Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14410, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909098

RESUMEN

Infrared thermal imaging camera as a non-contact monitoring of the object to be measured is widely used in fire detection, driving assistance and so on. Although there are many related studies, there is a lack of research on the influence of fog or smoke on infrared imaging under different environmental temperatures. To address this shortcoming, The temperature of both the environment and the target in this experiment is controlled by PID technology. The smoke or fog environment is generated using a smoke cake or an ultrasonic fog machine. The temperature of the target was measured by infrared thermal imaging camera. It was observed that as the temperature of the environment increases, the measured temperature of the target also increases. However, the change in temperature is more pronounced in the fog environment compared to either the smoke environment or the normal environment. It has been found through research that environmental radiation causes temperature changes in fog droplets. Therefore, Infrared radiation is less affected in the smoke environment and more affected in the fog environment. Additionally, when the environmental temperature is close to the target's temperature, the infrared image becomes blurred.

2.
Adv Mater ; 36(9): e2307490, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37939231

RESUMEN

Photocatalytic technology based on carbon nitride (C3 N4 ) offers a sustainable and clean approach for hydrogen peroxide (H2 O2 ) production, but the yield is severely limited by the sluggish hot carriers due to the weak internal electric field. In this study, a novel approach is devised by fragmenting bulk C3 N4  into smaller pieces (CN-NH4 ) and then subjecting it to a directed healing process to create multiple order-disorder interfaces (CN-NH4 -NaK). The resulting junctions in CN-NH4 -NaK significantly boost charge dynamics and facilitate more spatially and orderly separated redox centers. As a result, CN-NH4 -NaK demonstrates outstanding photosynthesis of H2 O2 via both two-step single-electron and one-step double-electron oxygen reduction pathways, achieving a remarkable yield of 16675 µmol h-1  g-1 , excellent selectivity (> 91%), and a prominent solar-to-chemical conversion efficiency exceeding 2.3%. These remarkable results surpass pristine C3 N4 by 158 times and outperform previously reported C3 N4 -based photocatalysts. This work represents a significant advancement in catalyst design and modification technology, inspiring the development of more efficient metal-free photocatalysts for the synthesis of highly valued fuels.

3.
J Hazard Mater ; 465: 133193, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38103298

RESUMEN

Electro-Fenton (EF) is considered to be an effective technology for the purification of organic wastewater containing antibiotics, but the construction of accessible and efficient heterogeneous EF catalytic materials still faces challenges. In this study, an iron foam-derived electrode (FeOx/if-400) was prepared by a simple method (chemical oxidation combined heat treatment). The fabricated electrode presented great EF degradation efficiency under wide pH range (almost completely removing 50 mg L-1 TNZ within 60 min) and maintained great stability after consecutive operation (>95% removal after six cycles). Also, the FeOx/if-400 electrode showed good purification ability for pharmaceutical wastewater as evaluated by the quadrupole time-of-flight mass spectrometry and the three-dimensional excitation-emission matrix fluorescence spectroscopy. Based on experimental results, characterization analysis, and density functional theory (DFT) calculations, the EF reaction mechanism of FeOx/if-400 electrode and the organics degradation pathways in simulated and real matrices were proposed. Significantly, the biotoxicity assessment of the degradation intermediate products was revealed by ECOSAR software and relative inhibition of E. coli, which fully proved the environmental friendliness of the EF process by the FeOx/if-400 cathode. This work provides a green and effective EF system, showing a promising application potential in the field of organic wastewater treatment containing antibiotic contaminants.


Asunto(s)
Compuestos Férricos , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Hierro/química , Escherichia coli , Antibacterianos , Oxidación-Reducción , Electrodos , Purificación del Agua/métodos , Preparaciones Farmacéuticas , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química
4.
Front Neurorobot ; 17: 1271607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781411

RESUMEN

In this paper, we propose a deep reinforcement learning-based framework that enables adaptive and continuous control of a robot to push unseen objects from random positions to the target position. Our approach takes into account contact information in the design of the reward function, resulting in improved success rates, generalization for unseen objects, and task efficiency compared to policies that do not consider contact information. Through reinforcement learning using only one object in simulation, we obtain a learned policy for manipulating a single object, which demonstrates good generalization when applied to the task of pushing unseen objects. Finally, we validate the effectiveness of our approach in real-world scenarios.

