Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 9: 888580, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619956

RESUMEN

Salmonella enterica serovar Enteritidis (SE) is one of the most common pathogens associated with poultry health and foodborne Salmonellosis worldwide. The gut plays a pivotal role in inhibiting SE transintestinal transmission and contaminating poultry products. The nutritional status of vitamin D (VD) is involved in gut health apart from bone health. However, the impact of VD3 nutritional status on the gut health of Salmonella-challenged hens is rarely investigated. This study investigated the impact and possible mechanisms of VD3 nutritional status on the gut health of hens challenged with SE. Hens were fed basal diets with either 0 (deficient) or 3000 IU (sufficient) VD3/kg of diet, respectively. After 10 weeks of feeding, half of the hens were orally inoculated with either SE (1 × 109 CFU /bird). Results indicated that VD3 sufficiency reversed the disruptive effects on the laying performance of hens caused by Salmonella challenge or VD3 insufficiency by promoting VD3 metabolism. In addition, VD3 sufficiency ameliorated gut injury induced by either Salmonella or VD3 deficiency, shown by reducing Salmonella load and histopathological scores, suppressing TLR4-mediated inflammatory responses, and increasing expression of TJs along with decreasing pro-apoptotic protein expression and the number of TUNEL-positive cells in the jejunum. Besides, VD3 enriched the abundance of probiotics, such as Lactobacillus and Bacilli, and restored the balance of gut microflora. Collectively, dietary VD3 sufficient supplementation could alleviate Salmonella or VD3 deficiency-induced intestinal damage of hens via modulating intestinal immune, barrier function, apoptosis along with gut microbiota composition, revealing that VD3 could act as a novel nutritional strategy defending Salmonella invasion in hens.

2.
Entropy (Basel) ; 22(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33285967

RESUMEN

With the advent of the information age, the effective identification of sensitive information and the leakage of sensitive information during the transmission process are becoming increasingly serious issues. We designed a sensitive information recognition and encryption transmission system based on a decision tree. By training sensitive data to build a decision tree, unknown data can be classified and identified. The identified sensitive information can be marked and encrypted to achieve intelligent recognition and protection of sensitive information. This lays the foundation for the development of an information recognition and encryption transmission system.

3.
Anim Sci J ; 88(12): 2033-2043, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28730689

RESUMEN

The aim of this study was to determine the relationships among muscle fiber-type composition, fiber diameter, and myogenic regulatory factor (MRF) gene expression in different skeletal muscles during development in naturally grazing Wuzhumuqin sheep. Three major muscles (i.e. the Longissimus dorsi (LD), Biceps femoris (BF) and Triceps brachii (TB)) were obtained from 20 Wuzhumuqin sheep and 20 castrated rams at each of the following ages: 1, 3, 6, 9, 12 and 18 months. Muscle fiber-type composition and fiber diameter were measured using histochemistry and morphological analysis, and MRF gene expression levels were determined using real-time PCR. In the LD muscle, changes in the proportion of each of different types of fiber (I, IIA and IIB) were relatively small. In the BF muscle, a higher proportion of type I and a 6.19-fold lower proportion of type IIA fibers were observed (P < 0.05). In addition, the compositions of type I and IIA fibers continuously changed in the TB muscle (P < 0.05). Moreover, muscle diameter gradually increased throughout development (P < 0.05). Almost no significant difference was found in MRF gene expression patterns, which appeared to be relatively stable. These results suggest that changes in fiber-type composition and increases in fiber size may be mutually interacting processes during muscle development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Expresión Génica , Herbivoria/fisiología , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Ovinos/crecimiento & desarrollo , Ovinos/genética , Animales , Músculo Esquelético/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA