Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Int J Biol Macromol ; : 135584, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270915

RESUMEN

Puccinia striiformis f. sp. tritici (Pst) has a wide range and serious damage, which severely threatens global wheat production. In this study, we focused on an effector protein Pst3180.3, which was induced to be highly expressed during the Pst infection stage. The N-terminal 19 amino acid of Pst3180.3 was verified to function as a signal peptide and transferred to cytoplasm and nucleus of wheat following Pst infection. Transient overexpression of Pst3180.3 in Nicotiana benthamiana inhibited programmed cell death triggered via BAX. The instantaneous silencing of Pst3180.3 by BSMV- HIGS significantly reduced the number of uredinia and increased accumulation of reactive oxygen species. Those results indicated that Pst3180.3 is an important pathogenic factor of Pst. Interaction of Pst3180.3 with a transcription factor TaMYB4L in host was confirmed through yeast two-hybrid, luciferase complementation, and co-immunoprecipitation. Virus-induced gene silencing of TaMYB4L weakened the resistance to Pst, indicated that TaMYB4L may be involved in the positive regulation of plant immunity. Dual-luciferase assays revealed that Pst3180.3 inhibited the transcriptional activity of TaMYB4L. Meanwhile, molecular docking analysis identified the key residue sites for the interaction and binding between Pst3180.3 and MYB4L. Those results demonstrated that Pst3180.3 binds to TaMYB4L and interacts to inhibit wheat resistance to Pst infection.

2.
Mol Neurobiol ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150631

RESUMEN

Autophagy has been implicated in the pathogenesis and progression of spinal cord injury (SCI); however, its specific mechanisms remain unclear. This study is aimed at identifying potential molecular biomarkers related to autophagy in SCI through bioinformatics analysis and exploring potential therapeutic targets. The mRNA expression profile dataset GSE151371 was obtained from the GEO database, and R software was used to screen for differentially expressed autophagy-related genes (DE-ARGs) in SCI. A total of 39 DE-ARGs were detected in this study. Enrichment analysis, protein-protein interaction (PPI) network, TF-mRNA-miRNA regulatory network analysis, and the DSigDB database were used to investigate the regulatory mechanisms between DE-ARGs and identify potential drugs for SCI. Enrichment analysis revealed associations with autophagy, apoptosis, and cell death. PPI analysis identified the highest-scoring module and selected 10 hub genes to construct the TF-mRNA-miRNA network, revealing regulatory mechanisms. Analysis of the DSigDB database indicated that 1,9-Pyrazoloanthrone may be a potential therapeutic drug. Machine learning algorithms identified 3 key genes as candidate biomarkers. Additionally, immune cell infiltration results revealed significant correlations between PINK1, NLRC4, VAMP3, and immune cell accumulation. Molecular docking simulations revealed that imatinib can exert relatively strong regulatory effects on the three key proteins. Finally, in vivo experimental data revealed that the overall biological process of autophagy was disrupted. In summary, this study successfully identified 39 DE-ARGs and discovered several promising biomarkers, significantly contributing to our understanding of the underlying mechanisms of autophagy in SCI. These findings offer valuable insights for the development of novel therapeutic strategies.

3.
Small ; : e2404136, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115097

RESUMEN

Scoliosis often occurs in adolescents and seriously affects physical development and health. Traditionally, medical imaging is the most common means of evaluating the corrective effect of bracing during treatment. However, the imaging approach falls short in providing real-time feedback, and the optimal corrective force remains unclear, potentially slowing the patient's recovery progress. To tackle these challenges, an all-in-one integrated array of pressure sensors and sEMG electrodes based on hierarchical MXene/chitosan/polydimethylsiloxane (PDMS)/polyurethane sponge and MXene/polyimide (PI) is developed. Benefiting from the microstructured electrodes and the modulus enhancement of PDMS, the sensor demonstrates a high sensitivity of 444.3 kPa-1 and a broad linear detection range (up to 81.6 kPa). With the help of electrostatic attraction of chitosan and interface locking of PDMS, the pressure sensor achieves remarkable stability of over 100 000 cycles. Simultaneously, the sEMG electrodes offer exceptional stretchability and flexibility, functioning effectively at 60% strain, which ensures precise signal capture for various human motions. After integrating the developed all-in-one arrays into a commercial scoliosis brace, the system can accurately categorize human motion and predict Cobb angles aided by deep learning. This study provides real-time insights into brace effectiveness and patient progress, offering new ideas for improving the efficiency of scoliosis treatment.