5.
Environ Sci Pollut Res Int ; 30(48): 105685-105699, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37715914

RESUMEN

In this work, efficient Fenton strategy have been proposed for degradation of shale gas fracturing flow-back wastewater using the spherical Fe/Al2O3 supported catalyst. Prior to actual fracturing fluid treatment, the typical model wastewaters such as p-nitrophenol and polyacrylamide were employed to evaluate the catalytic properties of prepared catalyst, and then Fenton treatment of the shale gas fracturing flow-back wastewater was performed on the self-assembled catalytic degradation reactor for continuous flow purification. Results showed that under the conditions of 0.25 mol L-1 impregnating concentration, pH 4, 50 g L-1 catalyst and 0.75 mL L-1 30% H2O2, the removal efficiency of p-nitrophenol and polyacrylamide reached 74% and 61%, respectively, while the COD removal of fracturing flow-back fluid was approximately 48% with the residual 88 mg L-1 COD, meeting the emission standards of the integrated wastewater discharge standard (GB 8978-1996, COD < 100 mg L-1). This work offers new alternatives for Fenton treatment of real wastewater by efficient and low-cost supported catalysts.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Gas Natural , Eliminación de Residuos Líquidos/métodos , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química , Minerales , Oxidación-Reducción
6.
Sensors (Basel) ; 23(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687828

RESUMEN

Thermal infrared imaging is less affected by lighting conditions and smoke compared to visible light imaging. However, thermal infrared images often have lower resolution and lack rich texture details, making them unsuitable for stereo matching and 3D reconstruction. To enhance the quality of infrared stereo imaging, we propose an advanced stereo matching algorithm. Firstly, the images undergo preprocessing using a non-local mean noise reduction algorithm to remove thermal noise and achieve a smoother result. Subsequently, we perform camera calibration using a custom-made chessboard calibration board and Zhang's camera calibration method to obtain accurate camera parameters. Finally, the disparity map is generated using the SGBM (semi-global block matching) algorithm based on the weighted least squares method, enabling the 3D point cloud reconstruction of the object. The experimental results demonstrate that the proposed algorithm performs well in objects with sufficient thermal contrast and relatively simple scenes. The proposed algorithm reduces the average error value by 10.9 mm and the absolute value of the average error by 1.07% when compared with the traditional SGBM algorithm, resulting in improved stereo matching accuracy for thermal infrared imaging. While ensuring accuracy, our proposed algorithm achieves the stereo reconstruction of the object with a good visual effect, thereby holding high practical value.

7.
Nanomaterials (Basel) ; 13(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770460

RESUMEN

Photocatalysis plays a vital role in sustainable energy conversion and environmental remediation because of its economic, eco-friendly, and effective characteristics. Nitrogen-rich graphitic carbon nitride (g-C3N5) has received worldwide interest owing to its facile accessibility, metal-free nature, and appealing electronic band structure. This review summarizes the latest progress for g-C3N5-based photocatalysts in energy and environmental applications. It begins with the synthesis of pristine g-C3N5 materials with various topologies, followed by several engineering strategies for g-C3N5, such as elemental doping, defect engineering, and heterojunction creation. In addition, the applications in energy conversion (H2 evolution, CO2 reduction, and N2 fixation) and environmental remediation (NO purification and aqueous pollutant degradation) are discussed. Finally, a summary and some inspiring perspectives on the challenges and possibilities of g-C3N5-based materials are presented. It is believed that this review will promote the development of emerging g-C3N5-based photocatalysts for more efficiency in energy conversion and environmental remediation.

8.
J Colloid Interface Sci ; 632(Pt A): 117-128, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410293

RESUMEN

Increasing water pollution has imposed great threats to public health, and made efficient monitoring and remediation technologies critical to a clean environment. In this study, a versatile heterojunction of Au nanoparticles modified phosphorus doped carbon nitride (Au/P-CN) is designed and fabricated. The Au/P-CN heterostructure demonstrates improved light absorption, rapid separation of charge carriers, and improved electrical conductivity. Taking the toxic 4-chlorophenol (4-CP) as an example, an ultrasensitive photoelectrochemical (PEC) sensor is successfully demonstrated, exhibiting a wide linear range (0.1-52.1 µM), low detection limit (∼0.02 µM), significant stability and selectivity, as well as reliable analysis in real samples. Moreover, efficient photocatalytic degradation with a high removing efficiency (∼87%) toward 4-CP is also achieved, outperforming its counterpart of Au nanoparticles (NPs) modified graphitic carbon nitride (Au/g-CN, ∼59%). This work paves a new way for efficient and simultaneous detection and remediation of organic pollutants over versatile photoactive catalysts.


