Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37895117

RESUMEN

Salt stress is one of the major abiotic stresses that limits plant growth and development. The MYB transcription factor family plays essential roles in plant growth and development, as well as stress tolerance processes. In this study, the cDNA of the 84K poplar (Populus abla × Populus glandulosa) was used as a template to clone the full length of the PagMYB205 gene fragment, and transgenic poplar lines with PagMYB205 overexpression (OX) or inhibited expression (RNAi, RNA interference) were cultivated. The role of PagMYB205 in poplar growth and development and salt tolerance was detected using morphological and physiological methods. The full-length CDS sequence of PagMYB205 was 906 bp, encoding 301 amino acids, and the upstream promoter sequence contained abiotic stress-related cis-acting elements. The results of subcellular localization and transactivation assays showed that the protein had no self-activating activity and was localized in the nucleus. Under salt stress, the rooting rate and root vitality of RNAi were higher than OX and wild type (WT). However, the malondialdehyde (MDA) content of the RNAi lines was significantly lower than that of the wild-type (WT) and OX lines, but the reactive oxygen species (ROS) scavenging ability, such as the peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) enzyme activities, was dramatically more powerful. Most significantly of all, the RNAi3 line with the lowest expression level of PagMYB205 had the lowest MDA content, the best enzyme activity and root vitality, and the best salt stress tolerance compared to the other lines. The above results suggest that the transcription factor PagMYB205 could negatively regulate salt stress tolerance by regulating antioxidant enzyme activity and root vitality.


Asunto(s)
Populus , Tolerancia a la Sal , Tolerancia a la Sal/genética , Especies Reactivas de Oxígeno/metabolismo , Populus/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Antioxidantes/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762421

RESUMEN

GATA transcription factors are ubiquitously present in eukaryotic organisms and play a crucial role in multiple biological processes, such as plant growth, stress response, and hormone signaling. However, the study of GATA factors in poplar is currently limited to a small number of proteins, despite their evident functional importance. In this investigation, we utilized the most recent genome annotation and stringent criteria to identify 38 GATA transcription factor genes in poplar. Subsequently, we conducted a comprehensive analysis of this gene family, encompassing phylogenetic classification, protein characterization, analysis of promoter cis-acting elements, and determination of chromosomal location. Our examination of gene duplication events indicated that both tandem and segmental duplications have contributed to the expansion of the GATA gene family in poplar, with segmental duplication potentially being a major driving force. By performing collinearity analysis of genes across six different species, we identified 74 pairs of co-linear genes, which provide valuable insights for predicting gene functions from a comparative genomics perspective. Furthermore, through the analysis of gene expression patterns, we identified five GATA genes that exhibited differential expression in leaf-stem-root tissues and eight genes that were responsive to salt stress. Of particular interest was GATA6, which displayed strong induction by salt stress and overlapped between the two gene sets. We discovered that GATA6 encodes a nuclear-localized protein with transcription activation activity, which is continuously induced by salt stress in leaf and root tissues. Moreover, we constructed a co-expression network centered around GATA6, suggesting the potential involvement of these genes in the growth, development, and response to abiotic stress processes in poplar through cell transport systems and protein modification mechanisms, such as vesicle-mediated transport, intracellular transport, ubiquitination, and deubiquitination. This research provides a foundation for further exploration of the functions and mechanisms of GATA transcription factors in poplar.