4.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001135

RESUMEN

Mechanical equipment is composed of several parts, and the interaction between parts exists throughout the whole life cycle, leading to the widespread phenomenon of fault coupling. The diagnosis of independent faults cannot meet the requirements of the health management of mechanical equipment under actual working conditions. In this paper, the dynamic vertex interpretable graph neural network (DIGNN) is proposed to solve the problem of coupling fault diagnosis, in which dynamic vertices are defined in the data topology. First, in the date preprocessing phase, wavelet transform is utilized to make input features interpretable and reduce the uncertainty of model training. In the fault topology, edge connections are made between nodes according to the fault coupling information, and edge connections are established between dynamic nodes and all other nodes. Second the data topology with dynamic vertices is used in the training phase and in the testing phase, the time series data are only fed into dynamic vertices for classification and analysis, which makes it possible to realize coupling fault diagnosis in an industrial production environment. The features extracted in different layers of DIGNN interpret how the model works. The method proposed in this paper can realize the accurate diagnosis of independent faults in the dataset with an accuracy of 100%, and can effectively judge the coupling mode of coupling faults with a comprehensive accuracy of 88.3%.

5.
Clin Rheumatol ; 43(8): 2403-2416, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963465

RESUMEN

Systemic lupus erythematosus (SLE) is a common autoimmune disease with a polymorphic clinical presentation involving multisystem damages with significant differences in prevalence and disease severity among different ethnic groups. Although genetic, hormonal, and environmental factors have been demonstrated to contribute a lot to SLE, the pathogenesis of SLE is still unknown. Numerous evidence revealed that gene variants within the type I interferons (IFN) signaling pathway performed the great genetic associations with autoimmune diseases including SLE. To date, through genome-wide association studies (GWAS), genetic association studies showed that more than 100 susceptibility genes have been linked to the pathogenesis of SLE, among which TYK2, STAT1, STAT4, and IRF5 are important molecules directly connected to the type I interferon signaling system. The review summarized the genetic associations and the detailed risk loci of STAT4 and IRF5 with Asian SLE patients, explored the genotype distributions associated with the main clinical manifestations of SLE, and sorted out the potential reasons for the differences in susceptibility in Asia and Europe. Moreover, the therapies targeting STAT4 and IRF5 were also evaluated in order to propose more personalized and targeted treatment plans in SLE.


Asunto(s)
Pueblo Asiatico , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Factores Reguladores del Interferón , Interferón Tipo I , Lupus Eritematoso Sistémico , Factor de Transcripción STAT4 , Humanos , Factor de Transcripción STAT4/genética , Lupus Eritematoso Sistémico/genética , Factores Reguladores del Interferón/genética , Pueblo Asiatico/genética , Interferón Tipo I/genética , Polimorfismo de Nucleótido Simple , Transducción de Señal/genética
6.
Int J Biol Macromol ; 275(Pt 2): 133493, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960230

