Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nat Chem Biol ; 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38191941

SLC15A4 is an endolysosome-resident transporter linked with autoinflammation and autoimmunity. Specifically, SLC15A4 is critical for Toll-like receptors (TLRs) 7-9 as well as nucleotide-binding oligomerization domain-containing protein (NOD) signaling in several immune cell subsets. Notably, SLC15A4 is essential for the development of systemic lupus erythematosus in murine models and is associated with autoimmune conditions in humans. Despite its therapeutic potential, the availability of quality chemical probes targeting SLC15A4 functions is limited. In this study, we used an integrated chemical proteomics approach to develop a suite of chemical tools, including first-in-class functional inhibitors, for SLC15A4. We demonstrate that these inhibitors suppress SLC15A4-mediated endolysosomal TLR and NOD functions in a variety of human and mouse immune cells; we provide evidence of their ability to suppress inflammation in vivo and in clinical settings; and we provide insights into their mechanism of action. Our findings establish SLC15A4 as a druggable target for the treatment of autoimmune and autoinflammatory conditions.

2.
Nat Commun ; 13(1): 3177, 2022 06 08.
Article En | MEDLINE | ID: mdl-35676274

The assembly and function of the yeast general transcription factor TFIID complex requires specific contacts between its Taf14 and Taf2 subunits, however, the mechanism underlying these contacts remains unclear. Here, we determined the molecular and structural basis by which the YEATS and ET domains of Taf14 bind to the C-terminal tail of Taf2 and identified a unique DNA-binding activity of the linker region connecting the two domains. We show that in the absence of ligands the linker region of Taf14 is occluded by the surrounding domains, and therefore the DNA binding function of Taf14 is autoinhibited. Binding of Taf2 promotes a conformational rearrangement in Taf14, resulting in a release of the linker for the engagement with DNA and the nucleosome. Genetic in vivo data indicate that the association of Taf14 with both Taf2 and DNA is essential for transcriptional regulation. Our findings provide a basis for deciphering the role of individual TFIID subunits in mediating gene transcription.


Saccharomyces cerevisiae Proteins , TATA-Binding Protein Associated Factors , Transcription Factor TFIID , DNA/metabolism , Gene Expression Regulation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/metabolism
3.
J Am Chem Soc ; 143(40): 16700-16708, 2021 10 13.
Article En | MEDLINE | ID: mdl-34592107

Protein acetylation is a central event in orchestrating diverse cellular processes. However, current strategies to investigate protein acetylation in cells are often nonspecific or lack temporal and magnitude control. Here, we developed an acetylation tagging system, AceTAG, to induce acetylation of targeted proteins. The AceTAG system utilizes bifunctional molecules to direct the lysine acetyltransferase p300/CBP to proteins fused with the small protein tag FKBP12F36V, resulting in their induced acetylation. Using AceTAG, we induced targeted acetylation of a diverse array of proteins in cells, specifically histone H3.3, the NF-κB subunit p65/RelA, and the tumor suppressor p53. We demonstrate that targeted acetylation with the AceTAG system is rapid, selective, reversible and can be controlled in a dose-dependent fashion. AceTAG represents a useful strategy to modulate protein acetylation and should enable the exploration of targeted acetylation in basic biological and therapeutic contexts.


Transcription Factor RelA
4.
Nat Commun ; 10(1): 4724, 2019 10 17.
Article En | MEDLINE | ID: mdl-31624313

Acetylation of histone H3K23 has emerged as an essential posttranslational modification associated with cancer and learning and memory impairment, yet our understanding of this epigenetic mark remains insufficient. Here, we identify the native MORF complex as a histone H3K23-specific acetyltransferase and elucidate its mechanism of action. The acetyltransferase function of the catalytic MORF subunit is positively regulated by the DPF domain of MORF (MORFDPF). The crystal structure of MORFDPF in complex with crotonylated H3K14 peptide provides mechanistic insight into selectivity of this epigenetic reader and its ability to recognize both histone and DNA. ChIP data reveal the role of MORFDPF in MORF-dependent H3K23 acetylation of target genes. Mass spectrometry, biochemical and genomic analyses show co-existence of the H3K23ac and H3K14ac modifications in vitro and co-occupancy of the MORF complex, H3K23ac, and H3K14ac at specific loci in vivo. Our findings suggest a model in which interaction of MORFDPF with acylated H3K14 promotes acetylation of H3K23 by the native MORF complex to activate transcription.


Histone Acetyltransferases/metabolism , Histones/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Acetylation , Acylation , Binding Sites/genetics , Cell Line, Tumor , Crystallography, X-Ray , HEK293 Cells , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Histones/chemistry , Humans , K562 Cells , Molecular Dynamics Simulation , Protein Binding , Protein Domains
5.
PLoS One ; 14(4): e0213829, 2019.
Article En | MEDLINE | ID: mdl-30986212

BACKGROUND: The postmortem microbiome can provide valuable information to a death investigation and to the human health of the once living. Microbiome sequencing produces, in general, large multi-dimensional datasets that can be difficult to analyze and interpret. Machine learning methods can be useful in overcoming this analytical challenge. However, different methods employ distinct strategies to handle complex datasets. It is unclear whether one method is more appropriate than others for modeling postmortem microbiomes and their ability to predict attributes of interest in death investigations, which require understanding of how the microbial communities change after death and may represent those of the once living host. METHODS AND FINDINGS: Postmortem microbiomes were collected by swabbing five anatomical areas during routine death investigation, sequenced and analyzed from 188 death cases. Three machine learning methods (boosted algorithms, random forests, and neural networks) were compared with respect to their abilities to predict case attributes: postmortem interval (PMI), location of death, and manner of death. Accuracy depended on the method used, the numbers of anatomical areas analyzed, and the predicted attribute of death. CONCLUSIONS: All algorithms performed well but with distinct features to their performance. Xgboost often produced the most accurate predictions but may also be more prone to overfitting. Random forest was the most stable across predictions that included more anatomic areas. Analysis of postmortem microbiota from more than three anatomic areas appears to yield limited returns on accuracy, with the eyes and rectum providing the most useful information correlating with circumstances of death in most cases for this dataset.


Autopsy/methods , Machine Learning , Microbiota/physiology , Postmortem Changes , Sequence Analysis, DNA/methods , Adolescent , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , DNA, Archaeal/isolation & purification , DNA, Bacterial/isolation & purification , Datasets as Topic , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Time Factors , Young Adult
6.
Nat Commun ; 9(1): 4574, 2018 11 01.
Article En | MEDLINE | ID: mdl-30385749

The YEATS domain has been identified as a reader of histone acylation and more recently emerged as a promising anti-cancer therapeutic target. Here, we detail the structural mechanisms for π-π-π stacking involving the YEATS domains of yeast Taf14 and human AF9 and acylated histone H3 peptides and explore DNA-binding activities of these domains. Taf14-YEATS selects for crotonyllysine, forming π stacking with both the crotonyl amide and the alkene moiety, whereas AF9-YEATS exhibits comparable affinities to saturated and unsaturated acyllysines, engaging them through π stacking with the acyl amide. Importantly, AF9-YEATS is capable of binding to DNA, whereas Taf14-YEATS is not. Using a structure-guided approach, we engineered a mutant of Taf14-YEATS that engages crotonyllysine through the aromatic-aliphatic-aromatic π stacking and shows high selectivity for the crotonyl H3K9 modification. Our findings shed light on the molecular principles underlying recognition of acyllysine marks and reveal a previously unidentified DNA-binding activity of AF9-YEATS.


DNA/metabolism , Histone Code , Nuclear Proteins/metabolism , Protein Domains , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factor TFIID/metabolism , Acetylation , Acylation , Crystallography, X-Ray , DNA/ultrastructure , Humans , Lysine/metabolism , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/ultrastructure , Protein Binding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Transcription Factor TFIID/chemistry , Transcription Factor TFIID/genetics , Transcription Factor TFIID/ultrastructure
7.
Cell ; 174(1): 231-244.e12, 2018 06 28.
Article En | MEDLINE | ID: mdl-29804834

The acetyltransferases CBP and p300 are multifunctional transcriptional co-activators. Here, we combined quantitative proteomics with CBP/p300-specific catalytic inhibitors, bromodomain inhibitor, and gene knockout to reveal a comprehensive map of regulated acetylation sites and their dynamic turnover rates. CBP/p300 acetylates thousands of sites, including signature histone sites and a multitude of sites on signaling effectors and enhancer-associated transcriptional regulators. Time-resolved acetylome analyses identified a subset of CBP/p300-regulated sites with very rapid (<30 min) acetylation turnover, revealing a dynamic balance between acetylation and deacetylation. Quantification of acetylation, mRNA, and protein abundance after CBP/p300 inhibition reveals a kinetically competent network of gene expression that strictly depends on CBP/p300-catalyzed rapid acetylation. Collectively, our in-depth acetylome analyses reveal systems attributes of CBP/p300 targets, and the resource dataset provides a framework for investigating CBP/p300 functions and for understanding the impact of small-molecule inhibitors targeting its catalytic and bromodomain activities.


Acetyltransferases/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation/drug effects , Acetyltransferases/antagonists & inhibitors , Animals , Cell Line , Gene Knockout Techniques , Half-Life , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Histones/metabolism , Humans , Isotope Labeling , Kinetics , Mass Spectrometry , Mice , Peptides/analysis , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Signal Transduction , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Transcriptome/drug effects , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/genetics
...