3.
Plant Dis ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37467132

RESUMEN

Cucumber green mottle mosaic virus (CGMMV) was first discovered in China in 2003 and caused an epidemic in 2005. In China, the virus has been reported in gourd crops including watermelons, cucumbers, melons, etc (Sui et al. 2019). In Shandong Province, China from September 2014 to 2017, approximately 30% of zucchini (Cucurbita pepo) and wax gourd (Benincasa hispida) plants in commercial cucurbit fields, the two most important cash crops, exhibited chlorosis, mosaic, and mottling symptoms suspected to be caused by a tobamovirus. To identify the causative pathogens, ten zucchini and 15 wax gourd samples were collected from the commercial cucurbit fields. Total RNA was extracted and all samples were tested using reverse transcription PCR (RT-PCR) with TobamodF/TobamodR and TobamodF2/TobamodR2 (Li et al. 2018a). Five common Cucurbitaceae viruses were also tested: cucumber mosaic virus, papaya ringspot virus, squash mosaic virus, watermelon mosaic virus, and zucchini yellow mosaic virus (Ali et al. 2012). All samples generated positive results using tobamovirus generic primers but were negative for the five common Cucurbitaceae viruses. Amplification products (880 bp) from all samples were inserted into pMD19-T and recombinant clones were selected for Sanger sequencing. The results showed that zucchini green mottle mosaic virus, CGMMV, and tobacco mosaic virus (TMV) were detected in zucchini samples. CGMMV and TMV were detected in the wax gourd samples. To confirm the presence of these viruses, RT-PCR was performed using specific primer pairs, including CGMMV-cpf/CGMMV-cpr (Chen et al. 2006), ZG-F/ZG-R (Li et al. 2018b), and TMV-CP-F/TMV-CP-R (Srivastava et al. 2015). CGMMV was detected in all samples, with four zucchini and nine wax gourds only containing CGMMV. Zucchini (n=4; CGZ1-CGZ4) and wax gourd (n=4; CGWX1-CGWX4) isolates were cloned into pMD19-T and sequenced bidirectionally. The BLASTn results confirmed the presence of CGMMV, and the sequencing results were processed using DNAMAN Version (Lynnon Biosoft, San Ramon, CA, USA) and submitted to the GenBank database (https://www.ncbi.nlm.nih.gov/). A phylogenetic tree based on the CGMMV coat protein (CP) was constructed using CGZ1-CGZ4 (OP779762-OP779765), CGWX1-CGWX4 (OP779766-OP779769), and representative CGMMV sequences from GenBank. Sequence analysis of the CP demonstrated that CGMMV-zucchini and -wax gourd isolates belonged to an independent branch of the Chinese muskmelon AH-FT197 isolate (KU175639) and had 100% identity with the AH-FT197 isolate. To confirm their infectivity, leaf sap extract of CGZ4 and CGWX4 in phosphate buffer (0.1 M, pH 7.0) was mechanically inoculated on leaves of virus-free zucchini seedlings (Cucurbita pepo cv. Zaoqingyidai, 4-leaf-stage, n = 10) or virus-free wax gourd seedlings (Benincasa hispida cv. Tiezhu 2, n = 10). Ten days after inoculation, all plants exhibited symptoms (systemic chlorosis, mosaic, and mottling) similar to those of diseased plants in the field. Control seedlings inoculated with phosphate buffer remained symptomless. RT-PCR analysis using the CGMMV-cpf/CGMMV-cpr primer confirmed that all ten zucchini or wax gourd seedlings were infected with CGMMV, and all the control plants were free from CGMMV. To the best of our knowledge, this is the first report on zucchini and wax gourd as natural hosts for CGMMV in China. CGMMV is a highly contagious seed-borne virus and further attention should be paid to its spread in cucurbit crops.

4.
BMC Genomics ; 24(1): 345, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349699

RESUMEN

Poplar is one of the main urban and rural greening and shade tree species in the northern hemisphere, but its growth and development is always restricted by salt stress. R2R3-MYB transcription factor family is commonly involved in many biological processes during plant growth and stress endurance. In this study, PagMYB151 (Potri.014G035100) one of R2R3-MYB members related to salt stress and expressed in both nucleus and cell membrane was cloned from Populus alba × P. glandulosa to perfect the salt tolerance mechanism. Morphological and physiological indexes regulated by PagMYB151 were detected using the PagMYB151 overexpression (OX) and RNA interference (RNAi) transgenic poplar lines. Under salt stress conditions, compared with RNAi and the non-transgenic wild-type (WT) plants, the plant height, both aboveground and underground part fresh weight of OX was significantly increased. In addition, OX has a longer and finer root structure and a larger root surface area. The root activity of OX was also enhanced, which was significantly different from RNAi but not from WT under salt treatment. Under normal conditions, the stomatal aperture of OX was larger than WT, whereas this phenotype was not obvious after salt stress treatment. In terms of physiological indices, OX enhanced the accumulation of proline but reduced the toxicity of malondialdehyde to plants under salt stress. Combing with the transcriptome sequencing data, 6 transcription factors induced by salt stress and co-expressed with PagMYB151 were identified that may cooperate with PagMYB151 to function in salt stress responding process. This study provides a basis for further exploring the molecular mechanism of poplar PagMYB151 transcription factor under abiotic stress.


