TFE (0.25, 0.5, 1.0 g/kg) for 5 days, and then ALI was induced via intranasal administration 40 µg of LPS in 10 µL PBS after intragastric administration on the 5th day, and PBS and DEX (2 mg/kg) were negative and positive control groups, respectively. Results: The relative expression of iNOS gene was 0.707, 0.507 and 0.483 for 0.25, 0.5 and 1.0 g/kg TFE, and COX-2 gene expression was also reduced after treatment by three concentrations of TFE with 0.768, 0.545, and 0.478. The mRNA expression levels of p65 were 0.61, 0.43 and 0.27 for 0.25, 0.5 and 1.0 g/kg TFE and IκB levels were increased in a dose-dependent manner with 3.99, 13.69 and 34.36. 0.5 and 1.0 g/kg TFE inhibited the expression of ERK1/2 with 0.59 and 0.38, p38MAPK with 0.62 and 0.54, and JNK with 0.37 and 0.29, and JNK mRNA expression was 0.60 for 0.25 g/kg TFE. Discussion and conclusion: These results indicate that the regulatory mechanisms of TFE on gene expression in LPS-induced ALI mice include inhibition of the NF-κB and MAPK signaling pathways.


Acute Lung Injury/drug therapy , Flavonoids/pharmacology , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Animals , Cyclooxygenase 2/metabolism , Drugs, Chinese Herbal/pharmacology , Gene Expression/drug effects , I-kappa B Kinase/metabolism , Inflammation/drug therapy , Lipopolysaccharides , Male , Malvaceae , Mice , Nitric Oxide Synthase/drug effects , Nitric Oxide Synthase/metabolism , Plant Leaves , Transcription Factor RelA/metabolism
15.
Animals (Basel) ; 9(9)2019 Aug 27.
Article En | MEDLINE | ID: mdl-31461833

As a main ingredient of milk, the nucleotides content is about 12-58 mg/g, which plays a critical role in maintaining cellular function and lipid metabolism. This study was conducted to evaluate the effects of short-term uridine monophosphate (UMP) and uridine (UR) administration on lipid metabolism in early-weaned piglets. Twenty-one weaned piglets (7 d of age; 3.32 ± 0.20 kg average body weight) were randomly assigned into three groups: The control (CON), UMP, and UR group, and oral administered UMP or UR for 10 days, respectively. The results showed that supplementation with UMP significantly increased (p < 0.05) serum low density lipoprotein (LDL) and tended to increase (p = 0.062) serum total cholesterol (TC) content of piglets when compared with the other two groups. Oral administration with UMP and UR significantly decreased (p < 0.05) the serum total bile acid (TBA) and plasma free fatty acids (FFA) of piglets, and significantly reduced the fatty acid content of C12:0 (p < 0.01) and C14:0 (p < 0.05) in liver. Experiments about key enzymes that are involved in de novo synthesis of fatty acid showed that the gene expression of liver X receptors (LXRα), sterol regulatory element-binding transcription factor 1 (SREBP1c), fatty acid desaturase 2 (FADS2), and fatty acid elongase 5 (ELOVL5) were remarkably down-regulated (p < 0.05) with UMP and UR treatment, and key factors of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and carnitine palmitoyl transferase 1 (CPT-1α) involved in fatty acid catabolism were also decreased (p < 0.05). Additionally, the protein expression of phosphorylated-mTOR was not affected while phosphorylation of AKT was repressed (p < 0.05). In conclusion, short-term oral UMP or UR administration could regulate fatty acid composition and lipid metabolism, thus providing energy for early-weaned piglets.