RESUMEN

Cotton has attracted considerable attention due to its functional characteristics. The focus of research on cotton has shifted in recent years towards designing multi-functional and modified media for cotton fibers, which can be firmly combined with textiles, giving them reusability and extending their service life. This study constructed a synergistic antibacterial layer of quaternary ammonium compounds (QACs) and N-halamine (Hals) using an in-situ free radical copolymerization method in water, named QACs/Hals@cotton-Cl. The route significantly increases the number of antibacterial active centers. FTIR, XPS, and SEM were used to systematically analyze the product's chemical structure, surface morphology, and other characteristics. The modified fabric's antibacterial efficiency, wound healing, renewability, and durability were also evaluated. The chlorinated modified cotton fabric could completely eradicate S. aureus and E. coli within 10 min. Compared with pure cotton, it notably promoted the healing rate of infected wounds in mice. The modification method imparted excellent hydrophobicity to the cotton fabric, with a contact angle exceeding 130°, making it easy to remove surface stains. After 30 days of regular storage and 24 h of UV irradiation, the active chlorine concentration (Cl+%) only decreased by 25 % and 39 %, respectively, and the reduced Cl+% was effectively recharged via simple re-chlorination. The hydrophobicity and antimicrobial properties of QACs/Hals@cotton-Cl remained stable even after 20 cycles of friction. This simple synthesis technique provides a convenient approach for the scalable fabrication of multifunctional and rechargeable antibacterial textiles, with potential applications in medical devices and personal hygiene protection.


Asunto(s)
Aminas , Antibacterianos , Fibra de Algodón , Escherichia coli , Staphylococcus aureus , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Ratones , Staphylococcus aureus/efectos de los fármacos , Aminas/química , Escherichia coli/efectos de los fármacos , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Textiles , Pruebas de Sensibilidad Microbiana
7.
RSC Adv ; 14(26): 18519-18527, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38860246

RESUMEN

The traditional pyridine nitrogen oxide-based antimicrobial agents are often associated with health risks due to heavy metal enrichment. To mitigate this concern, we synthesized two novel complexes, Pr2(mpo)6(H2O)2 and Pr(hpo)(mpo)2(H2O)2, and integrated rare-earth salts, Hhpo (2-hydroxypyridine-N-oxide) and Nampo (2-mercapto-pyridine-N-oxide sodium salt). These complexes were characterized through infrared analysis, elemental analysis, thermogravimetric analysis, and X-ray crystallographic analysis. Our comparative analyses demonstrate that the synthesized rare-earth complexes exhibit stronger antimicrobial activity against Staphylococcus aureus (S. aureus ATCC6538) and Escherichia coli (E. coli ATCC25922) compared to the ligands and rare-earth salts alone. Quantitative results revealed the lowest inhibitory concentrations of the two complexes against S. aureus ATCC6538 and E. coli ATCC25922 at 3.125 µg mL-1, 6.25 µg mL-1, 3.125 µg mL-1 and 6.25 µg mL-1, respectively. Preliminary investigations indicated that the antibacterial mechanism of these complexes involved promoting intracellular substance exudation to achieve antibacterial effects. Incorporation of these complexes into polymeric antimicrobial films resulted in a potent antimicrobial effect, achieving a 100% inhibition rate against S. aureus ATCC6538 and E. coli ATCC25922 at a low addition level of 0.6 wt%. Our results suggest that nitrogen oxide-based praseodymium complexes have potential for various antimicrobial applications.

8.
Int J Biol Macromol ; 271(Pt 2): 132529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777010

RESUMEN

The poor UV shielding property of PLA limit it further applications on food packaging. The rare-earth complex Eu(DBM)3phen converts absorbed ultraviolet (UV) light to red light, which inspires the development of new UV shielding materials. However, this complex has low photostability and decomposes easily under UV irradiation. Thus, we prepared a long-lasting rare-earth complex transluminant Eu(DBM)2(BP-2)phen by introducing BP-2 into Eu(DBM)3phen, and blended it with PLA to obtain PLA/Eu(DBM)2(BP-2)phen composite films. The test results showed that the complex could reduce the UV transmittance of PLA films by emitting luminescence and heat. The UV transmittance of the composite film with 0.5 % mass fraction decreased from 87.4 % to 7.7 %, compared to pure PLA films, and remained at 11.6 % after 12 days of UV aging. The film had long-lasting UV shielding performance, good transparency and mechanical properties. Finally, In the storage experiments of flaxseed oil, the P/E25 film effectively retarded the oxidation process of the oil.