Asunto(s)
Oro , Nanopartículas del Metal , Fósforo
9.
J Colloid Interface Sci ; 631(Pt A): 133-142, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36375298

RESUMEN

Photoelectrochemical (PEC) reaction with efficient, stable, and cost-effective photocathodes using non-precious metals will be one of the most environmentally friendly technologies for hydrogen (H2) generation under the worldwide pressure for carbon neutrality. Herein, a new 3-dimentional (3D) SiNWs@MoS2/NiS2 photocathode was designed and synthesized. Defect-rich MoS2/NiS2 nanosheets on silicon nanowires (SiNWs) provide more active sites to promote charge transfer and photo-generated electron-hole separation. Meanwhile, the 3D structure of the photocathode provides an effective charge transfer mode and an open channel for rapid H2 release. The SiNWs@MoS2/NiS2 photocathode exhibits the maximum photocurrent density (21.4 mA·cm-2 at 0.9 V vs. RHE), highest H2 production rate (183 µmol·h-1), smallest diffusion resistance (34.7 Ω), and excellent catalytic stability for more than 10 h at pH = 7. Based on density function theory calculation, the MoS2/NiS2 nanosheets are conducive to chemical adsorption of H2 intermediates, which are crucial for the maintenance of the composite photocathode in PEC H2 production.

10.
Dalton Trans ; 51(47): 18317-18328, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36416140

RESUMEN

Traditional approaches to synthesizing bismuth nanoparticle decorated carbon nitride (C3N4) materials suffer from the complex synthesis process and the addition of a surfactant, which is not conducive to environmental protection. To address these problems, we adopted a simple and green flux-assisted approach for the first time to fabricate metallic bismuth nanoparticle decorated C3N4 (BiCCN). Electron microscopy results suggested that bismuth vanadate was converted into small bismuth nanoparticles via the flux-assisted approach. Highly dispersed Bi nanoparticles dramatically intensify light absorption, facilitate spatial charge separation as electron acceptors, shorten the charge diffusion length, and reserve more active sites for generating reactive species via surface photo-redox reactions. Consequently, the derived optimized photocatalyst BiCCN-15 rendered around 26 times higher photocatalytic degradation efficiency toward an endocrine disrupting compound (bisphenol A) than C3N4. This work provides a novel approach for developing non-precious metal decorated photocatalytic materials for sustainable water decontamination.


Asunto(s)
Bismuto
11.
Langmuir ; 38(42): 12841-12848, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36215102

RESUMEN

Though superliquid-repelling surfaces are universally important in the fields of fundamental research and industrial production, the understanding and development of these surfaces to impacting liquid droplets remain elusive, especially the changes of wettability states. Surface roughness is required to obtain superliquid-repelling surfaces. However, the effect of surface roughness on the transition of these surfaces' wettability states is uncertain. Herein, we unveiled the relationship of surface roughness on regulating the wettability states of superliquid-repelling surfaces with randomly distributed rough structures through experiment and calculations. The roughness was controlled via regulating the size of surface rough structures, which were formed by a facile coating method. The results indicated that the surface rough structures could impact the value of the polar component (γsp) and then impact the wettability states of superliquid-repelling surfaces. Quantitatively, when the increment of surface roughness was low, the decrement of γsp was low and the wettability state of the superliquid-repelling surface was superhydrophobicity. When the increment of surface roughness was high, the decrement of γsp was high and the wettability state of the superliquid-repelling surface converted to superamphiphobicity. The findings will shed light onto the development of superliquid-repelling surfaces in future studies.

12.
J Colloid Interface Sci ; 628(Pt B): 831-839, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36029597

RESUMEN

The construction of hybrid catalysts composed of inorganic semiconductors and molecular catalysts shows great potential for achieving high photocatalytic carbon dioxide (CO2) conversion efficiency. In this study, ZnIn2S4 was first synthesized via a solvothermal route. Gold (Au) and silver (Ag) nanoparticles were then deposited on ZnIn2S4 via the reduction of noble metal precursor by sulfur vacancy defects. The obtained composite was further combined with tetra(4-carboxyphenyl)porphyrin iron(III) chloride (FeTCPP) molecular catalyst for efficient photocatalytic CO2 conversion. The roles of different noble metal nanoparticles in charge separation and interfacial electron transfer have been comprehensively studied. The photocatalytic performance and photoelectrochemical characterizations demonstrate that the introduction of Ag or Au nanoparticles is beneficial for charge separation. More importantly, the presence of Ag nanoparticles plays a crucial role in promoting the interfacial charge transfer between ZnIn2S4 and FeTCPP, whereas, Au nanoparticles function as active sites for the water reduction reaction.

