Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.431
Filtrar
1.
Int J Biol Macromol ; : 133509, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960228

RESUMEN

The development of productive and durable non-precious metal catalysts for the sluggish oxygen evolution reaction (OER) is critical for water splitting. Herein, a novel NiSe-FeOx heterojunction encapsulated in lignin-derived carbon layer (NiSe-FeOx@LC) was synthesized via hydrothermal self-assembly and in-situ pyrolysis. NiSe-FeOx@LC exhibited excellent OER performance with an overpotential of 265 mV at 50 mA·cm-2, a Tafel slope of 83 mV·dec-1, as well as long-term stability. Both experimental and DFT calculation results indicated that the doping of FeOx into NiSe@LC successfully optimized the dual interface structure between NiSe and FeOx, thereby promoted the d-bands orbital hybridization, that facilitated electron transfer. Besides, the carbon coating effectively protected the NiSe-FeOx components from leaching and agglomerating during the reaction. This study provides insight into the significance of lignin-derived carbon-encapsulated metallic catalyst for electrocatalytic OER process.

2.
Mol Plant ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38946140

RESUMEN

Over the past few decades, significant improvements in maize yield have been largely attributed to increased plant density of upright hybrid varieties rather than increased yield per plant. However, dense planting triggers shade avoidance responses (SAR) that optimize light absorption but impair plant vigor and performance, limiting yield improvement through increasing plant density. In this study, we demonstrated that high-density induced leaf angle narrowing and stem/stalk elongation are largely dependent on phytochrome B (phyB1/B2), the primary photoreceptor responsible for perceiving red (R) and far-red (FR) light in maize. Maize phyB physically interacts with the LIGULELESS1 (LG1), a classical key regulator of leaf angle, to coordinately regulate plant architecture and density tolerance. The abundance of LG1 is significantly increased by phyB under high R:FR light (low density) but rapidly decreases under low R:FR light (high density), correlating with variations in leaf angle and plant height under various densities. Additionally, we identified the homeobox transcription factor HB53 as a target co-repressed by both phyB and LG1 but rapidly induced by canopy shade, indicating its central role in response to varying densities. Notably, HB53 regulates plant architecture by controlling the elongation and division of ligular adaxial and abaxial cells. These findings uncover the phyB-LG1-HB53 regulatory module as a key molecular mechanism governing plant architecture and density tolerance, providing potential genetic targets for breeding maize hybrid varieties optimized for high-density planting.

3.
Biosens Bioelectron ; 261: 116510, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905859

RESUMEN

The discovery of enzyme inhibitors from natural products is a crucial aspect in the development of therapeutic drugs. However, the complexity of natural products presents a challenge in developing simple and efficient methods for inhibitor screening. Herein, we have developed an integrated analytical model for screening xanthine oxidase (XOD) inhibitors that combines simplicity, accuracy, and efficiency. This model utilizes a colorimetric sensor and affinity chromatography technology with immobilized XOD. The colorimetric sensor procedure can quickly identify whether there are active components in complex samples. Subsequently, the active components in the samples identified by the colorimetric sensor procedure were further captured, separated, and identified through affinity chromatography. The integrated analytical model can significantly enhance the efficiency and accuracy of inhibitor screening. The proposed method was applied to screen for an activity inhibitor of XOD in five natural medicines. As a result, a potential active ingredient for XOD, polydatin, was successfully identified from Polygoni Cuspidati Rhizoma et Radix. This work is anticipated to offer new insights for the screening of enzyme inhibitors from natural medicines.


Asunto(s)
Técnicas Biosensibles , Cromatografía de Afinidad , Colorimetría , Inhibidores Enzimáticos , Xantina Oxidasa , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/química , Cromatografía de Afinidad/métodos , Colorimetría/métodos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Técnicas Biosensibles/métodos , Enzimas Inmovilizadas/química , Evaluación Preclínica de Medicamentos , Humanos
4.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915689

RESUMEN

Vaccines are an indispensable public health measure that have enabled the eradication, near elimination, and prevention of a variety of pathogens. As research continues and our understanding of immunization strategies develops, subunit vaccines have emerged as exciting alternatives to existing whole vaccine approaches. Unfortunately, subunit vaccines often possess weak antigenicity, requiring delivery devices and adjuvant supplementation to improve their utility. Peptide amphiphile micelles have recently been shown to function as both delivery devices and self-adjuvanting systems that can be readily associated with molecular adjuvants to further improve vaccine-mediated host immunity. While promising, many "design rules" associated with the plethora of underlying adjustable parameters in the generation of a peptide amphiphile micelle vaccine have yet to be uncovered. This work explores the impact micellar adjuvant complexation method and incorporated antigen type have on their ability to activate dendritic cells and induce antigen specific responses. Interestingly, electrostatic complexation of CpG to micelles resulted in improved in vitro dendritic cell activation over hydrophobic association and antigen|adjuvant co-localization influenced cell-mediated, but not antibody-mediated immune responses. These exciting results complement those previously published to build the framework of a micelle vaccine toolbox that can be leveraged for future disease-specific formulations.

5.
Acta Biomater ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936753

RESUMEN

Triple-negative breast cancer (TNBC) is a relatively "cold" tumour with low immunogenicity compared to other tumour types. Especially, the immune checkpoint inhibitors to treat metastatic TNBC only shows the modest immune response rates. Here, we used Chlorella vulgaris as a bioreactor to synthesize an efficient nanobomb (Bio-MnSe) aimed at eliciting systemic anti-tumour immune response. Despite possessing extremely low Mn content, Bio-MnSe effectively produced more ROS and activated stronger cGAS-STING signal pathway compared to pure Se nanoparticles and free Mn2+ ions, promoting the infiltration of natural killer (NK) cells, cytotoxic T lymphocytes (CTLs) in tumour, effectively turning "cold" tumour into "hot" tumour, and achieving strong antitumour immunotherapy. Additionally, the use of αPD-L1 as an immune checkpoint antagonist further increased the anti-tumour immune response of Bio-MnSe, resulting in enhanced anti-tumour effects. Doxorubicin (Dox), an immunogenic cell death (ICD) inducer, was combined with Bio-MnSe to form Bio-MnSe@Dox. This Bio-MnSe@Dox not only directly damaged tumour cells and induced tumour ICD but also promoted dendritic cell maturation, cytotoxic T lymphocyte infiltration, and NK cell recruitment, synergistically intensifying anti-tumour immune responses and suppressing tumour relapse and lung metastasis. Collectively, our findings propose an effective strategy for transforming 'cold' tumours to 'hot' ones, thereby advancing the development of anti-tumour immune drugs. STATEMENT OF SIGNIFICANCE: A biogenic MnSe (Bio-MnSe) nanocomposite was synthesized using Chlorella vulgaris as a bioreactor for enhanced immunotherapy of TNBC. Bio-MnSe demonstrated a stronger ability to activate the cGAS-STING signalling pathway and generate more ROS compared to pure Se nanoparticles and free Mn2+ ions. Apoptotic cells induced by Bio-MnSe released a significant amount of interferon, leading to the activation of T and natural killer (NK) cells, ultimately transforming immunologically 'cold' breast tumours to 'hot' tumours and enhancing the tumour's response to immune checkpoint inhibitors. The combination of Bio-MnSe with Dox or αPD-L1 further enhanced the anti-tumour immune response, fostering dendritic cell maturation, infiltration of cytotoxic T lymphocytes, and recruitment of NK cells, thereby enhancing the anti-tumour immunotherapy of TNBC.

6.
Front Aging Neurosci ; 16: 1401991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872625

RESUMEN

Objective: Levodopa (L-dopa) therapy is the principal pharmacological treatment for Parkinson's disease (PD). Nevertheless, prolonged use of this drug may result in different involuntary movement symptoms caused by the medication, referred to as levodopa-induced dyskinesia (LID). LID is associated with changes in synaptic plasticity of the D1 medium spiny neurons (MSNs) located in the dorsal striatum (dStr). Within the striatum, the amount of Dopamine D3 receptor (D3R) is notably increased in LID, demonstrating colocalization with D1R expression in neurons, and the level of D3R expression is directly related to the intensity of LID. IRL 790, as a D3R antagonist, can ameliorate LID. This study aims to explore if IRL 790 improves LID by regulating the synaptic plasticity of D1+ MSNs in dStr. Methods: The electrophysiology and synaptic spine density of D1+ MSNs in dStr were recorded for sham mice, LID mice, and LID mice treated with IRL 790. The regulation of synaptic plasticity in LID D1+ MSNs by IRL 790 was analyzed. Behavioral tests were conducted to confirm the treatment effect of IRL 790 on LID. Results: In LID D1+ MSNs, there was persistent abnormal LTP, absence of LTD, and an increase in spontaneous excitatory postsynaptic currents (sEPSCs). IRL 790 treatment restored normal LTP, LTD, and sEPSCs. Treatment with IRL 790 also restored the reduced dendritic spine density in D1+ MSNs of LID mice. IRL790 improved dyskinetic manifestations in LID mice. Conclusion: IRL790 ameliorates LID by regulating the synaptic structure and functional plasticity of striatal D1+ MSNs.

