Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37367765

RESUMEN

Aniline is a highly toxic organic pollutant with "carcinogenic, teratogenic and mutagenesis" characteristics. In the present paper, a membrane distillation and crystallization (MDCr) process was proposed to achieve zero liquid discharge (ZLD) of aniline wastewater. Hydrophobic polyvinylidene fluoride (PVDF) membranes were used in the membrane distillation (MD) process. The effects of the feed solution temperature and flow rate on the MD performance were investigated. The results showed that the flux of the MD process was up to 20 L·m-2·h-1 and the salt rejection was above 99% under the feeding condition of 60 °C and 500 mL/min. The effect of Fenton oxidation pretreatment on the removal rate of aniline in aniline wastewater was also investigated, and the possibility of realizing the ZLD of aniline wastewater in the MDCr process was verified.

2.
Chem Commun (Camb) ; 59(54): 8436-8439, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37335573

RESUMEN

Herein, we demonstrated the unique advantage of a mechanochemical reaction to prepare a salt with hard and soft acid and base ions concurrently by solution synthesis owing to the soft acid preferring to combine with the soft base and vice versa. We prepared Bu4N1-xLixMnxPb1-xI3 (x = 0.011-0.14) by mechanochemical synthesis. The doping induced a structural phase transition at ∼342 K and much enhancement of ionic conduction above 342 K for all co-doped hybrids regarding Bu4NPbI3 because of the voids around the Mn2+/Li+ ions by doping.

3.
Dalton Trans ; 49(30): 10638-10644, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32697201

RESUMEN

The zero/negative thermal expansion (ZTE/NTE), which is an intriguing physical property of solids, has been observed in a few families of materials. ZTE materials possess practical applications in specific circumstances such as space-related applications, engineering structures and precision instrument. Generally, NTE materials are used as additives to form a composite of the ZTE material with positive thermal expansion material. It is still a tremendous challenge to design new families of ZTE/NTE materials. Herein, we presented a temperature-dependent single crystal structure analysis in 110-300 K for a layered (NH4)2V3O8, which crystallizes in a tetragonal space group P4bm and comprises mixed valence [V3O82-]∞ monolayers and NH4+ residual in the interlayer spaces. Along the c-axis, (NH4)2V3O8 demonstrated uniaxial expansion behaviors, i.e., ZTE with αc = -1.10 × 10-6 K-1 in 110-170 K and NTE with αc = -16.25 × 10-6 K-1 in 170-220 K. Along the a-axis, (NH4)2V3O8 exhibited ZTE with αa = + 2.06 × 10-6 K-1 in 240-300 K. The mechanisms of ZTE and NTE were explored using structural analysis. The conduction of NH4+ ions in the interlayer space was studied, indicating that the conductivity rapidly rises with the expansion of interlayer space at temperatures of >293 K. This study discloses that layered vanadates are promising ZTE/NTE materials.

4.
Chem Commun (Camb) ; 56(3): 462-465, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31825446

RESUMEN

In this study, a multi-step phase transition hybrid composed of (Pr-dabco)2Ag4I6 clusters (Pr-dabco+ = 1-propyl-1,4-diazabicyclo[2.2.2]octan-1-ium) has been prepared and characterized by microanalysis, IR and UV-vis spectroscopy, TG and DSC techniques, etc. This hybrid is thermally stable up to ∼486 K with five phases in the temperature region below 486 K. The phase transition shows symmetry breaking (SB) character between phases II (space group P21/c) and III (space group Pa3[combining macron]), while inverse symmetry breaking (ISB) between phases II and I (space group Pbca), and it is rather exceptional for matter to exhibit simultaneously SB and ISB nature in two successive phase transitions. Most importantly, each phase transition is associated with a dielectric anomaly, and phase V appears to be a plastic crystal with extra high ac conductivity (>10-2 S cm-1). Our work opens up new avenues to find a multi-phase transition material in silver halide hybrids.

5.
Dalton Trans ; 47(41): 14636-14643, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30276395

RESUMEN

A new 1D phosphorescence coordination polymer (CP) [Pb2O(C6H4NO2)2]n (1; C6H4NO2 = nicotinate) was synthesized by a solvothermal reaction and PbO was used as a Pb(ii) source instead of traditional Pb(ii) salts. This remarkably thermal-stable CP crystallizes in the space group I41/a. In the crystal structure of 1, two different Pb(ii) ions show a five-coordinated and hemidirected coordination geometry, two nonequivalent nicotinate ligands link to Pb(ii) ions in µ2-η1:η1 and µ4-η2:η2 modes, and the hemidirected coordination polyhedra of Pb(ii) form a helical lead-oxide chain via an edge-sharing fashion along the c-axis. Under ambient conditions, 1 emits cyan ligand-based phosphorescence with an absolute quantum yield as high as 59.4% and a lifetime of 9.86 ms under UV-light irradiation. Under the same conditions, nicotinic acid emits simultaneously fluorescence and phosphorescence with a total absolute quantum yield of 4.8%. The great enhancement of phosphorescence quantum yield in 1, regarding nicotinic acid, is assigned to the heavy atom effect of Pb(ii) and negligible ππ interaction between pyridyl rings. Noticeably, the vibronic fine structure is observed in the emission spectrum of 1 at room temperature. Additionally, 1 shows thermochromic behavior, and such functionality probably has realistic application in the field of temperature detection.

6.
J Adhes Dent ; 11(1): 49-55, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19343927

RESUMEN

PURPOSE: The aim of this study was to verify the effects of sol-gel processed silica coating on the bond strength between resin cement and glass-infiltrated aluminum oxide ceramic. MATERIALS AND METHODS: Silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surface via the sol-gel process. Atomic Force Microscope (AFM), Fourier Transmission Infrared spectrum (FTIR), and Energy Dispersive X-ray Spectroscopy (EDS) were used for coating characterization. Forty-eight blocks of glass-infiltrated aluminum oxide ceramic were fabricated. The ceramic surfaces were polished following sandblasting. Three groups of specimens (16 for each group) with different surface treatment were prepared. Group P: no treatment; group PO: treated with silane solution; group PTO: silica coating via sol-gel process, followed by silane application. Composite cylinders were luted with resin cement to the test specimens. Half of the specimens in each group were stored in distilled water for 24 h and the other half were stored in distilled water for 30 days before shear loading in a universal testing machine until failure. Selected ceramic surfaces were analyzed to identify the failure mode using a scanning electron microscopy (SEM). RESULTS: Nanostructured silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surfaces by the sol-gel process. The silicon element on the ceramic surface increased significantly after the coating process. The mean shear bond strength values (standard deviation) before artificial aging were: group P: 1.882 +/- 0.156 MPa; group PO: 2.177 +/- 0.226 MPa; group PTO: 3.574 +/- 0.671 MPa. Statistically significant differences existed between group PTO and group P, and group PTO and groups PO. The failure mode for group P and group PO was adhesive, while group PTO was mixed. The mean shear bond strength values (standard deviation) after artificial aging were: group P: 1.594 +/- 0.111 MPa; group PO: 2.120 +/- 0.339 MPa; group PTO: 2.955 +/- 0.113 MPa. Statistically significant differences existed between each two groups after artificial aging, group P had the lowest bond durability, and group PTO had the highest bond durability. CONCLUSION: The sol-gel process is an effective way to prepare silica coating on dental glass-infiltrated alumina ceramic. Sol-gel processed silica coating can improve the resin bond strength of glass-infiltrated alumina ceramic.


Asunto(s)
Óxido de Aluminio/química , Materiales Biocompatibles Revestidos/química , Recubrimiento Dental Adhesivo , Porcelana Dental/química , Vidrio/química , Cementos de Resina/química , Dióxido de Silicio/química , Resinas Compuestas/química , Materiales Dentales/química , Pulido Dental , Análisis del Estrés Dental/instrumentación , Microanálisis por Sonda Electrónica , Humanos , Ensayo de Materiales , Microscopía de Fuerza Atómica , Nanocompuestos/química , Tamaño de la Partícula , Transición de Fase , Resistencia al Corte , Silanos/química , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Propiedades de Superficie , Factores de Tiempo , Agua/química
7.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 24(6): 555-8, 2006 Dec.
Artículo en Chino | MEDLINE | ID: mdl-17334083

RESUMEN

OBJECTIVE: To make silica coating through sol-gel process, and to evaluate the wettability of dental alumina ceramic with or without coating. METHODS: Silica coating was prepared with colloidal silica sol on In-Ceram alumina ceramic surface which had been treated with air particle abrasion. Coating gel after heat treatment was observed with atomic force microscope (AFM), and was analyzed by infrared spectrum (IR) with gel without sintered as control. Contact angles of oleic acid to be finished, sandblasted and coated ceramic surface of were measured. RESULTS: AFM pictures showed that some parts of nano-particles in coating gel conglomerated after heat treatment. It can be seen from the IR picture that bending vibration absorption kurtosis of Si-OH also vanished after heat treatment. Among contact angles of three treated surface, the ones on polished surface were the biggest (P = 0.000, P = 0.000), and sandblasting+silica coating surface the smallest (P = 0.000, P = 0.003). CONCLUSION: Silica coating can be made with sol-gel process successfully. Heat treatment may reinforce Si-O-Si net structure of coating gel. Wettability of dental alumina ceramic with silica coating is higher than with sandblasting and polishing.


Asunto(s)
Óxido de Aluminio , Cerámica , Recubrimiento Dental Adhesivo , Porcelana Dental , Ensayo de Materiales , Dióxido de Silicio , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA