Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Total Environ ; 877: 162970, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-36958560

Knowledge of hydrogen isotopic fractionation (ε) of plant leaf waxes is the foundation for applying hydrogen isotope values (δ2H) in environmental reconstructions. In this work, we systematically investigated plant ε values (εalk/precipitation, εalk/soil water, εalk/leaf water and εalk/lake water, representing the isotopic fractionation between plant n-alkane δ2H and precipitation δ2H, soil water δ2H, leaf water δ2H and lake water δ2H) from the natural environments and manipulation experiments. The results show that the εalk/precipitation values of terrestrial plants have large variations (from -190 ‰ to -20 ‰) and become more negative with increasing aridity index. This phenomenon is possibly caused by the δ2H changes in source water (from precipitation to soil water and then to leaf water) during plant leaf wax synthesis under various evapotranspiration conditions in different climatic zones. The rainfall manipulation experiments show that leaf water δ2H values are generally higher than soil water δ2H values, and the latter are higher than precipitation δ2H values. This finding further demonstrates that the evapotranspiration effect on source water δ2H affects the quantification of the leaf wax apparent ε values (εalk/leaf water < Îµalk/soil water < Îµalk/precipitation). The εalk/lake water values of submerged plants display a smaller range (-153 ± 5 ‰) than the εalk/precipitation values of terrestrial plants, which is close to the terrestrial εalk/precipitation values in humid areas. Therefore, the biosynthetic ε value of terrestrial plant leaf waxes is relatively constant (ca. -153 ± 5 ‰), and the observed variable apparent εalk/precipitation values are possibly caused by the varied degree of evapotranspiration effect on the water that plants used in different climatic conditions. This effect should be considered when applying δ2H values of leaf waxes to trace environmental changes.

2.
Sci Total Environ ; 807(Pt 3): 151040, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-34673055

The extensive use of antibiotics for treating humans, animals, and plants has resulted in the contamination of aquatic environments, posing a potential threat to public health and aquatic life; hence, this topic is of great concern worldwide. Lakes are considered to be antibiotic-rich reservoirs because many of the antibiotics discharged from rivers enter lakes. Chaohu Lake is one of the top five freshwater lakes in China. This study aims to provide a current evaluation of the antibiotics present in the surface water of the Chaohu Lake basin. To this end, the occurrences of 18 antibiotics categorized into 5 different groups were investigated in the study area, and the impact of inflowing rivers on their distribution was assessed. The results showed that the concentrations of 14 antibiotics in water samples ranged from 0 to 892 ng/L, and that antibiotics were detected at most sampling sites. Among them, the Nanfeihe and Shiwulihe rivers, which are close to the city, contributed the most to antibiotic pollution, indicating the widespread occurrence of antibiotics in the study area. A risk assessment based on the risk quotient method indicated that ofloxacin, ciprofloxacin, sulfamethoxazole, erythromycin, and norfloxacin in the lake water posed a high ecological risk to algae, while sulfamethazine posed a high risk to plants (RQ >1).


Anti-Bacterial Agents , Lakes , China , Humans , Risk Assessment , Water
...