Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Br J Pharmacol ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922702

RESUMEN

BACKGROUND AND PURPOSE: Traditional Chinese medicine (TCM) played an important role in controlling the COVID-19 pandemic, but the scientific basis and its active ingredients are still weakly studied. This study aims to decipher the underlying anti-SARS-CoV-2 mechanisms of glycyrrhetinic acid (GA). EXPERIMENTAL APPROACH: GA's anti-SARS-CoV-2 effect was verified both in vitro and in vivo. Homogeneous time-resolved fluorescence assays, biolayer interferometry technology, and molecular docking were employed to examine interactions of GA with human stimulator of interferon genes (hSTING). Immunofluorescence staining, western blot, and RT-qPCR were used to investigate nuclear translocation of interferon regulatory factor 3 (IRF3) and levels of STING target genes. Pharmacokinetics of GA was studied in mice. KEY RESULTS: GA could directly bind to Ser162 and Tyr240 residues of hSTING, thus up-regulating downstream targets and activation of the STING signalling pathway. Such activation is crucial for limiting the replication of SARS-CoV-2 Omicron in Calu-3 cells and protecting against lung injury induced by SARS-CoV-2 Omicron infection in K18-ACE2 transgenic mice. Immunofluorescence staining and western blot indicated that GA increased levels of phosphorylated STING, phosphorylated TANK-binding kinase-1, and cyclic GMP-AMP synthase (cGAS). Importantly, GA increased nuclear translocation of IRF3. Pharmacokinetic analysis of GA in mice indicated it can be absorbed into circulation and detected in the lung at a stable level. CONCLUSION AND IMPLICATIONS: Activation of the cGAS-STING pathway through the GA-STING-IRF3 axis is essential for the antiviral activity of GA in mice, providing new insights into the potential translation of GA for treating SARS-CoV-2 in patients.

2.
Heliyon ; 10(6): e27646, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38509951

RESUMEN

Ageing is becoming an increasingly serious problem; therefore, there is an urgent need to find safe and effective anti-ageing drugs. Aims: To investigate the effects of Bazi Bushen capsule (BZBS) on the senescence of mesenchymal stem cells (MSCs) and explore its mechanism of action. Methods: Network pharmacology was used to predict the targets of BZBS in delaying senescence in MSCs. For in vitro studies, MSCs were treated with D-gal, BZBS, and NMN, and cell viability, cell senescence, stemness-related genes, and cell cycle were studied using cell counting kit-8 (CCK-8) assay, SA-ß-galactosidase (SA-ß-gal) staining, Quantitative Real-Time PCR (qPCR) and flow cytometry (FCM), respectively. Alkaline phosphatase (ALP), alizarin red, and oil red staining were used to determine the osteogenic and lipid differentiation abilities of MSCs. Finally, the expression of senescence-related genes and cyclin-related factors was detected by qPCR and western blotting. Results: Network pharmacological analysis suggested that BZBS delayed cell senescence by interfering in the cell cycle. Our in vitro studies suggested that BZBS could significantly increase cell viability (P < 0.01), decrease the quantity of ß-galactosidase+ cells (P < 0.01), downregulate p16 and p21 (P < 0.05, P < 0.01), improve adipogenic and osteogenic differentiation, and upregulate Nanog, OCT4 and SOX2 genes (P < 0.05, P < 0.01) in senescent MSCs. Moreover, BZBS significantly reduced the proportion of senescent MSCs in the G0/G1 phase (P < 0.01) and enhanced the expression of CDK4, Cyclin D1, and E2F1 (P < 0.05, P < 0.01, respectively). Upon treatment with HY-50767A, a CDK4 inhibitor, the upregulation of E2F1 was no longer observed in the BZBS group. Conclusions: BZBS can protect MSCs against D-gal-induced senescence, which may be associated with cell cycle regulation via the Cyclin D1/CDK4/E2F1 signalling pathway.

3.
Heliyon ; 10(6): e27822, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38515679

RESUMEN

People are an organic unity. Every organ of our body doesn't exist alone. They are a part of our body and have important connections with other tissues or organs. The gut-lung axis is a typical example. Here, we reviewed the current research progress of the gut-lung axis. The main cross-talk between the intestine and lungs was sorted out, i.e. the specific interaction content contained in the gut-lung axis. We determine a relatively clear concept for the gut-lung axis, that is, the gut-lung axis is a cross-talk that the gut and lungs interact with each other through microorganisms and the immune system to achieve bidirectional regulation. The gut and lungs communicate with each other mainly through the immune system and symbiotic microbes, and these two pathways influence each other. The portal vein system and mesenteric lymphatics are the primary communication channels between the intestine and lungs. We also summarized the effects of pneumonia, including Coronavirus disease 2019 (COVID-19) and Community-Acquired Pneumonia (CAP), on intestinal microbes and immune function through the gut-lung axis, and discussed the mechanism of this effect. Finally, we explored the value of intestinal microbes and the gut-lung axis in the treatment of pneumonia through the effect of intestinal microbes on pneumonia.

4.
Redox Rep ; 29(1): 2305036, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38390941

RESUMEN

OBJECTIVE: Angelica keiskei is a medicinal and edible plant that has been reported to possess potent antioxidant properties in several in vitro models, but its effectiveness on naturally aging organisms is still lacking. This study explores the antioxidant and health-promoting effects of Angelica keiskei in naturally aging mice. METHODS: We treated 48-week-old mice with Angelica keiskei water extract (AKWE) 30 days, and measured indicators related to aging and antioxidants. In addition, we conducted network pharmacology analysis, component-target molecular docking, real-time PCR, and MTS assays to investigate relevant factors. RESULTS: The results indicated that administration of AKWE to mice led to decrease blood glucose levels, improve muscle fiber structure, muscle strength, gait stability, and increase levels of glutathione and superoxide dismutase in serum. Additionally, it decreased pigmentation of the heart tissues. Angelica keiskei combats oxidative stress by regulating multiple redox signaling pathways, and its ingredients Coumarin and Flavonoids have the potential to bind to SIRT3 and SIRT5. CONCLUSIONS: Our findings indicated the potential of Angelica keiskei as a safe and effective dietary supplement to combat aging and revealed the broad prospects of medicinal and edible plants for addressing aging and age-related chronic diseases.


Asunto(s)
Angelica , Antioxidantes , Ratones , Animales , Angelica/química , Simulación del Acoplamiento Molecular , Suplementos Dietéticos , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química
5.
Quant Imaging Med Surg ; 14(1): 305-315, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223055

RESUMEN

Background: Menstrual migraine without aura (MRM) is common in female migraineurs and is closely related to cerebral functional abnormalities. However, whether the whole brain networks and directional functional connectivity of MRM patients are altered remains unclear. The purpose of this study was to detect the alterations of resting-state functional networks and directional functional connectivity between MRM and non-menstrual migraine without aura (NMM) patients using functional magnetic resonance imaging (fMRI) with degree centrality (DC) and Granger causality analysis (GCA) methods. Methods: In this retrospective and cross-sectional study, 45 MRM and 40 NMM patients (matched in age, gender, and years of education) were recruited in the study between May 2018 and June 2022. All participants had undergone resting-state fMRI scanning at the Neurology and Pain Outpatient Department of Nanjing First Hospital. Their brain functions were analyzed in terms of DC and GCA, with the significant threshold at voxel level P<0.01 and cluster level P<0.05, Gaussian random field corrected. Correlation analysis was adopted to assess the relationships between the fMRI results and clinical features (P<0.05, Bonferroni corrected). Results: Compared with those in the NMM group, MRM patients showed decreased DC in the right insula (T=-4.253). Using the right insula as the seed region, patients with MRM demonstrated enhanced effective connectivity from the right insula to the ipsilateral middle temporal gyrus (T=4.138) and contralateral superior temporal gyrus (T=3.523). Furthermore, the MRM group also showed decreased effective connectivity from several brain regions to the right insula, which included the right inferior occipital gyrus (T=-4.498), left middle frontal gyrus (T=-4.879), right precuneus (T=-4.644), and left inferior parietal gyrus (T=-4.113). The average Self-rating Anxiety Scale score of the MRM group was significantly higher than that of the NMM group [P=0.032, 95% confidence interval (CI): 0.363-7.761]. In the MRM group, disease duration was negatively correlated with the mean value of DC in right insula (r=-0.428, P=0.01). Conclusions: The present research demonstrated that patients with MRM have disruption in insula resting-state functional networks. Disrupted networks contained regions associated with cognitive processes, emotional perception, and migraine attack in MRM patients. These results may improve our comprehension of the neuromechanism of menstrually-related migraine.