Asunto(s)
Populus , Tolerancia a la Sal , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/metabolismo , Prolina , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Polymers (Basel) ; 15(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37242884

RESUMEN

The hydrogel-based sensors suffer from poor stability and low sensitivity, severely limiting their further development. It is still "a black box" to understand the effect of the encapsulation as well as the electrode on the performance of the hydrogel-based sensors. To address these problems, we prepared an adhesive hydrogel that could robustly adhere to Ecoflex (adhesive strength is 4.7 kPa) as an encapsulation layer and proposed a rational encapsulation model that fully encapsulated the hydrogel within Ecoflex. Owing to the excellent barrier and resilience of Ecoflex, the encapsulated hydrogel-based sensor can still work normally after 30 days, displaying excellent long-term stability. In addition, we performed theoretical and simulation analyses on the contact state between the hydrogel and the electrode. It was surprising to find that the contact state significantly affects the sensitivity of the hydrogel sensors (the maximum difference in sensitivity was 333.6%), indicating that the reasonable design of the encapsulation and electrode are indispensable parts for fabricating successful hydrogel sensors. Therefore, we paved the way for a novel insight to optimize the properties of the hydrogel sensors, which is greatly favorable to developing hydrogel-based sensors to be applied in various fields.

6.
AoB Plants ; 15(2): plad006, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37025103

RESUMEN

Comparative plastomics can be used to explicitly dissect various types of plastome variation. In the present study, the plastome variation pattern of Ziziphus jujuba var. spinosa (also called sour jujube) and its phylogenomic relationship with Chinese jujube were investigated. Plastomes of 21 sour jujube individuals were sequenced and assembled. The length of the sour jujube plastomes ranged between 159399 and 161279 bp. The plastomes exhibited collinearity of structure, gene order and content. The most divergent regions were located in the intergenic spacers, such as trnR-UCU-atpA and psbZ-trnG-UCC. Sliding window analysis demonstrated that the sequence variation among the sour jujube plastomes was relatively low. Sixty-two to 76 SSRs with 4 motif types were identified in the sour jujube plastomes with a predominant motif type of A/T. Three protein-coding genes exhibited higher nonsynonymous/synonymous substitution ratios, indicating that these genes may undergo positive selection. A total of 80 SNPs were detected and 1266 potential RNA editing sites of 23 protein-coding genes were predicted. In the phylogenomic tree constructed, sour jujube has a sister relationship to Chinese jujube, which indicates that Chinese jujube may have originated or been domesticated from sour jujube. The present study explicitly investigated the individual-level plastome variation of sour jujube and provides potential valuable molecular markers for future genetic-related study of this lineage.

7.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614232

RESUMEN

Drought is one of the main environmental factors limiting plant growth and development. The AP2/ERF transcription factor (TF) ERF194 play key roles in poplar growth and drought-stress tolerance. However, the physiological mechanism remains to be explored. In this study, the ERF194-overexpression (OX), suppressed-expression (RNA interference, RNAi), and non-transgenic (WT) poplar clone 717 were used to study the physiology role of ERF194 transcription factor in poplar growth and drought tolerance. Morphological and physiological methods were used to systematically analyze the growth status, antioxidant enzyme activity, malondialdehyde (MDA), soluble sugars, starch, and non-structural carbohydrate (NSC) contents of poplar. Results showed that, compared with WT, OX plants had decrease in plant height, internode length, and leaf area and increased number of fine roots under drought stress. In addition, OX had higher water potential, activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), contents of chlorophyll, soluble sugar, starch, and NSC, implying that ERF194 positively regulates drought tolerance in poplar. The growth status of RNAi was similar to those of WT, but the relative water content and CAT activity of RNAi were lower than those of WT under drought treatment. Based on the transcriptome data, functional annotation and expression pattern analysis of differentially expressed genes were performed and further confirmed by RT-qPCR analysis. Gene ontology (GO) enrichment and gene expression pattern analysis indicated that overexpression of ERF194 upregulated the expression of oxidoreductases and metabolism-related genes such as POD and SOD. Detection of cis-acting elements in the promoters suggested that ERF194 may bind to these genes through MeJA-responsive elements, ABA-responsive elements, or elements involved in defense and stress responses. The above results show that ERF194 improved tolerance to drought stress in poplar by regulating its growth and physiological factors. This study provides a new idea for the role of ERF194 transcription factor in plant growth and drought-stress response.