16.
Oxid Med Cell Longev ; 2019: 9752698, 2019.
Article En | MEDLINE | ID: mdl-31089421

AIMS: Insulin and glucocorticoids play crucial roles in skeletal muscle protein turnover. Fast-twitch glycolytic fibres are more susceptible to atrophy than slow-twitch oxidative fibres. Based on accumulating evidence, hydrogen sulfide (H2S) is a physiological mediator of this process. The regulatory effect of H2S on protein synthesis in fast-twitch fibres was evaluated. RESULTS: A NaHS (sodium hydrosulfide) injection simultaneously increased the diameter of M. pectoralis major (i.e., fast-twitch glycolytic fibres) and activated the mammalian target of the rapamycin (mTOR)/p70S6 kinase (p70S6K) pathway. Dexamethasone (DEX) inhibited protein synthesis, downregulated mTOR and p70S6K phosphorylation, and suppressed the expression of the cystathionine γ-lyase (CSE) protein in myoblasts. The precursor of H2S, L-cysteine, completely abolished the inhibitory effects of DEX. The CSE inhibitor DL-propargylglycine (PAG) completely abrogated the effects of RU486 on blocking the suppressive effects of DEX. The H2S donor NaHS increased the H2S concentrations and abrogated the inhibitory effects of DEX on protein synthesis. Insulin increased protein synthesis and upregulated CSE expression. However, PAG abrogated the stimulatory effects of insulin on protein synthesis and the activity of the mTOR/p70S6K pathway. INNOVATION: These results demonstrated that CSE/H2S regulated protein synthesis in fast-twitch muscle fibres, and glucocorticoids and insulin regulated protein synthesis in an endogenous CSE/H2S system-dependent manner. CONCLUSIONS: The results from the present study suggest that the endogenous CSE/H2S system regulates fast-twitch glycolytic muscle degeneration and regeneration.


Cystathionine gamma-Lyase/metabolism , Glucocorticoids/pharmacology , Hydrogen Sulfide/metabolism , Insulin/pharmacology , Muscle Proteins/biosynthesis , Protein Biosynthesis/drug effects , Alkynes/pharmacology , Animals , Chickens , Cysteine/pharmacology , Dexamethasone/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Injections, Intraperitoneal , Mifepristone/pharmacology , Myoblasts/drug effects , Myoblasts/metabolism , Phosphorylation/drug effects , Receptors, Glucocorticoid/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
17.
Chemosphere ; 229: 112-124, 2019 Aug.
Article En | MEDLINE | ID: mdl-31078026

A series of boron nitride-pyromellitic dianhydride composites have been successfully synthesized by calcinating the mixtures of boron nitride (BN) and pyromellitic dianhydride (PA) at 350 °C, in which the composite (BNPA2) has the largest adsorption quantity (65.1 mg/g) for rhodamine B (RhB) and the best photo-removal efficiency for RhB under visible light irradiation. 1H NMR characterizations for BN, PA and BNPA2 suggest that this composite is formed via the reaction between the OH groups in BN and PA. BNPA2 can also adsorb neutral red (NR), methyl orange (MO), tetracycline (TC) and atrazine (AT). NR and MO can be photo-removed by BNPA2 under visible light irradiation. Colorless TC and AT can also be degraded by BNPA2 under visible light irradiation, suggesting that BNPA2 is visible light responsible photocatalyst. BNPA2 has the highest photo-removal efficiency for the cationic RhB and NR, followed by the anionic MO. This is from that BNPA2 has negative surface. When anionic MO mixes with cationic RhB (or NR) together, BNPA2 prefers to remove cationic RhB (or NR) from the mixture solution under visible light irradiation and the removal efficiency of anionic MO by BNPA2 is also increased. Thus, electrostatic interactions between dyes and BNPA2 as well as between dyes play significant role in the removal process. •O2- makes a main contribution for this photo-removal of these aromatic pollutants (dyes, TC and AT) by BNPA2 under visible light irradiation. Furthermore, the removal performance of BNPA2 for RhB, TC and AT can be effectively regenerated by visible light irradiation.