7.
Front Psychiatry ; 15: 1346151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895030

RESUMEN

Objective: The identification of depression primarily relies on the clinical symptoms and psychiatric evaluation of the patient, in the absence of objective and quantifiable biomarkers within clinical settings. This study aimed to explore potential serum biomarkers associated with depression. Methods: Serum samples from a training group comprising 48 depression patients and 48 healthy controls underwent proteomic analysis. Magnetic bead-based weak cation exchange (MB-WCX) and MALDI-TOF-MS were used in combination. To screen the differential peaks, ClinProTools software was employed. The proteins were identified using LC-MS/MS. ELISA was employed to confirm the expression of entire protein in the serum of the verification cohort, which encompassed 48 individuals who had been diagnosed with Depression and 48 healthy controls who were collected prospectively. Subsequently, logistic regression analysis was conducted to determine the diagnostic efficacy of the aforementioned predictors. Results: Five potential biomarker peaks indicating depression were identified in serum samples (peak 1, m/z: 1868.21; peak 2, m/z: 1062.35; peak 3, m/z: 1452.12; peak 4, m/z: 1208.72; peak 5, m/z: 1619.58). All of these peaks had higher expression in the pre-therapy group and were confirmed to be Tubulin beta chain (TUBB), Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), Complement component 3 (C3), and Complement C4A precursor (C4A) by ELISA validation. Multivariate logistic regression analysis revealed that serum levels of TUBB, ITIH4, C3, and C4A were significant independent risk factors for the development of depression. Conclusion: Depression is a prevalent psychiatric condition. Timely detection is challenging, resulting in poor prognoses for patients. Our study on plasma proteomics for depression demonstrated that TUBB, ITIH4, C3, and C4A differentiate between depression patients and healthy controls. The proteins that were identified could potentially function as biomarkers for the diagnosis of depression. Pinpointing these biomarkers could enable early identification of depression, which would advance precise treatment.

8.
Int J Nanomedicine ; 19: 5139-5156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859954

RESUMEN

Introduction: Although flavonoid compounds exhibit various pharmacological activities, their clinical applications are restricted by low oral bioavailability owing to their poor solubility. Nanocrystals (NCs) represent an excellent strategy for enhancing the oral bioavailability of flavonoids. Hydroxyethyl starch (HES), a biomaterial compound used as a plasma expander, could be an ideal stabilizer material for preparing flavonoid NCs. Methods: HES was used to stabilize flavonoid nanocrystals (NCs), using luteolin (LUT) as a model drug. After full characterization, the freeze-drying and storage stability, solubility, intestinal absorption, pharmacokinetics, and in vivo anti-hyperuricemic effect of the optimized HES-stabilized LUT NCs (LUT-HES NCs) were investigated. Results: Uniformed LUT-HES NCs were prepared with mean particle size of 191.1±16.8 nm, zeta potential of about -23 mV, drug encapsulation efficiency of 98.52 ± 1.01%, and drug loading of 49.26 ± 0.50%. The freeze-dried LUT-HES NCs powder showed good re-dispersibility and storage stability for 9 months. Notably, compared with the coarse drug, LUT-HES NCs exhibited improved saturation solubility (7.49 times), increased drug dissolution rate, enhanced Caco-2 cellular uptake (2.78 times) and oral bioavailability (Fr=355.7%). Pharmacodynamic studies showed that LUT-HES NCs remarkably lowered serum uric acid levels by 69.93% and ameliorated renal damage in hyperuricemic mice. Conclusion: HES is a potential stabilizer for poorly soluble flavonoid NCs and provides a promising strategy for the clinical application of these compounds. LUT-HES NCs may be an alternative or complementary strategy for hyperuricemia treatment.