Asunto(s)
Resistencia a la Sequía , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Antioxidantes/metabolismo , Sequías , Peroxidasas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Peroxidasa/metabolismo , Agua/metabolismo , Almidón/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
8.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808740

RESUMEN

Nowadays, with the rapid development of e-commerce, the transportation of products has become more and more frequent. However, how to monitor the situation of products effectively and conveniently during road transportation is a long-standing problem. In order to meet this problem in practical applications, we fabricated a triboelectric nanogenerator sensor with a "square box" structure (S-TENG) for detecting the vibration suffered by vehicles. Specifically, with the spring installed in the S-TENG as a trigger, the two friction layers can contact and then separate to generate the real-time electrical signals when the S-TENG receives external excitation. The output voltage signals of the S-TENG under different vibration states were tested and the results demonstrated that the peak and zero positions of the open-circuit voltage-output curve are related to amplitude and frequency, respectively. In addition, the subsequent simulation results, obtained by ANSYS and COMSOL software, were highly consistent with the experimental results. Furthermore, we built a platform to simulate the scene of the car passing through speed bumps, and the difference in height and the number of speed bumps were significantly distinguished according to the output voltage signals. Therefore, the S-TENG has broad application prospects in road transportation.

9.
Polymers (Basel) ; 14(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35406325

RESUMEN

In recent years, with the appearance of the triboelectric nanogenerator (TENG), there has been a wave of research on small energy harvesting devices and self-powered wearable electronics. Hydrogels-as conductive materials with excellent tensile properties-have been widely focused on by researchers, which encouraged the development of the hydrogel-based TENGs (H-TENGs) that use the hydrogel as an electrode. Due to the great feasibility of adjusting the conductivity and mechanical property as well as the microstructure of the hydrogels, many H-TENGs with excellent performance have emerged, some of which are capable of excellent outputting ability with an output voltage of 992 V, and self-healing performance which can spontaneously heal within 1 min without any external stimuli. Although there are numerous studies on H-TENGs with excellent performance, a comprehensive review paper that systematically correlates hydrogels' properties to TENGs is still absent. Therefore, in this review, we aim to provide a panoramic overview of the working principle as well as the preparation strategies that significantly affect the properties of H-TENGs. We review hydrogel classification categories such as their network composition and their potential applications on sensing and energy harvesting, and in biomedical fields. Moreover, the challenges faced by the H-TENGs are also discussed, and relative future development of the H-TENGs are also provided to address them. The booming growth of H-TENGs not only broadens the applications of hydrogels into new areas, but also provides a novel alternative for the sustainable power sources.

10.
Tree Physiol ; 42(8): 1678-1692, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35220440

RESUMEN

The water deficits limit the growth and development of agricultural and forest organisms. The AP2/ethylene response factor (ERF) family has been identified as one of the largest plant-specific transcription factors (TFs) essential for plant development and stress response. The function of PtaERF194 in growth and drought tolerance was detected in the overexpression (OX) and RNA interference (RNAi) transgenic poplar 717 hybrids (Populus tremula × Populus alba). Plant growth, stem vessels, water-use efficiency (WUE), chlorophyll content and PtaERF194 co-expressed genes were analyzed using morphological, physiological and molecular methods. Overexpression seedlings showed a shorter and smaller phenotype along with smaller and more vessels compared with the wild-type (WT). Physiological indices indicated that OX with low transpiration and stomatal conductance improved the tolerance to drought by enhancing WUE, limiting water loss and maintaining high water potential. A total of 12 differentially expressed genes co-expressed with PtaERF194 were identified, and they worked together to regulate drought tolerance through the abscisic acid signaling and reactive oxygen species scavenging processes. However, RNAi plants showed similar morphology and physiology to WT, suggesting that the function of PtaERF194 was redundant with other ERF TFs. The findings of the current study may shed new light on the positive function of ERF TFs in plant drought stress tolerance.