6.
Heliyon ; 9(11): e21950, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034785

RESUMEN

Chronic heart failure (CHF) is a key part of cardiovascular continuum. Under the guidance of the theory of vessel-collateral doctrine, the present study proposes therapeutic benefits of Qili Qiangxin (QLQX) capsules, an innovative Chinese medicine, on chronic heart failure. The studies show that multiple targets of the drug on CHF, including enhancing myocardial systole, promoting urine excretion, inhibiting excessive activation of the neuroendocrine system, preventing ventricular remodeling by inhibiting inflammatory response, myocardial fibrosis, apoptosis and autophagy, enhancing myocardial energy metabolism, promoting angiogenesis, and improving endothelial function. Investigation on the effects and mechanism of the drug is beneficial to the treatment of chronic heart failure (CHF) through multiple targets and/or signaling pathways. Meanwhile, it provides new insights to further understand other refractory diseases in the cardiovascular continuum, and it also has an important theoretical and practical significance in enhancing prevention and therapeutic effect of traditional Chinese medicine for these diseases.

7.
Chin Med ; 18(1): 145, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924136

RESUMEN

BACKGROUND: Lianhua Qingke (LHQK) is an effective traditional Chinese medicine used for treating acute tracheobronchitis. In this study, we evaluated the effectiveness of LHQK in managing airway mucus hypersecretion in the acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS: The AECOPD model was established by subjecting male Wistar rats to 12 weeks of cigarette smoke (CS) exposure (80 cigarettes/day, 5 days/week for 12 weeks) and intratracheal lipopolysaccharide (LPS) exposure (200 µg, on days 1, 14, and 84). The rats were divided into six groups: control (room air exposure), model (CS + LPS exposure), LHQK (LHQK-L, LHQK-M, and LHQK-H), and a positive control group (Ambroxol). H&E staining, and AB-PAS staining were used to evaluate lung tissue pathology, inflammatory responses, and goblet cell hyperplasia. RT-qPCR, immunohistochemistry, immunofluorescence and ELISA were utilized to analyze the transcription, expression and secretion of proteins related to mucus production in vivo and in the human airway epithelial cell line NCI-H292 in vitro. To predict and screen the active ingredients of LHQK, network pharmacology analysis and NF-κB reporter system analysis were employed. RESULTS: LHQK treatment could ameliorate AECOPD-triggered pulmonary structure damage, inflammatory cell infiltration, and pro-inflammatory cytokine production. AB-PAS and immunofluorescence staining with CCSP and Muc5ac antibodies showed that LHQK reduced goblet cell hyperplasia, probably by inhibiting the transdifferentiation of Club cells into goblet cells. RT-qPCR and immunohistochemistry of Muc5ac and APQ5 showed that LHQK modulated mucus homeostasis by suppressing Muc5ac transcription and hypersecretion in vivo and in vitro, and maintaining the balance between Muc5ac and AQP5 expression. Network pharmacology analysis and NF-κB luciferase reporter system analysis provided insights into the active ingredients of LHQK that may help control airway mucus hypersecretion and regulate inflammation. CONCLUSION: LHQK demonstrated therapeutic effects in AECOPD by reducing inflammation, suppressing goblet cell hyperplasia, preventing Club cell transdifferentiation, reducing Muc5ac hypersecretion, and modulating airway mucus homeostasis. These findings support the clinical use of LHQK as a potential treatment for AECOPD.

8.
Heliyon ; 9(7): e17603, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449101

RESUMEN

Aims: To explore the new indications and key mechanism of Bazi Bushen capsule (BZBS) by network pharmacology and in vitro experiment. Methods: The ingredients library of BZBS was constructed by retrieving multiple TCM databases. The potential target profiles of the components were predicted by target prediction algorithms based on different principles, and validated by using known activity data. The target spectrum of BZBS with high reliability was screened by considering the source of the targets and the node degree in compound-target (C-T) network. Subsequently, new indications for BZBS were predicted by disease ontology (DO) enrichment analysis and initially validated by GO and KEGG pathway enrichment analysis. Furthermore, the target sets of BZBS acting on AD signaling pathway were identified by intersection analysis. Based on STRING database, the PPI network of target was constructed and their node degree was calculated. Two Alzheimer's disease (AD) cell models, BV-2 and SH-SY5Y, were used to preliminarily verify the anti-AD efficacy and mechanism of BZBS in vitro. Results: In total, 1499 non-repeated ingredients were obtained from 16 herbs in BZBS formula, and 1320 BZBS targets with high confidence were predicted. Disease enrichment results strongly suggested that BZBS formula has the potential to be used in the treatment of AD. GO and KEGG enrichment results provide a preliminary verification of this point. Among them, 113 functional targets of BZBS belong to AD pathway. A PPI network containing 113 functional targets and 1051 edges for the treatment of AD was constructed. In vitro experiments showed that BZBS could significantly reduce the release of TNF-α and IL-6 and the expression of COX-2 and PSEN1 in Aß25-35-induced BV-2 cells, which may be related to the regulation of ERK1/2/NF-κB signaling pathway. BZBS reduced the apoptosis rate of Aß25-35 induced SH-SY5Y cells, significantly increased mitochondrial membrane potential, reduced the expression of Caspase3 active fragment and PSEN1, and increased the expression of IDE. This may be related to the regulation of GSK-3ß/ß-catenin signaling pathway. Conclusions: BZBS formula has a potential use in the treatment of AD, which is achieved through regulation of ERK1/2, NF-κB signaling pathways, and GSK-3ß/ß-catenin signaling pathway. Furthermore, the network pharmacology technology is a feasible drug repurposing strategy to reposition new clinical use of approved TCM and explore the mechanism of action. The study lays a foundation for the subsequent in-depth study of BZBS in the treatment of AD and provides a basis for its application in the clinical treatment of AD.

9.
Comb Chem High Throughput Screen ; 26(9): 1701-1728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36045534

RESUMEN

BACKGROUND AND AIM: Major Depressive Disorder (MDD) is a common affective disorder. GuiPi decoction (GPD) is used to treat depression in China, Japan, and Korea. However, its effective ingredients and antidepressant mechanisms remain unclear. We attempted to reveal the potential mechanisms of GPD in the treatment of MDD by network pharmacology and molecular docking. In addition, we conducted an enzymatic activity assay to validate the results of molecular docking. METHODS: GPD-related compounds and targets, and MDD-related targets were retrieved from databases and literature. The herb-compound-target network was constructed by Cytoscape. The protein- protein interaction network was built using the STRING database to find key targets of GPD on MDD. Enrichment analysis of shared targets was analyzed by MetaCore database to obtain the potential pathway and biological process of GPD on MDD. The main active compounds treating MDD were screened by molecular docking. The PDE4s inhibitors were screened and verified by an enzyme activity assay. RESULTS: GPD contained 1222 ingredients and 190 potential targets for anti-MDD. Possible biological processes regulated by GPD were neurophysiological processes, blood vessel morphogenesis, Camp Responsive Element Modulator (CREM) pathway, and Androgen Receptor (AR) signaling crosstalk in MDD. Potential pathways in MDD associated with GPD include neurotransmission, cell differentiation, androgen signaling, and estrogen signaling. Fumarine, m-cresol, quercetin, betasitosterol, fumarine, taraxasterol, and lupeol in GPD may be the targets of SLC6A4, monoamine oxidase A (MAOA), DRD2, OPRM1, HTR3A, Albumin (ALB), and NTRK1, respectively. The IC50 values of trifolin targeting Phosphodiesterase (PDE) 4A and girinimbine targeting PDE4B1 were 73.79 µM and 31.86 µM, respectively. The IC50 values of girinimbine and benzo[a]carbazole on PDE4B2 were 51.62 µM and 94.61 µM, respectively. CONCLUSION: Different compounds in GPD may target the same protein, and the same component in GPD can target multiple targets. These results suggest that the effects of GPD on MDD are holistic and systematic, unlike the pattern of one drug-one target.


Asunto(s)
Trastorno Depresivo Mayor , Medicamentos Herbarios Chinos , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Transducción de Señal , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Proteínas de Transporte de Serotonina en la Membrana Plasmática
10.
Cancer Med ; 12(7): 8306-8318, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36515089

RESUMEN

BACKGROUND: Apoptin is derived from the chicken anemia virus and exhibits specific cytotoxic effects against tumor cells. Herein, we found that Apoptin induced a strong and lasting endoplasmic reticulum (ER) stress response, Ca2+ imbalance, and triggered the mitochondrial apoptotic pathway. The aim of this study was to explore the mechanisms by which Apoptin exhibited anti-tumor effects in HepG-2 cells. METHODS: The intracellular levels of calcium (Ca2+ ) were induced by ER stress and determined by electron microscopy, flow cytometry, and fluorescence staining. The mitochondrial injury was determined by mitochondrial membrane potential and electron microscopy. Western blotting was used to investigate the levels of key proteins in ER stress and the apoptotic pathway in mitochondria. The relationship between Ca2+ levels and apoptosis in Apoptin-treated cells was analyzed using a Ca2+ chelator (BAPTA-AM), flow cytometry, and fluorescence staining. We also investigated the in vivo effects of Ca2+ imbalance on the mitochondrial apoptotic pathway using tumor tissues xenografted on nude mice. RESULTS: This study showed that Apoptin induced a strong and long- lasting ER stress and injury, which subsequently led to an imbalance of cellular Ca2+ levels, a reduction in the mitochondrial membrane potential, a significant extent image in the mitochondrial structure, and an increase in the expression levels of Smac/Diablo and Cyto-C. CONCLUSIONS: In summary, Apoptin induced apoptosis in HepG-2 cells via Ca2+ imbalance and activation of the mitochondrial apoptotic pathway. This study provided a new direction for antitumor research in Apoptin.


Asunto(s)
Apoptosis , Mitocondrias , Ratones , Animales , Ratones Desnudos , Estrés del Retículo Endoplásmico , Proteínas Reguladoras de la Apoptosis/metabolismo , Calcio/metabolismo
11.
Biomed Res Int ; 2022: 4483009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35647185

RESUMEN

Recent studies indicate existence of beige adipocytes in adults. Upon activation, beige adipocytes burn energy for thermogenesis and contribute to regulation of energy balance. In this study, we have analyzed whether Jinlida granules (JLD) could activate beige adipocytes. JLD suspended in 0.5% carboxymethyl cellulose (CMC) was gavage fed to db/db mice at a daily dose of 3.8 g/kg. After 10 weeks, body weight, biochemical, and histological analyses were performed. In situ hybridization, immunofluorescence, and western blotting were conducted to test beige adipocyte activation in mice. X9 cells were induced with induction medium and maintenance medium containing 400 µg/mL of JLD. After completion of induction, cells were analyzed by Nile red staining, time polymerase chain reaction (PCR), western blotting, and immunofluorescence to understand the effect of JLD on the activation of beige adipocytes. A molecular docking method was used to preliminarily identify compounds in JLD, which hold the potential activation effect on uncoupling protein 1 (UCP1). JLD treatment significantly improved obesity in db/db mice. Biochemical results showed that JLD reduced blood glucose (GLU), triglyceride (TG), and low-density lipoprotein cholesterol (LDL) levels as well as liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in mice. Hematoxylin and eosin staining (H&E) showed that JLD reduced hepatocyte ballooning changes in the liver. Immunofluorescence showed that JLD increased the expression of the thermogenic protein, UCP1, in the beige adipose tissue of mice. JLD also increased the expression of UCP1 and inhibited the expression of miR-27a in X9 cells. Molecular docking results showed that epmedin B, epmedin C, icariin, puerarin, and salvianolic acid B had potential activation effects on UCP1. The results suggest that JLD may activate beige adipocytes by inhibiting miR-27a expression, thereby promoting thermogenesis in beige adipocytes. This study provides a new pharmacological basis for the clinical use of JLD.


Asunto(s)
Adipocitos Beige , MicroARNs , Adipocitos Beige/metabolismo , Animales , Medicamentos Herbarios Chinos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , MicroARNs/metabolismo , Simulación del Acoplamiento Molecular , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
12.
Pharm Biol ; 59(1): 1585-1593, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34808069