13.
Langmuir ; 38(2): 828-837, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-34984900

RESUMEN

Graphitic carbon nitride (g-C3N4) has attracted extensive research attention because of its virtues of a metal-free nature, feasible synthesis, and excellent properties. However, the low specific surface area and mediocre charge separation dramatically limit the practical applications of g-C3N4. Herein, porous nitrogen defective g-C3N4 (PDCN) was successfully fabricated by the integration of urea-assisted supramolecular assembly with the polymerization process. Advanced characterization results suggested that PDCN exhibited a much larger specific surface area and dramatically improved charge separation compared to bulk g-C3N4, leading to the formation of more active sites and the improvement in mass transfer. The synthesized PDCN rendered a 16-fold increase in photocatalytic tetracycline degradation efficiency compared to g-C3N4. Additionally, the hydrogen evolution rate of PDCN was 10.2 times higher than that of g-C3N4. Meanwhile, the quenching experiments and electron spin resonance (ESR) spectra suggested that the superoxide radicals and holes are the predominant reactive species for the photocatalytic degradation process. This study may inspire the new construction design of efficient g-C3N4-based visible-light photocatalysts.

14.
J Colloid Interface Sci ; 607(Pt 2): 1603-1612, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34592547

RESUMEN

Crystalline carbon nitride is regarded as the new generation of emerging metal-free photocatalysts as opposed to polymeric carbon nitride (g-C3N4) because of its high crystalline structure and ultrahigh photocatalytic water splitting performance. However, further advances in crystalline g-C3N4 are significantly restricted by the sluggish separation of charge carriers and limited active sites. In this study, we demonstrate the successful synthesis of heptazine-triazine donor-acceptor-based ultrathin crystalline g-C3N4 nanosheets (UCCN) using a combined hot air exfoliation and molten salt (NaCl/KCl) copolymerization approach. The synergy of the donor-acceptor heterojunction and the ultrathin structure greatly accelerated the separation of the charge carriers and enriched the active sites. Accordingly, the superior hydrogen evolution activity and an ultrahigh apparent quantum efficiency of 73.6% at 420 nm under a natural photosynthetic environment were achieved by UCCN, positioning this material at the top among reported conjugated g-C3N4 materials. This study provides a novel paradigm for the development of donor-acceptor-based ultrathin crystalline layered materials.


Asunto(s)
Hidrógeno , Nitrilos , Agua
15.
J Hazard Mater ; 423(Pt A): 127033, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34481397

RESUMEN

In this work, the bimetallic iron oxide self-supported electrode was prepared by a simple solvothermal as well as thermal method. CoFe2O4 magnetic nanoparticles were grown in situ on the CFP surface and characterized to reveal the morphology, composition, and electrochemical properties of the electrode. Compared to CFP and CFP@Co-Fe, CFP@CoFe2O4 equipped more efficient mineralization current efficiency and lower energy consumption due to the improved electrocatalytic capacity of CoFe2O4 properly grown on the conductive substrate surface. Further studies showed that the manufactured electrode maintained a high level of stability after continuous operation. According to the free radical trapping experiment, EPR, and liquid mass spectrometry analysis, the rational reaction mechanism of p-nitrophenol was finally proposed, in which ·OH and SO4·- were considered as the main active oxidants. This work demonstrated the great potential of establishing an electro-Fenton system based on CoFe2O4 immobilized self-supporting cathode for environmental remediation.

16.
ACS Omega ; 6(34): 22165-22172, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34497907

RESUMEN

Natural compounds that either increase or decrease polymerization of actin into filaments have become indispensable tools for cell biology. However, to date, it was not possible to use them as therapeutics due to their overall cytotoxicity and their unfavorable pharmacokinetics. Furthermore, their synthesis is in general quite complicated. In an attempt to find simplified analogues of miuraenamide, an actin nucleating compound, we identified derivatives with a paradoxical inversion of the mode of action: instead of increased nucleation, they caused an inhibition. Using an extensive computational approach, we propose a binding mode and a mode of action for one of these derivatives. Based on our findings, it becomes feasible to tune actin-binding compounds to one or the other direction and to generate new synthetic actin binders with increased functional selectivity.