Asunto(s)
Derivados de Hidroxietil Almidón , Hiperuricemia , Luteolina , Nanopartículas , Animales , Nanopartículas/química , Derivados de Hidroxietil Almidón/química , Derivados de Hidroxietil Almidón/farmacocinética , Derivados de Hidroxietil Almidón/administración & dosificación , Derivados de Hidroxietil Almidón/farmacología , Luteolina/farmacocinética , Luteolina/farmacología , Luteolina/química , Luteolina/administración & dosificación , Ratones , Células CACO-2 , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/sangre , Humanos , Masculino , Tamaño de la Partícula , Modelos Animales de Enfermedad , Solubilidad , Ácido Úrico/sangre , Ácido Úrico/química , Disponibilidad Biológica , Administración Oral , Estabilidad de Medicamentos
9.
Brain Behav ; 14(6): e3593, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898610

RESUMEN

BACKGROUND: Gut microbiota alterations in multiple sclerosis (MS) patients have been reported in observational studies, but whether these associations are causal is unclear. OBJECTIVE: We performed a Mendelian randomization study (MR) to assess the causal effects of gut microbiota on MS. METHODS: Independent genetic variants associated with 211 gut microbiota phenotypes were selected as instrumental variables from the largest genome-wide association studies (GWAS) previously published by the MiBioGen study. GWAS data for MS were obtained from the International Multiple Sclerosis Genetics Consortium (IMSGC) for primary analysis and the FinnGen consortium for replication and collaborative analysis. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. RESULTS: After inverse-variance-weighted and sensitivity analysis filtering, seven gut microbiota with potential causal effects on MS were identified from the IMSGC. Only five metabolites remained significant associations with MS when combined with the FinnGen consortium, including genus Anaerofilum id.2053 (odds ratio [OR] = 1.141, 95% confidence interval [CI]: 1.021-1.276, p = .021), Ruminococcus2 id.11374 (OR = 1.190, 95% CI: 1.007-1.406, p = .042), Ruminococcaceae UCG003 id.11361 (OR = 0.822, 95% CI: 0.688-0.982, p = .031), Ruminiclostridium5 id.11355 (OR = 0.724, 95% CI: 0.585-0.895, p = .003), Anaerotruncus id.2054 (OR = 0.772, 95% CI: 0.634-0.940, p = .010). CONCLUSION: Our MR analysis reveals a potential causal relationship between gut microbiota and MS, offering promising avenues for advancing mechanistic understanding and clinical investigation of microbiota-mediated MS.


Asunto(s)
Microbioma Gastrointestinal , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/microbiología , Esclerosis Múltiple/genética , Microbioma Gastrointestinal/fisiología
10.
Int J Biol Sci ; 20(8): 3008-3027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904013

RESUMEN

SET domain containing 7(SETD7), a member of histone methyltransferases, is abnormally expressed in multiple tumor types. However, the biological function and underlying molecular mechanism of SETD7 in clear cell renal cell carcinoma (ccRCC) remain unclear. Here, we explored the biological effects of SETD7-TAF7-CCNA2 axis on proliferation and metastasis in ccRCC. We identified both SETD7 and TAF7 were up-regulated and significantly promoted the proliferation and migration of ccRCC cells. Concurrently, there was a significant positive correlation between the expression of SETD7 and TAF7, and the two were colocalized in the nucleus. Mechanistically, SETD7 methylates TAF7 at K5 and K300 sites, resulting in the deubiquitination and stabilization of TAF7. Furthermore, re-expression of TAF7 could partially restore SETD7 knockdown inhibited ccRCC cells proliferation and migration. In addition, TAF7 transcriptionally activated to drive the expression of cyclin A2 (CCNA2). And more importantly, the methylation of TAF7 at K5 and K300 sites exhibited higher transcriptional activity of CCNA2, which promotes formation and progression of ccRCC. Our findings reveal a unique mechanism that SETD7 mediated TAF7 methylation in regulating transcriptional activation of CCNA2 in ccRCC progression and provide a basis for developing effective therapeutic strategies by targeting members of SETD7-TAF7-CCNA2 axis.