Asunto(s)
Populus , Sequías , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Populus/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo
11.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-34423785

RESUMEN

Wheat (Triticum aestivum) is one of the most important food crops around the world. China is the largest wheat production country and wheat yellow mosaic virus (WYMV) is a non-negligible threat to wheat production. This study aimed to explore miRNAs and their corresponding target genes responsive to WYMV in wheat. Linmai and Jimai were used for miRNA and degradome high-throughput sequencing. After comparison and analysis, differentially expressed miRNAs and their target genes between normal wheat and WYMV-infected wheat were identified. GO and KEGG pathway enrichment analysis were then performed on target genes. A total of 530 miRNAs were identified in all samples, including 106 known miRNAs and 424 novel miRNAs. Among them, 131 miRNAs, corresponding to 85 target genes, were differentially expressed between normal wheat and WYMV-infected wheat. 85 target genes were significantly enriched in 21 GO terms and two KEGG pathways, Plant hormone signal transduction and Monobactam biosynthesis. In conclusion, 131 differentially expressed miRNAs, corresponding to 85 target genes, were identified between normal wheat and WYMVinfected wheat. Our findings provide more evidence on the roles of miRNAs and their target genes in wheat- WYMV interactions.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/inmunología , MicroARNs/metabolismo , Virus del Mosaico/fisiología , Enfermedades de las Plantas/virología , Triticum/virología , MicroARNs/genética , Virus del Mosaico/inmunología , Enfermedades de las Plantas/inmunología , ARN de Planta
12.
Aging (Albany NY) ; 13(15): 19867-19877, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34388113

RESUMEN

OBJECTIVE: This study is to assess the therapeutic effect of graphene oxide (GO) loaded with AWRK6 on endotoxin-induced sepsis. METHOD: AWRK6/GO was prepared by GO loaded AWRK6, with the structure characterization of AWRK6/GO conducted by atomic force microscope (AFM) and ultraviolet spectrophotometer, the sustained release rate of AWRK6/GO detected by high performance liquid chromatography (HPLC), and the neutralization ability of AWRK6/GO to lipopolysaccharide (LPS) tested by in vitro experiments. The levels of IL-8 and TNF-α in mouse cells after drug intervention were detected by ELISA; a LPS mouse model was established to observe the effects of drug intervention on the survival cycle and survival rate of mice. RESULTS: The sustained drug release rate of AWRK6/GO reached 85% within 24 hours observed under in vitro conditions, with an efficient neutralization effect to LPS (P < 0.01); Compared with the control group, the intervention of LPS succeeded in remarkably elevating the levels of IL-8 and TNF-α in the whole blood and macrophages of the mice (P < 0.01), whose survival cycle and survival rate consequently observed an obvious decline (P < 0.01); The intervention with AWRK6 or AWRK6/GO predominantly brought down the levels of IL-8 and TNF-α in the whole blood and macrophages of mice given LPS (P < 0.01), resulting in an elevation of the survival rate and survival time (P < 0.01). CONCLUSION: GO loaded with cationic antimicrobial peptide AWRK6 exerts a rosy neutralization effect on endotoxin activity, with no obvious side effects on mice observed, which is of certain application value in the treatment of sepsis.