Benzoates/chemistry , Boron Compounds/chemistry , Hydrocarbons, Aromatic/chemistry , Hydrocarbons, Aromatic/isolation & purification , Photolysis , Wastewater/chemistry , Water Purification/methods , Adsorption , Catalysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
18.
Oxid Med Cell Longev ; 2018: 7569127, 2018.
Article En | MEDLINE | ID: mdl-29854093

Muscle atrophy may arise from many factors such as inactivity, malnutrition, and inflammation. In the present study, we investigated the stimulatory effect of nitric oxide (NO) on muscle protein synthesis. Primarily, C2C12 cells were supplied with extra L-arginine (L-Arg) in the culture media. L-Arg supplementation increased the activity of inducible nitric oxide synthase (iNOS), the rate of protein synthesis, and the phosphorylation of mTOR (Thr 2446) and p70S6K (Thr 389). L-NAME, an NOS inhibitor, decreased NO concentrations within cells and abolished the stimulatory effect of L-Arg on protein synthesis and the phosphorylation of mTOR and p70S6K. In contrast, SNP (sodium nitroprusside), an NO donor, increased NO concentrations, enhanced protein synthesis, and upregulated mTOR and p70S6K phosphorylation, regardless of L-NAME treatment. Blocking mTOR with rapamycin abolished the stimulatory effect of both L-Arg and SNP on protein synthesis and p70S6K phosphorylation. These results indicate that L-Arg stimulates protein synthesis via the activation of the mTOR (Thr 2446)/p70S6K signaling pathway in an NO-dependent manner.


Arginine/pharmacology , Myoblasts/drug effects , Myoblasts/metabolism , Nitric Oxide Donors/pharmacology , TOR Serine-Threonine Kinases/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Cells, Cultured , Mice , NG-Nitroarginine Methyl Ester/pharmacology , Phosphorylation/drug effects , Protein Binding , Protein Biosynthesis/drug effects , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics
19.
ACS Appl Mater Interfaces ; 10(5): 4640-4651, 2018 Feb 07.
Article En | MEDLINE | ID: mdl-29304278

A novel floating photocatalyst (BN-DS-7) has been successfully synthesized by calcining the mixture of boron nitride (BN) and dredged sediment (DS) with a specific mass ratio (3:7) at 1100 °C for a half hour. BN is synthesized for the first time using an oxygen-limited method, which consists of a nanoplate ∼30 nm in size and has a bandgap at 3.94 eV. The as-synthesized BN can degrade NR under ultraviolet (UV) light irradiation. For BN-DS-7, X-ray photoelectron spectroscopy analysis suggests that BN mainly interacts with DS through the strong coordination between these N atoms in BN and these Si and Al atoms in DS. This leads to BN-DS-7 having good compression strength (∼9 MPa). Thermogravimetric analysis for BN shows that a few BN (∼13%) synthesized via an oxygen-limited method will pyrolyze at 1100 °C and the released gas can be sealed in the inside of DS at 1100 °C, resulting in that BN-DS-7 can float on the water surface. Photodegradation results show that BN-DS-7 can degrade 84% of NR (20 mg/L) under UV-light irradiation for 5 h, and the active species are •OH and photoinduced hole. Total organic carbon analysis for NR solution before and after photodegradation show that ∼70% of NR has been mineralized into inorganic carbons. This work is helpful to develop a new type of BN-based floating material and enlarge the application field of DS.

20.
Polymers (Basel) ; 10(3)2018 Feb 28.
Article En | MEDLINE | ID: mdl-30966279

DNA compaction and charge neutralization in a mixing counterion solution involves competitive and cooperative electrostatic binding, and sometimes counterion complexation. At normal ionic strength, it has been found that the charge neutralization of DNA by the multivalent counterion is suppressed when being added extra mono- and di-valent counterions. Here, we explore the effect mixing counterion on DNA compaction and charge neutralization under the condition of low ionic strength. Being quite different from normal ionic strength, the electrophoretic mobility of DNA in multivalent counterion solution (octalysine, spermine) increases the presence of mono- and di-valent cations, such as sodium and magnesium ions. It means that the charge neutralization of DNA by the multivalent counterion is promoted rather than suppressed when introducing extra mono- and di-valent counterions into solution. This conclusion is also supported by the measurement of condensing and unraveling forces of DNA condensates under the same condition by single molecular magnetic tweezers. This mixing effect can be attributed to the cooperative electrostatic binding of counterions to DNA when the concentration of counterions in solution is below a critical concentration.

...