Asunto(s)
Carcinoma de Células Renales , Movimiento Celular , Proliferación Celular , N-Metiltransferasa de Histona-Lisina , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Proliferación Celular/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Movimiento Celular/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Línea Celular Tumoral , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Metilación , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/genética , Regulación Neoplásica de la Expresión Génica
11.
Cell Death Dis ; 15(6): 427, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890303

RESUMEN

As the second most common malignant tumor in the urinary system, renal cell carcinoma (RCC) is imperative to explore its early diagnostic markers and therapeutic targets. Numerous studies have shown that AURKB promotes tumor development by phosphorylating downstream substrates. However, the functional effects and regulatory mechanisms of AURKB on clear cell renal cell carcinoma (ccRCC) progression remain largely unknown. In the current study, we identified AURKB as a novel key gene in ccRCC progression based on bioinformatics analysis. Meanwhile, we observed that AURKB was highly expressed in ccRCC tissue and cell lines and knockdown AURKB in ccRCC cells inhibit cell proliferation and migration in vitro and in vivo. Identified CDC37 as a kinase molecular chaperone for AURKB, which phenocopy AURKB in ccRCC. AURKB/CDC37 complex mediate the stabilization of MYC protein by directly phosphorylating MYC at S67 and S373 to promote ccRCC development. At the same time, we demonstrated that the AURKB/CDC37 complex activates MYC to transcribe CCND1, enhances Rb phosphorylation, and promotes E2F1 release, which in turn activates AURKB transcription and forms a positive feedforward loop in ccRCC. Collectively, our study identified AURKB as a novel marker of ccRCC, revealed a new mechanism by which the AURKB/CDC37 complex promotes ccRCC by directly phosphorylating MYC to enhance its stability, and first proposed AURKB/E2F1-positive feedforward loop, highlighting AURKB may be a promising therapeutic target for ccRCC.


Asunto(s)
Aurora Quinasa B , Carcinoma de Células Renales , Proteínas de Ciclo Celular , Progresión de la Enfermedad , Factor de Transcripción E2F1 , Neoplasias Renales , Proteínas Proto-Oncogénicas c-myc , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Aurora Quinasa B/metabolismo , Aurora Quinasa B/genética , Proliferación Celular , Animales , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Ratones , Movimiento Celular/genética , Chaperoninas
12.
Adv Healthc Mater ; : e2400204, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855966

RESUMEN

Herein, a ccRCC targeting nanodrug is designed to enhance chemodynamic therapy (CDT) as well as activate cuproptosis and tumor immunotherapy via ccRCC cell membrane modifying CuO@Gd2O3 yolk-like particles (CGYL) loaded with lactate oxidase (LOx) (mCGYL-LOx). Benefiting from the homologous targeting effect of Renca cell membranes, the mCGYS-LOx can be effectively internalized by Renca cells, open the "gate", and then release LOx and copper (Cu) ions. LOx can catalyze excessive lactate in Renca cells into H2O2, following that the produced H2O2 is further converted by Cu ions to the highly toxic ·OH, contributing to tumor CDT. Meanwhile, the excessive Cu ions effectively trigger tumor cuproptosis. These synergistic effects induce the release of damage associated molecular patterns (DAMPs) and activate immunogenic cell death (ICD), leading to DC maturation and infiltration of immune effector cells. Moreover, LOx-mediated lactate consumption downregulates the expression of PD-L1, crippling tumor immune escape. In addition, the mCGYL-LOx improves T1-weighted MRI signal, allowing for accurate diagnosis of ccRCC. This study demonstrates that the mCGYL-LOx has great potential for improving therapy of ccRCC via the synergistic actions of CDT and cuproptosis as well as immunotherapy.

14.
Plant J ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923625

RESUMEN

In the field, necrosis area induced by pathogens is usually surrounded by a red circle in apple fruits. However, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we demonstrated that accumulated salicylic acid (SA) induced by fungal infection promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple (Malus domestica). Inoculating apple fruits with Valsa mali or Botryosphaeria dothidea induced a red circle surrounding the necrosis area, which mimicked the phenotype observed in the field. The red circle accumulated a high level of anthocyanins, which was positively correlated with SA accumulation stimulated by fungal invasion. Further analysis showed that SA promoted anthocyanin biosynthesis in a dose-dependent manner in both apple calli and fruits. We next demonstrated that MdNPR1, a master regulator of SA signaling, positively regulated anthocyanin biosynthesis in both apple and Arabidopsis. Moreover, MdNPR1 functioned as a co-activator to interact with and enhance the transactivation activity of MdTGA2.2, which could directly bind to the promoters of anthocyanin biosynthetic and regulatory genes to promote their transcription. Suppressing expression of either MdNPR1 or MdTGA2.2 inhibited coloration of apple fruits, while overexpressing either of them significantly promoted fruit coloration. Finally, we revealed that silencing either MdNPR1 or MdTGA2.2 in apple fruits repressed SA-induced fruit coloration. Therefore, our data determined that fungal-induced SA promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module, resulting in a red circle surrounding the necrosis area in apple fruits.

15.
Environ Sci Technol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935526

RESUMEN

Since the transfer of microplastic across the sea-air interface was first reported in 2020, numerous studies have been conducted on its emission flux estimation. However, these studies have shown significant discrepancies in the estimated contribution of oceanic sources to global atmospheric microplastics, with evaluations ranging from predominant to negligible, varying by 4 orders of magnitude from 7.7 × 10-4 to 8.6 megatons per year, thereby creating considerable confusion in the research on the microplastic cycle. Here, we provide a perspective by applying the well-established theory of particulate transfer through the sea-air interface. The upper limit of global sea-air emission flux microplastics was calculated, aiming to constrain the controversy in the previously reported fluxes. Specifically, the flux of sub-100 µm microplastic cannot exceed 0.01 megatons per year, and for sub-0.1 µm nanoplastics, it would not exceed 3 × 10-7 megatons per year. Bridging this knowledge gap is crucial for a comprehensive understanding of the sea-air limb in the "plastic cycle", and facilitates the management of future microplastic pollution.

16.
J Bioenerg Biomembr ; 56(4): 433-449, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825632

RESUMEN

Energy metabolism has always been a hot topic in cancer progression and targeted therapy, and exploring the role of genes in energy metabolic pathways in cancer cells has become key to address this issue. Eukaryotic translation initiation factor 2α kinase 2 (EIF2AK2) plays regulatory roles in cancer and disorders of energy metabolism. Indeed, the role of EIF2AK2 in energy metabolism has been underestimated. The aim of this study is to reveal the expression specificity of EIF2AK2 in gastric cancer (GC) progression and metastasis, and to demonstrate the role of EIF2AK2 in energy metabolism, cytoskeleton, proliferation, death and metastasis pathways in GC cells. Mechanistically, EIF2AK2 overexpression promoted cytoskeleton remodeling and ATP production, mediated cell proliferation and metastasis, upregulated OAS1 expression, decreases p-AMPK expression and inhibited apoptosis in GC cells. Conversely, knockdown of EIF2AK2 resulted in the opposite effect. However, overexpression of OAS1 mediated the upregulation of mitochondrial membrane potential and promoted ATP production and NAD+/NADH ratio, but knockdown of OAS1 inhibited the above effects. In addition, knockdown of OAS1 had no effect on EIF2AK2 expression, but inhibited AMPK and upregulated p-AMPK expression. In conclusion, our study identified EIF2AK2 and OAS1 as previously undescribed regulators of energy metabolism in GC cells. We hypothesized that EIF2AK2-OAS1 axis may regulate energy metabolism and inhibit cellular malignant behavior in cancer cells by affecting ATP production to induce AMPK phosphorylation, suggesting EIF2AK2 as a potential therapeutic target for cancer cell progression.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adenosina Trifosfato , Neoplasias Gástricas , eIF-2 Quinasa , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Humanos , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , eIF-2 Quinasa/metabolismo , Fosforilación , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen
17.
Food Funct ; 15(13): 7046-7062, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864415

RESUMEN

Chronic kidney disease (CKD) is characterized by impaired renal function and is associated with inflammation, oxidative stress, and fibrosis. Sheep milk contains several bioactive molecules with protective effects against inflammation and oxidative stress. In the current study, we investigated the potential renoprotective effects of sheep milk and the associated mechanisms of action in an adenine-induced CKD murine model. Sheep milk delayed renal chronic inflammation (e.g., significant reduction in levels of inflammatory factors Vcam1, Icam1, Il6, and Tnfa), fibrosis (significant reduction in levels of fibrosis factors Col1a1, Fn1, and Tgfb), oxidative stress (significant increase in levels of antioxidants and decrease in oxidative markers), mineral disorders, and renal injury in adenine-treated mice (e.g. reduced levels of kidney injury markers NGAL and KIM-1). The combined proteomics and metabolomics analyses showed that sheep milk may affect the metabolic processes of several compounds, including proteins, lipids, minerals, and hormones in mice with adenine-induced chronic kidney disease. In addition, it may regulate the expression of fibrosis-related factors and inflammatory factors through the JAK1/STAT3/HIF-1α signaling pathway, thus exerting its renoprotective effects. Therefore, sheep milk may be beneficial for patients with CKD and should be evaluated in preclinical and clinical studies.