Asunto(s)
Antiinfecciosos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Endotoxemia/tratamiento farmacológico , Grafito/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Antiinfecciosos/síntesis química , Péptidos Catiónicos Antimicrobianos/síntesis química , Endotoxemia/patología , Grafito/química , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Ratones , Sepsis/inducido químicamente , Sepsis/patología , Tasa de Supervivencia , Factor de Necrosis Tumoral alfa/genética
13.
Front Plant Sci ; 12: 669143, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149765

RESUMEN

The aggravation of soil salinization limits the growth and development of plants. The AP2/ERF transcription factors (TFs) have been identified and play essential roles in plant development and stress response processes. In this study, the function of PagERF16 was detected using the overexpressing (OX) and RNAi transgenic poplar 84K hybrids. Plant growth, stomatal conductance, antioxidant enzymes activity, and PagERF16 co-expressed TFs were analyzed using morphological, physiological, and molecular methods. OX showed a more robust lateral root system with a bigger diameter and volume compared to the wild-type plants (WT). Physiological parameters indicated the bigger stomatal aperture and lower stomatal density of OX along with the lower Catalase (CAT) activity and higher malondialdehyde (MDA) content contributed to the salt sensitivity. The plant height and rooting rate of OX and RNAi were significantly worse compared to WT. Other than that, the morphology and physiology of RNAi plants were similar to WTs, suggesting that the function of PagERF16 may be redundant with other TFs. Our results indicate that when PagERF16 expression is either too high or too low, poplar growth and rooting is negatively affected. In addition, a downstream target TF, NAC45, involved in Auxin biosynthesis, was identified and PagERF16 could directly bind to its promoter to negatively regulate its expression. These results shed new light on the function of ERF TFs in plant root growth and salt stress tolerance.

15.
Clin Cardiol ; 44(5): 699-707, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33764508

RESUMEN

BACKGROUND: Risk stratification of patients with acute myocardial infarction (AMI) is of great clinical significance. HYPOTHESIS: The present study aimed to establish an optimized risk score to predict short-term (6-month) death among rural AMI patients from China. METHODS: We enrolled 6581 AMI patients and extracted relevant data. Patients were divided chronologically into a derivation cohort (n = 5539), to establish the multivariable risk prediction model, and a validation cohort (n = 1042), to validate the risk score. RESULTS: Six variables were identified as independent predictors of short-term death and were used to establish the risk score: age, Killip class, blood glucose, creatinine, pulmonary artery systolic pressure, and percutaneous coronary intervention treatment. The area under the ROC curve (AUC) of the optimized risk score was 0.82 within the derivation cohort and 0.81 within the validation cohort. The diagnostic performance of the optimized risk score was superior to that of the GRACE risk score (AUC 0.76 and 0.75 in the derivation and validation cohorts, respectively; p < .05). CONCLUSION: These results indicate that the optimized scoring method developed here is a simple and valuable instrument to accurately predict the risk of short-term mortality in rural patients with AMI.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Intervención Coronaria Percutánea , Anciano , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , China/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/diagnóstico , Medición de Riesgo , Factores de Riesgo , Población Rural , Volumen Sistólico , Función Ventricular Izquierda
17.
PeerJ ; 8: e10206, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33150090

RESUMEN

Ethylene response factors (ERFs) are plant-specific transcription factors (TFs) that play important roles in plant growth and stress defense and have received a great amount of attention in recent years. In this study, seven ERF genes related to abiotic stress tolerance and response were identified in plants of the Populus genus. Systematic bioinformatics, including sequence phylogeny, genome organisation, gene structure, gene ontology (GO) annotation, etc. were detected. Expression-pattern of these seven ERF genes were analyzed using RT-qPCR and cross validated using RNA-Seq. Data from a phylogenetic tree and multiple alignment of protein sequences indicated that these seven ERF TFs belong to three subfamilies and contain AP2, YRG, and RAYD conserved domains, which may interact with downstream target genes to regulate the plant stress response. An analysis of the structure and promoter region of these seven ERF genes showed that they have multiple stress-related motifs and cis-elements, which may play roles in the plant stress-tolerance process through a transcriptional regulation mechanism; moreover, the cellular_component and molecular_function terms associated with these ERFs determined by GO annotation supported this hypothesis. In addition, the spatio-temporal expression pattern of these seven ERFs, as detected using RT-qPCR and RNA-seq, suggested that they play a critical role in mediating the salt response and tolerance in a dynamic and tissue-specific manner. The results of this study provide a solid basis to explore the functions of the stress-related ERF TFs in Populus abiotic stress tolerance and development process.

18.
Angiology ; 71(6): 567-572, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32129095

RESUMEN

Pulmonary artery systolic pressure (PASP) may increase because of cardiac alterations that result in increased filling pressures after acute myocardial infarction (AMI). We hypothesized that PASP might be a useful maker to predict the risk of cardiac death after AMI. We carried out a retrospective study from 2013 to 2017 involving 5401 patients with AMI. Patients were grouped according to their admission PASP result, and the primary end point was cardiac death in 6 months after AMI. Pulmonary artery systolic pressure was associated with age, AMI site, Killip classification, and decreased ejection fraction. After adjustments for clinical and echocardiographic parameters in a Cox model, PASP was found to be significantly related to cardiac death. In receiver operating characteristic analysis, PASP >30 mm Hg had a sensitivity of 59.8% and a specificity of 62.5% for predicting 6-month cardiac death after AMI. In conclusion, PASP at the index admission may be a useful marker predicting short-term cardiac death. These results have implications for future research and management of patients with AMI.


Asunto(s)
Presión Arterial , Infarto del Miocardio/fisiopatología , Arteria Pulmonar/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Causas de Muerte , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/mortalidad , Pronóstico , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Adulto Joven
19.
PeerJ ; 7: e6420, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809439

RESUMEN

Genes encoding pseudo-response regulator (PRR) proteins play significant roles in plant circadian clocks. In this study, four genes related to flowering time were isolated from Chrysanthemum morifolium. Phylogenetic analysis showed that they are highly homologous to the counterparts of PRRs of Helianthus annuus and named as CmPRR2, CmPRR7, CmPRR37, and CmPRR73. Conserved motifs prediction indicated that most of the closely related members in the phylogenetic tree share common protein sequence motifs, suggesting functional similarities among the PRR proteins within the same subtree. In order to explore functions of the genes, we selected two Chrysanthemum varieties for comparison; that is, a short-day sensitive Zijiao and a short-day insensitive Aoyunbaixue. Compared to Aoyunbaixue, Zijiao needs 13 more days to complete the flower bud differentiation. Evidence from spatio-temporal gene expression patterns demonstrated that the CmPRRs are highly expressed in flower and stem tissues, with a growing trend across the Chrysanthemum developmental process. In addition, we also characterized the CmPRRs expression patterns and found that CmPRRs can maintain their circadian oscillation features to some extent under different photoperiod treatment conditions. These lines of evidence indicated that the four CmPRRs undergo circadian oscillation and possibly play roles in regulating the flowering time of C. morifolium.

20.
Virus Genes ; 55(2): 209-217, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30565034

RESUMEN

The role of heat shock proteins (HSPs) in viral replication has been described in numerous publications. Wheat yellow mosaic virus (WYMV) belongs to the genus Bymovirus (family Potyviridae), which causes yellow mosaic and dwarf symptoms in wheat (Triticum aestivum). In this study, the T. aestivum heat shock protein 23.6 (TaHSP23.6), which belongs to the small heat shock protein family, was shown to interact with the WYMV coat protein (CP) in a yeast two-hybrid screen. The co-localization and interaction between TaHSP23.6 and WYMV CP were additionally verified in Nicotiana benthamiana by co-localization assays and bimolecular fluorescence complementation (BiFC). Not only the transcription of TaHSP23.6 but also that of other HSP family members (TaHSP70, TaHSP90, and TaHSP101) was up-regulated in WYMV-infected leaves, as shown by semi-quantitative PCR assays. Interestingly, the expression levels of the T. aestivum heat stress transcription factor A2 (TaHSFA2) members were varied in response to WYMV infection. Thus, our results provide insights into the interaction between TaHSP23.6 and WYMV infection.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de Choque Térmico Pequeñas/genética , Potyviridae/genética , Triticum/virología , Virus del Mosaico/genética , Virus del Mosaico/patogenicidad , Potyviridae/patogenicidad , Triticum/genética , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...