Asunto(s)
Europio , Embalaje de Alimentos , Poliésteres , Rayos Ultravioleta , Poliésteres/química , Europio/química , Embalaje de Alimentos/métodos , Aceite de Linaza/química
9.
Int J Biol Macromol ; 271(Pt 1): 132636, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795567

RESUMEN

The synthesis and characterization of [Ce2(PPPA)4(OH)2]·4H2O, wherein PPPA denotes 3-(hydroxy(phenyl)phosphoryl)propanoate, were conducted. Its potential as a flame-retardant additive for poly(L-lactic acid) (PLA) in conjunction with ammonium polyphosphate (APP) was investigated. Remarkably, with just incorporation of the 1 % Ce-complex and 4 % APP, the resulting PLA composite (PLA-8) meets the V-0 standard, exhibiting an impressive limiting oxygen index (LOI) of 29.4 %. Moreover, the introduction of the Ce-complex leads to a significant extension of ignition time (TTI), a significant 24.1 % decrease in total heat release (THR) compared to pure PLA, and a notable increase in residual carbon rate from 0.3 % to 3.51 %. Although PLA-8 exhibits a minor decline of 8.7 % in tensile strength and 3.4 % in elongation at break, respectively, compared to pure PLA, there is a substantial improvement of 32.2 % in Young's modulus and 29.9 % in impact resistance. These results emphasise the potential of cerium-based phosphorus-containing flame retardants, with cerium playing a key role in enhancing the flammability characteristics of PLA. This study contributes to the development of sustainable and fire-resistant materials in polymer chemistry.


Asunto(s)
Cerio , Retardadores de Llama , Fósforo , Poliésteres , Retardadores de Llama/síntesis química , Poliésteres/química , Poliésteres/síntesis química , Cerio/química , Fósforo/química , Resistencia a la Tracción , Polifosfatos/química
10.
Adv Mater ; 36(26): e2313612, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574762

RESUMEN

Continuous monitoring of blood pressure (BP) and multiparametric analysis of cardiac functions are crucial for the early diagnosis and therapy of cardiovascular diseases. However, existing monitoring approaches often suffer from bulky and intrusive apparatus, cumbersome testing procedures, and challenging data processing, hampering their applications in continuous monitoring. Here, a heterogeneously hierarchical piezoelectric composite is introduced for wearable continuous BP and cardiac function monitoring, overcoming the rigidity of ceramic and the insensitivity of polymer. By optimizing the hierarchical structure and components of the composite, the developed piezoelectric sensor delivers impressive performances, ensuring continuous and accurate monitoring of BP at Grade A level. Furthermore, the hemodynamic parameters are extracted from the detected signals, such as local pulse wave velocity, cardiac output, and stroke volume, all of which are in alignment with clinical results. Finally, the all-day tracking of cardiac function parameters validates the reliability and stability of the developed sensor, highlighting its potential for personalized healthcare systems, particularly in early diagnosis and timely intervention of cardiovascular disease.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Presión Sanguínea , Análisis de la Onda del Pulso/instrumentación , Enfermedades Cardiovasculares/diagnóstico , Hemodinámica
11.
ACS Nano ; 18(17): 11183-11192, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38630641

RESUMEN

E-skins, capable of responding to mechanical stimuli, hold significant potential in the field of robot haptics. However, it is a challenge to obtain e-skins with both high sensitivity and mechanical stability. Here, we present a bioinspired piezoresistive sensor with hierarchical structures based on polyaniline/polystyrene core-shell nanoparticles polymerized on air-laid paper. The combination of laser-etched reusable templates and sensitive materials that can be rapidly synthesized enables large-scale production. Benefiting from the substantially enlarged deformation of the hierarchical structure, the developed piezoresistive electronics exhibit a decent sensitivity of 21.67 kPa-1 and a subtle detection limit of 3.4 Pa. Moreover, an isolation layer is introduced to enhance the interface stability of the e-skin, with a fracture limit of 66.34 N/m. Furthermore, the e-skin can be seamlessly integrated onto gloves without any detachment issues. With the assistance of deep learning, it achieves a 98% accuracy rate in object recognition. We anticipate that this strategy will render e-skin with more robust interfaces and heightened sensing capabilities, offering a favorable pathway for large-scale production.