Asunto(s)
Adenina , Riñón , Leche , Estrés Oxidativo , Insuficiencia Renal Crónica , Animales , Ratones , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/metabolismo , Ovinos , Leche/química , Leche/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Masculino , Metaboloma , Proteoma , Sustancias Protectoras/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Fibrosis , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Proteómica , Multiómica
18.
Nature ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776962

RESUMEN

AMPylation is a post-translational modification in which AMP is added to the amino acid side chains of proteins1,2. Here we show that, with ATP as the ligand and actin as the host activator, the effector protein LnaB of Legionella pneumophila exhibits AMPylase activity towards the phosphoryl group of phosphoribose on PRR42-Ub that is generated by the SidE family of effectors, and deubiquitinases DupA and DupB in an E1- and E2-independent ubiquitination process3-7. The product of LnaB is further hydrolysed by an ADP-ribosylhydrolase, MavL, to Ub, thereby preventing the accumulation of PRR42-Ub and ADPRR42-Ub and protecting canonical ubiquitination in host cells. LnaB represents a large family of AMPylases that adopt a common structural fold, distinct from those of the previously known AMPylases, and LnaB homologues are found in more than 20 species of bacterial pathogens. Moreover, LnaB also exhibits robust phosphoryl AMPylase activity towards phosphorylated residues and produces unique ADPylation modifications in proteins. During infection, LnaB AMPylates the conserved phosphorylated tyrosine residues in the activation loop of the Src family of kinases8,9, which dampens downstream phosphorylation signalling in the host. Structural studies reveal the actin-dependent activation and catalytic mechanisms of the LnaB family of AMPylases. This study identifies, to our knowledge, an unprecedented molecular regulation mechanism in bacterial pathogenesis and protein phosphorylation.

19.
Chemistry ; 30(37): e202400945, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38690799

RESUMEN

The performance of lithium-sulfur batteries is compromised by the loss of sulfur as dissolved polysulfides in the electrolyte and consequently the polysulfide redox shutting effect. Accelerating the conversion kinetics of polysulfide intermediates into sulfur or lithium sulfide through electrocatalysis has emerged as a root-cause solution. Co-N-C composite electrocatalyst is commonly used for this purpose. It is illustrated here that how the effectiveness can be improved by modulating the coordination chemistry of Co-N-C catalytic sites through introducing Ru species (RuCo-NC). The well-dispersed Ru in the Co-NC carbon matrix altered the total charge distribution over the Co-N-C catalytic sites and led to the formation of electron-rich Co-N, which is highly active for the polysulfide conversion reactions. Using Ru to modulate the electronic structure in the Co-N-C configuration and the additional catalytic sites over the Ru-Nx species can manifest optimal adsorption behavior of polysulfides. Consequently, the sulfur cathode with RuCo-NC can reduce the capacity fade rate from 0.11 % per cycle without catalyst (initial capacity of 701 mAh g-1) to 0.054 % per cycle (initial capacity of 1074 mAh g-1) over 400 cycles at 0.2 C rate. The results of this study provide the evidence for a feasible catalyst modification strategy for the polysulfide electrocatalysis.

20.
Environ Sci Technol ; 58(23): 10185-10194, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38804824

RESUMEN

The relaxation of restrictions on Chinese Spring Festival (SF) firework displays in certain regions has raised concerns due to intensive emissions exacerbating air quality deterioration. To evaluate the impacts of fireworks on air quality, a comparative investigation was conducted in a city between 2022 (restricted fireworks) and 2023 SF (unrestricted), utilizing high time-resolution field observations of particle chemical components and air quality model simulations. We observed two severe PM2.5 pollution episodes primarily triggered by firework emissions and exacerbated by static meteorology (contributing approximately 30%) during 2023 SF, contrasting with its absence in 2022. During firework displays, freshly emitted particles containing more primary inorganics (such as chloride and metals like Al, Mg, and Ba), elemental carbon, and organic compounds (including polycyclic aromatic hydrocarbons) were predominant; subsequently, aged particles with more secondary components became prevalent and continued to worsen air quality. The primary emissions from fireworks constituted 54% of the observed high PM2.5 during the displays, contributing a peak hourly PM2.5 concentration of 188 µg/m3 and representing over 70% of the ambient PM2.5. This study underscores that caution should be exercised when igniting substantial fireworks under stable meteorological conditions, considering both the primary and potential secondary effects.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Vacaciones y Feriados , Hidrocarburos Policíclicos Aromáticos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...