17.
Chem Asian J ; 16(21): 3371-3384, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34431617

RESUMEN

The construction of a heterogeneous nanocatalyst with outstanding catalytic performance via an environmentally benign and cost-effective synthetic category has long been one of the challenges in nanotechnology. Herein, we synthesized highly efficient and low-cost mesoporous morphology-dependent CuO/CeO2 -Rods and CuO/CeO2 -Cubes catalysts by employing a green and multifunctional polyphenolic compound (tannic acid) as the stabilizer and chelating agent for 4-nitrophenol (4-NP) reduction reaction. The CuO/CeO2 -Rods exhibited excellent performance, of which the activity was 3.2 times higher than that of CuO/CeO2 -Cubes. This can be connected with the higher density of oxygen vacancy on CeO2 -Rods (110) than CeO2 -Cubes (100), the oxygen vacancy favors anchoring CuO species on the CeO2 support, which promotes the strong interaction between finely dispersed CuO and CeO2 -Rods at the interfacial positions and facilitates the electron transfer from BH4 - to 4-NP. The synergistic catalytic mechanism illustrated that 4-NP molecules preferentially adsorbed on the CeO2 , while H2 from BH4 - dissociated over CuO to form highly active H* species, contributing to achieving efficient hydrogenation of 4-NP. This study is expected to shed light on designing and synthesizing cost-effective and high-performance nanocatalysts through a greener synthetic method for the areas of catalysis, nanomaterial science and engineering, and chemical synthesis.

18.
J Colloid Interface Sci ; 604: 500-507, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34274713

RESUMEN

Design of highly efficient heterojunctions for photocatalytic hydrogen evolution is of significant importance to address the energy shortage and environmental crisis. Nevertheless, the smart design of semiconductor-based heterojunctions at the atomic scale still remains a significant challenge hitherto. Herein, we report novel atomic CdS/ZnIn2S4 heterojunctions by in-situ epitaxially growing 2D ZnIn2S4 nanosheets onto the surface of 1D defective CdS nanorods. The strong electronic coupling between defective CdS and ZnIn2S4 is confirmed by transient photocurrent response measurements, •O2- and •OH radicals experiments, and PL results, leading to accelerated interfacial charge separation and transfer. Additionally, the elevated charge transfer and electronic coupling are further confirmed by theoretical calculations. Consequently, CdS/ZnIn2S4 hybrids exhibit superior photocatalytic hydrogen generation activity to pristine CdS. Our findings offer a new paradigm for designing atomic 1D/2D heterojunctions for efficient solar-driven energy conversion.

19.
Sci Total Environ ; 796: 148931, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34280641

RESUMEN

Solar driven photoelectrochemical (PEC) hydrogen production has attracted considerable attention, but the design of highly efficient, robust and low-cost photocathode still remains a significant challenge. Herein, we report a novel SiNWs@Co3O4Z-scheme heterojunction photocathode with carbon quantum dots eco-friendly derived from sludge (SCQDs) as the co-catalyst. The photocathode not only leads to effective separation of electron-hole pair, lower transmission resistance, and longer lifetime of charge carriers, but also elevates the stability by preventing direct contact between the SiNWs and the electrolyte as well as the self-oxidation. Simultaneously, the excellent electron transport properties of the SCQDs further improved the PEC performance. Correspondingly, a maximum current density of 14.88 mA·cm-2 was obtained at -0.67 V with the applied bias photon-to-current efficiency (ABPE) achieving 8.4% under visible light irradiations at pH = 7. This work provides a promising scheme for Si-based photocathodes for PEC hydrogen production with a high performance, reliable stability, and low-cost.


Asunto(s)
Puntos Cuánticos , Carbono , Catálisis , Hidrógeno , Aguas del Alcantarillado
20.
Sensors (Basel) ; 21(14)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34300628

RESUMEN

Orthogonal frequency division multiplexing (OFDM) has been widely adopted in underwater acoustic (UWA) communication due to its good anti-multipath performance and high spectral efficiency. For UWA-OFDM systems, channel state information (CSI) is essential for channel equalization and adaptive transmission, which can significantly affect the reliability and throughput. However, the time-varying UWA channel is difficult to estimate because of excessive delay spread and complex noise distribution. To this end, a novel Bayesian learning-based channel estimation architecture is proposed for UWA-OFDM systems. A clustered-sparse channel distribution model and a noise-resistant channel measurement model are constructed, and the model hyperparameters are iteratively optimized to obtain accurate Bayesian channel estimation. Accordingly, to obtain the clustered-sparse distribution, a partition-based clustered-sparse Bayesian learning (PB-CSBL) algorithm was designed. In order to lessen the effect of strong colored noise, a noise-corrected clustered-sparse channel estimation (NC-CSCE) algorithm was proposed to improve the estimation accuracy. Numerical simulations and lake trials are conducted to verify the effectiveness of the algorithms. Results show that the proposed algorithms achieve higher channel estimation accuracy and lower bit error rate (BER).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...