12.
Molecules ; 29(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542890

RESUMEN

An unparalleled copper(I)-catalyzed synthesis of 1,3,4-oxadiazoles from tertiary amines in one step has been described. The one-pot reactions involving (N-isocyanimine)triphenylphosphorane, tertiary amines, and carboxylic acids resulted in the formation of 1,3,4-oxadiazoles in moderate to good yields through a consecutive oxidative Ugi/aza-Wittig reaction, enabling the direct functionalization of sp3 C-H bonds adjacent to the nitrogen atom. This method offered several notable advantages, including ligands-free, exceptional productivity and a high functional group tolerance. The preliminary biological evaluation demonstrated that compound 4f inhibited hepatoma cells efficiently, suggesting potentially broad applications of the approach for synthesis and medicinal chemistry.


Asunto(s)
Cobre , Compuestos Organofosforados , Oxadiazoles , Cobre/química , Oxadiazoles/química , Aminas/química , Catálisis , Estrés Oxidativo
13.
J Ginseng Res ; 48(2): 190-201, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465215

RESUMEN

Background: Deposition of immune complexes drives podocyte injury acting in the initial phase of lupus nephritis (LN), a process mediated by B cell involvement. Accordingly, targeting B cell subsets represents a potential therapeutic approach for LN. Ginsenoside compound K (CK), a bioavailable component of ginseng, possesses nephritis benefits in lupus-prone mice; however, the underlying mechanisms involving B cell subpopulations remain elusive. Methods: Female MRL/lpr mice were administered CK (40 mg/kg) intragastrically for 10 weeks, followed by measurements of anti-dsDNA antibodies, inflammatory chemokines, and metabolite profiles on renal samples. Podocyte function and ultrastructure were detected. Publicly available single-cell RNA sequencing data and flow cytometry analysis were employed to investigate B cell subpopulations. Metabolomics analysis was adopted. SIRT1 and AMPK expression were analyzed by immunoblotting and immunofluorescence assays. Results: CK reduced proteinuria and protected podocyte ultrastructure in MRL/lpr mice by suppressing circulating anti-dsDNA antibodies and mitigating systemic inflammation. It activated B cell-specific SIRT1 and AMPK with Rhamnose accumulation, hindering the conversion of renal B cells into plasma cells. This cascade facilitated the resolution of local renal inflammation. CK facilitated the clearance of deposited immune complexes, thus reinstating podocyte morphology and mobility by normalizing the expression of nephrin and SYNPO. Conclusions: Our study reveals the synergistic interplay between SIRT1 and AMPK, orchestrating the restoration of renal B cell subsets. This process effectively mitigates immune complex deposition and preserves podocyte function. Accordingly, CK emerges as a promising therapeutic agent, potentially alleviating the hyperactivity of renal B cell subsets during LN.

14.
ACS Appl Bio Mater ; 7(1): 104-113, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149377

RESUMEN

The pursuit of environmentally friendly and highly effective antifouling materials for marine applications is of paramount importance. In this study, we successfully synthesized novel rare earth-based complexes by coordinating cerium (Ce III), samarium (Sm III), and europium (Eu III) with pyrithione (1-hydroxy-2-pyridinethione; PT). Extensive characterizations were performed, including single-crystal X-ray analysis, which revealed the intriguing binuclear structure of these complexes. This structural motif comprises two rare-earth ions intricately double-bridged by two oxygen atoms from the PT ligand, resulting in a distinctive and intriguing geometry. Furthermore, the central rare earth ion is surrounded by three sulfur atoms and two additional oxygen atoms, forming a unique distorted bicapped trigonal prismatic configuration. Compared with conventional antifouling biocides such as sodium pyrithione (NaPT), copper pyrithione (CuPT), and zinc pyrithione (ZnPT), these newly synthesized rare-earth complexes exhibited a remarkable boost in their in vitro antibacterial efficacy against both Gram-positive and Gram-negative bacteria. Additionally, these complexes demonstrated significant potential as antialgal agents, displaying impressive activity against marine planktonic organisms. These findings underscore the promising application prospects of these rare-earth complexes in the field of marine antifouling.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Piridinas , Tionas , Antibacterianos/farmacología , Bacterias Grampositivas , Oxígeno
15.
Heliyon ; 9(12): e23093, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144284