RESUMEN

CONTEXT: Previous studies indicate that compound Danshen Dripping Pill (CDDP) improves the adaptation to high-altitude exposure. However, its mechanism of action is not clear. OBJECTIVE: To explore the protective effect of CDDP on hypobaric hypoxia (HH) and its possible mechanism. MATERIALS AND METHODS: A meta-analysis of 1051 human volunteers was performed to evaluate the effectiveness of CDDP at high altitudes. Male Sprague-Dawley rats were randomized into 5 groups (n = 6): control at normal pressure, model, CDDP-170 mg/kg, CDDP-340 mg/kg and acetazolamide groups. HH was simulated at an altitude of 5500 m for 24 h. Animal blood was collected for arterial blood-gas analysis and cytokines detection and their organs were harvested for pathological examination. Expression levels of AQP1, NF-κB and Nrf2 were determined by immunohistochemical staining. RESULTS: The meta-analysis data indicated that the ratio between the combined RR of the total effective rate and the 95% CI was 0.23 (0.06, 0.91), the SMD and 95% CI of SO2 was 0.37 (0.12, 0.62). Pre-treatment of CDDP protected rats from HH-induced pulmonary edoema and heart injury, left-shifted oxygen-dissociation curve and decreased P50 (30.25 ± 3.72 vs. 37.23 ± 4.30). Mechanistically, CDDP alleviated HH-reinforced ROS by improving SOD and GPX1 while inhibiting pro-inflammatory cytokines and NF-κB expression. CDDP also decreased HH-evoked D-dimer, erythrocyte aggregation and blood hemorheology, promoting AQP1 and Nrf2 expression. DISCUSSION AND CONCLUSIONS: Pre-treatment with CDDP could prevent HH-induced tissue damage, oxidative stress and inflammatory response. Suppressed NF-κB and up-regulated Nrf2 might play significant roles in the mechanism of CDDP.


Asunto(s)
Mal de Altura/tratamiento farmacológico , Canfanos/farmacología , Medicamentos Herbarios Chinos/farmacología , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Acetazolamida/farmacología , Animales , Análisis de los Gases de la Sangre , Canfanos/administración & dosificación , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Humanos , Inflamación/etiología , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Panax notoginseng , Ensayos Clínicos Controlados Aleatorios como Asunto , Ratas , Ratas Sprague-Dawley , Salvia miltiorrhiza
13.
Sci Rep ; 11(1): 9541, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953309

RESUMEN

Research on direct targets of traditional Chinese medicine (TCM) is the key to study the mechanism and material basis of it, but there is still no effective methods at present. We took Compound Danshen dropping pills (CDDP) as a study case to establish a strategy to identify significant direct targets of TCM. As a result, thirty potential active kinase targets of CDDP were identified. Nine of them had potential dose-dependent effects. In addition, the direct inhibitory effect of CDDP on three kinases, AURKB, MET and PIM1 were observed both on biochemical level and cellular level, which could not only shed light on the mechanisms of action involved in CDDP, but also suggesting the potency of drug repositioning of CDDP. Our results indicated that the research strategy including both in silico models and experimental validation that we built, were relatively efficient and reliable for direct targets identification for TCM prescription, which will help elucidating the mechanisms of TCM and promoting the modernization of TCM.


Asunto(s)
Descubrimiento de Drogas , Medicamentos Herbarios Chinos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular , Bases de Datos Factuales , Medicamentos Herbarios Chinos/química , Humanos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Salvia miltiorrhiza
14.
J Alzheimers Dis ; 81(3): 981-1038, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33896843

RESUMEN

BACKGROUND: The toxicity of excessive glutamate release has been implicated in various acute and chronic neurodegenerative conditions. Vesicular glutamate transporters (VGLUTs) are the major mediators for the uptake of glutamate into synaptic vesicles. However, the dynamics and mechanism of this process in glutamatergic neurons are still largely unknown. OBJECTIVE: This study aimed to investigate the candidate protein partners of VGLUT1 and their regulatory roles in the vesicles in rat brain. METHODS: Pull down assay, co-immunoprecipitation assay, or split-ubiquitin membrane yeast two hybrid screening coupled with nanoRPLC-MS/MS were used to identify the candidate protein partners of VGLUT1 in the vesicles in rat brain. The in vitro and in vivo models were used to test effects of AßPP, Atp6ap2, Gja1, and Synataxin on VGLUT1 expression. RESULTS: A total of 255 and 225 proteins and 172 known genes were identified in the pull down assay, co-immunoprecipitation assay, or split-ubiquitin yeast two-hybrid screening respectively. The physiological interactions of SV2A, Syntaxin 12, Gja1, AßPP, and Atp6ap2 to VGLUT1 were further confirmed. Knockdown of Atp6ap2, Gja1, and Synataxin increased VGLUT1 mRNA expression and only knockdown of AßPP increased both mRNA and protein levels of VGLUT1 in PC12 cells. The regulatory function of AßPP on VGLUT1 expression was further confirmed in the in vitro and in vivo models. CONCLUSION: These results elucidate that the AßPP and VGLUT1 interacts at vesicular level and AßPP plays a role in the regulation of VGLUT1 expression which is essential for maintaining vesicular activities.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Conexina 43/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Unión Proteica , Proteoma , Proteómica , Ratas , Ratas Wistar , Sinapsis/metabolismo , Sintaxina 1/metabolismo
15.
Exp Gerontol ; 149: 111336, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33785395

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a central nervous system (CNS) disease characterized by progressive cognitive dysfunction and memory loss. Qi Fu Yin is mainly used to treat dementia, particularly AD, in the clinic, but its comprehensive mechanisms are not known. OBJECTIVE: In this research, we aimed to investigate the mechanisms of Qi Fu Yin in AD by network pharmacology and molecular docking. METHODS: First, the chemical constituents in Qi Fu Yin were obtained from five databases and classified according to their structure. Targets of chemical constituents and AD-related targets were also collected from the databases. Then, overlapping genes between Qi Fu Yin and AD were identified by intersection analysis. MetaCore was used to gather enrichment information. Combination synergy analysis was performed by Cytoscape. After ligand-receptor docking, the binding affinity was verified by ADP-Glo™ kinase assay and fluorescence resonance energy transfer (FRET) assay. RESULTS: We found 12 classes with 977 components in Qi Fu Yin. A total of 511 compounds and 577 potential target proteins in Qi Fu Yin were found to be related to AD. The pathways of Qi Fu Yin in AD included oxidative stress and immune response. There was the best binding affinity between 11 pairs of genes and compounds. Furthermore, CDK5 was inhibited by nepetin with an IC50 of 3.172 µM and kaempferol with an IC50 of 2.659 µM. Ceanothic acid and 18 beta-glycyrrhetinic acid inhibited GSK3ß, and the IC50 values were 8.732 µM and 8.06 µM, respectively. CONCLUSION: Qi Fu Yin might alleviate Tau hyperphosphorylation by nepetin, kaempferol, ceanothic acid and 18 beta-glycyrrhetinic acid.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular
16.
Aging Dis ; 10(2): 293-306, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31011480

RESUMEN

Cataract is a major cause of blindness worldwide, its complicated and unclear etiopathogenesis limit effective therapy. Here, we found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in lens epithelial cells and Yap conditional knockout (cKO) in the lens leads to cataract. Histologically, Yap deficient lens show fewer epithelial cells, retention of nuclei and accumulation of morgagnian globules in the transitional zone and the posterior area. Mechanistically, GFAP-mediated Yap cKO leads to the reduced proliferation of epithelial cells, delayed fiber cell denucleation and increased cellular senescence in lens. Further RNA profiling analysis reveals Yap cKO results in a significant alteration in gene transcription that is involved in eye development, lens structure, inflammation, cellular proliferation and polarity. Collectively, our data reveal a novel function of Yap in the lens and links Yap deficiency with the development of cataract, making Yap a promising target for cataract therapy.

17.
Chin J Nat Med ; 17(2): 103-121, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30797417

RESUMEN

Liu-Wei-Di-Huang (LW) is a Yin nourishing and kidney tonifying prescription in traditional Chinese medicine with promising pharmacological characteristics that can be further exploited and developed in modern medicine. We provide a comprehensive and detailed literature report on the clinical and experimental pharmacology of LW, including its quality control parameters, phytochemistry, pharmacokinetics, and toxicology. Our literature review indicates that the LW prescription possesses a unique combination of pharmacological characteristics that can be safely used for treating very different diseases. Quality control and pharmacokinetic parameters of LW are mostly based on its major bioactive phytochemical constituents. We postulate that modulating or rebalancing the neuroendocrine immunomodulation network in the body is the underlying mechanism of the multiple pharmacological activities displayed by LW.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Riñón/efectos de los fármacos , Medicina Tradicional China , Neuroinmunomodulación/efectos de los fármacos , Deficiencia Yin/tratamiento farmacológico , Animales , Medicamentos Herbarios Chinos/química , Humanos , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Control de Calidad
18.
Molecules ; 23(6)2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848990

RESUMEN

Growing evidence shows that the neuroendocrine immunomodulation (NIM) network plays an important role in maintaining and modulating body function and the homeostasis of the internal environment. The disequilibrium of NIM in the body is closely associated with many diseases. In the present study, we first collected a core dataset of NIM signaling molecules based on our knowledge and obtained 611 NIM signaling molecules. Then, we built a NIM molecular network based on the MetaCore database and analyzed the signaling transduction characteristics of the core network. We found that the endocrine system played a pivotal role in the bridge between the nervous and immune systems and the signaling transduction between the three systems was not homogeneous. Finally, employing the forest algorithm, we identified the molecular hub playing an important role in the pathogenesis of rheumatoid arthritis (RA) and Alzheimer's disease (AD), based on the NIM molecular network constructed by us. The results showed that GSK3B, SMARCA4, PSMD7, HNF4A, PGR, RXRA, and ESRRA might be the key molecules for RA, while RARA, STAT3, STAT1, and PSMD14 might be the key molecules for AD. The molecular hub may be a potentially druggable target for these two complex diseases based on the literature. This study suggests that the NIM molecular network in this paper combined with the forest algorithm might provide a useful tool for predicting drug targets and understanding the pathogenesis of diseases. Therefore, the NIM molecular network and the corresponding online tool will not only enhance research on complex diseases and system biology, but also promote the communication of valuable clinical experience between modern medicine and Traditional Chinese Medicine (TCM).


Asunto(s)
Redes Reguladoras de Genes , Inmunomodulación/genética , Células Neuroendocrinas/metabolismo , Transducción de Señal , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Perfilación de la Expresión Génica , Humanos , Transcriptoma
19.
Environ Toxicol Pharmacol ; 55: 68-73, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28830012

RESUMEN

Oxidative stress, DNA damage repair, and inflammation are three important reactions of sulfur mustard (SM) exposure. But molecular related chronological events in the earlier stage of SM exposure model are still unclear. In the research, reactive oxygen species (ROS) was measured by using flow cytometry. Cytokines were tested in Luminex method. Myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG) and glutathione (GSH) activity or levels in serum were determined by commercially available kits. Western blot was used to determination of phosphorylated histone 2A.X (γ-H2A.X). Results showed that the oxidative stress biomarker of ROS and 8-OHdG were significantly increased early at 0.5h of SM exposure, but GSH level was decreased at 0.5h. Similarly, SM increased γ-H2A.X level early at 2h, which reached to peak at 8h and recovered to normal at 24h. MPO and iNOS activity were also increased early at 2h and 0.5h respectively. However, all selected inflammation biomarkers, including IL-6, TNF-α, IL-1ß, MCP-1, GM-CSF and IL-10 concentrations are all unchangeable in 2h. The results indicated that oxidative stress and DNA damage had happened more quickly than inflammation reaction. These chronological events may be due to uncovered generation of reactive oxygen species, DNA alkylation and oxidative DNA damage. In conclusion, this research showed that both oxidative stress and DNA damage are earlier events than inflammation in sulfur mustard toxic mouse model.


Asunto(s)
Daño del ADN , Inflamación/inducido químicamente , Gas Mostaza/toxicidad , Estrés Oxidativo , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Citocinas/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Inflamación/metabolismo , Inyecciones Subcutáneas , Masculino , Ratones , Especies Reactivas de Oxígeno/metabolismo
20.
PLoS One ; 11(6): e0156504, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27253198

RESUMEN

Professional association football is a game of talent. The success of a professional club hinges largely on its ability of assembling the best team. Building on a dataset of player transfer records among more than 400 clubs in 24 world-wide top class leagues from 2011 to 2015, this study aims to relate a club's success to its activities in the player transfer market from a network perspective. We confirm that modern professional football is indeed a money game, in which larger investment spent on the acquisition of talented players generally yields better team performance. However, further investigation shows that professional football clubs can actually play different strategies in surviving or even excelling this game, and the success of strategies is strongly associated to their network properties in the football player transfer network.


Asunto(s)
Organizaciones/economía , Fútbol/economía , Deportes/economía , Humanos , Masculino , Apoyo Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...