RESUMEN

The volume fraction and rafting degree of the γ'-Ni3Al phase under stress and high temperature are the key characteristics of mechanical properties in Ni-based superalloys, the rafting and redissolution of γ' phase caused by the creep at high temperature damage the morphology and properties of Ni-based superalloys. The phase-field simulation is performed to study the rafting accompany with the redissolution of γ' phase under high temperature and loading stress in Ni-Al alloy, the driving force and kinetics evolution of the γ' rafting were revealed. During the rafting under continuous heating, the elastic energy in the vertical γ channel is different to that of the horizontal γ channel, this difference in elastic energy drives the elements diffusion directionally to form the γ' rafts morphology. With the increased tensile stress, the decrease of specific surface of the γ' phase slows down the redissolution, a higher volume fraction is reserved for the rafted γ' phase. With temperature increases, the interface of γ/γ' phase becomes more diffusional and wider under stress. The results give an insight on the rafting mechanism of γ' phase and the kinetics evolution in Ni-based superalloys under excess temperature.

16.
Int J Biol Macromol ; 253(Pt 7): 127291, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37806420

RESUMEN

Resolving the flammability of poly(L-lactic acid) (PLA) while ensuring its environmental friendliness and preserving key flame retardancy and mechanical properties represents a critical challenge. We have successfully developed a highly efficient and environmentally friendly flame retardant called Hexamethylenediamine tetramethylene phosphonic acid amine (HDME). The flame retardancy of PLA/HDME composites was significantly improved, as indicated by the LOI value of 29.1 % and UL-94 V-0 rating for PLA/3.5 HDME with only 3.5 % HDME addition. The results show a 23.4 % reduction in the total heat release (THR), a 40.0 % increase in the time to ignition (TTI), and a 21.2 % increase in the flame propagation index (FPI) compared to original PLA. Flame retardant mechanism of HDME involves the gas phase, condensed phase, and interrupted heat exchange effects. The HDME also preserved the original mechanical properties of PLA, with the elongation at break and tensile strength retention of PLA/3.5 HDME reaching 93.05 % and 89.65 %. This work provides a simple and efficient method for flame retardant modification of PLA, which can expand its application scope.


Asunto(s)
Ciclobutanos , Retardadores de Llama , Poliésteres , Aminas
17.
Environ Pollut ; 336: 122507, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37673318

RESUMEN

Lake microbiomes are essential indicators of lake health and are strongly influenced by allochthonous microbial communities from various sources within the watershed. However, quantifying the contributions of multiple inputs to lake microbiomes is challenging because of the complex nature of river‒lake systems and the presence of many untraceable sources. Here, Jianhu Lake‒‒a geographically simple and closed plateau lake in southwestern China, was surveyed to disentangle the contributions of five distinct sources (three input rivers that receive town sewage, stormwater runoff, and creek spring water, as well as two nonpoint sources, duck ponds and dry farmland) to the overall lake microbiomes. We found that feces-loading sources, namely town sewage and duck aquaculture, accounted for 48.7% of the total variations in lake microbiomes. In contrast, the combined contribution of the remaining three sources amounted to 13.21%, despite these less-influential sources (e.g., stormwater runoff) may introduce an even larger volume of allochthonous materials into the lake. In addition, approximately 38.1% of the variations in the lake microbiomes were attributed to unknown sources. Sewage effluents also caused a significant loss of lake microbial diversity, and there was a tendency for large-scale microbial homogeneity in lake sediments that resembled those from duck ponds. We then used a targeted approach to track host-specific fecal pollution, and found that human feces were the primary source, followed by ruminant and chicken/duck feces, all of which can be successfully traced back to the feces-loading sources. In our further modelling of sediment transport from three rivers into the whole lake, we observed a significant relationship between sediment accumulation and adsorbed microorganisms only for the sewage-receiving river. Together, lines of evidence indicate that both point and nonpoint fecal-related anthropogenic sources possess discriminatory power for shaping microbial geographic patterns of the lake, posing threats to the survival of local indigenous lake microbiomes.

18.
Mater Horiz ; 10(11): 5045-5052, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37655796

RESUMEN

Advanced flexible electronic devices make urgent demand for wearing comfort and data accuracy. Piezoelectric composites exhibit great potential, but mutually constrained mechanical strength and electrical output limit their further applications. Here, we design a gradient PMN-PT/PVDF nanocomposite via a non-equilibrium process integrated with a modified electrospinning and hot-pressing process to modulate the piezoelectric output and mechanical strength. The enhanced piezoelectric output together with the mechanical strength of the gradient structure are verified from both the experimental and simulation results. Ascribed to a unique three-dimensional gradient distribution, the prepared PMN-PT/PVDF nanocomposite exhibits an excellent mechanical strength (830 MPa) and piezoelectric performance (1.08 V), which are substantially higher than those of a randomly dispersed nanocomposite. The enhancement mechanism is revealed in terms of polarization, stress and crystallinity. These results of the gradient structure offer new opportunities to understand the structure-related mechanical and electrical behaviors of a nanocomposite, and support the design of a nanocomposite with overall performance.

19.
PeerJ Comput Sci ; 9: e1386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346543

RESUMEN

The goal of local community detection algorithms is to explore the optimal community with a reference to a given node. Such algorithms typically include two primary processes: seed selection and community expansion. This study develops and tests a novel local community detection algorithm called OIRLCD that is based on the optimization of interaction relationships between nodes and the community. First, we introduce an improved seed selection method to solve the seed deviation problem. Second, this study uses a series of similarity indices to measure the interaction relationship between nodes and community. Third, this study uses a series of algorithms based on different similarity indices, and designs experiments to reveal the role of the similarity index in algorithms based on relationship optimization. The proposed algorithm was compared with five existing local community algorithms in both real-world networks and artificial networks. Experimental results show that the optimization of interaction relationship algorithms based on node similarity can detect communities accurately and efficiently. In addition, a good similarity index can highlight the advantages of the proposed algorithm based on interaction optimization.

20.
Front Aging Neurosci ; 15: 1109914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37009459

RESUMEN

Background: Previous studies reported inconsistent results regarding association between diabetes mellitus (DM), prediabetes and risk, disease progression of Parkinson's disease (PD). The meta-analysis was made to investigate association between DM, prediabetes and risk, disease progression of PD. Methods: Literatures investigating association between DM, prediabetes and risk, disease progression of PD were searched in these databases: PubMed and Web of Science. Included literatures were published before October 2022. STATA 12.0 software was used to compute odds ratios (ORs)/relative risks (RRs) or standard mean differences (SMDs). Results: DM was associated with a higher risk of PD, compared to non-diabetic participants with a random effects model (OR/RR = 1.23, 95% CI 1.12-1.35, I 2 = 90.4%, p < 0.001). PD with DM (PD-DM) was associated with a faster motor progression compared to PD without DM (PD-noDM) with a fixed effects model (RR = 1.85, 95% CI 1.47-2.34, I 2 = 47.3%, p = 0.091). However, meta-analysis for comparison in change rate of United Rating Scale (UPDRS) III scores from baseline to follow-up time between PD-DM and PD-noDM reported no difference in motor progression between PD-DM and PD-noDM with a random effects model (SMD = 2.58, 95% CI = -3.11 to 8.27, I 2 = 99.9%, p < 0.001). PD-DM was associated with a faster cognitive decline compared to PD-noDM with a fixed effects model (OR/RR = 1.92, 95% CI 1.45-2.55, I 2 = 50.3%, p = 0.110). Conclusions: In conclusion, DM was associated with a higher risk and faster disease decline of PD. More large-scale cohort studies should be adopted to evaluate the association between DM, prediabetes and PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA