Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Foods ; 13(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731694

Spirulina protein (SP) is recognized as a nutritious edible microbial protein and holds potential as a natural emulsifier. Due to the inherent challenges SP faces in stabilizing high internal phase emulsions (HIPEs), ultrasonic techniques were utilized for modification. Noticeable alterations in the structural and functional properties of SP were observed following ultrasonic treatment at various power levels (0, 100, 300, and 500 W). Ultrasound treatment disrupted non-covalent interactions within the protein polymer structure, leading to the unfolding of molecular structures and the exposure of hydrophobic groups. Importantly, the particle size of SP was reduced the most at an ultrasonic power of 300 W, and the three-phase contact angle reached its peak at 84.3°. The HIPEs stabilized by SP modified with 300 W ultrasonication have high apparent viscosity and modulus values and strong storage stability under different environmental conditions. Additionally, the encapsulation of curcumin in HIPEs led to improved retention of curcumin across various settings. The bioavailability increased to 35.36, which is 2.8 times higher than the pure oil. These findings suggest that ultrasound-modified SP is a promising emulsifier for HIPEs, and is expected to encapsulate hydrophobic nutrients such as curcumin more effectively.

3.
Int J Pharm ; 657: 124143, 2024 May 25.
Article En | MEDLINE | ID: mdl-38663641

Gastric ulcer, a significant health issue characterized by the degradation of the gastric mucosa, often arises from excessive gastric acid secretion and poses a challenge in current medical treatments due to the limited efficacy and side effects of first-line drugs. Addressing this, our study develops a novel therapeutic strategy leveraging gas therapy, specifically targeting the release of hydrogen sulfide (H2S) in the treatment of gastric ulcers. We successfully developed a composite nanoparticle, named BSA·SH-DATS, through a two-step process. Initially, bovine serum albumin (BSA) was sulfhydrated to generate BSA·SH nanoparticles via a mercaptosylation method. Subsequently, these nanoparticles were further functionalized by incorporating diallyltrisulfide (DATS) through a precise Michael addition reaction. This sequential modification resulted in the creation of BSA·SH-DATS nanoparticles. Our comprehensive in vitro and in vivo investigations demonstrate that these nanoparticles possess an exceptional ability for site-specific action on gastric mucosal cells under the controlled release of H2S in response to endogenous glutathione (GSH), markedly diminishing the production of pro-inflammatory cytokines, thereby alleviating inflammation and apoptosis. Moreover, the BSA·SH-DATS nanoparticles effectively regulate critical inflammatory proteins, including NF-κB and Caspase-3. Our study underscores their potential as a transformative approach for gastric ulcer treatment.


Allyl Compounds , Ethanol , Gastric Mucosa , Hydrogen Sulfide , Nanoparticles , Serum Albumin, Bovine , Stomach Ulcer , Sulfides , Animals , Sulfides/chemistry , Sulfides/administration & dosage , Sulfides/pharmacology , Nanoparticles/chemistry , Ethanol/chemistry , Allyl Compounds/chemistry , Allyl Compounds/pharmacology , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Hydrogen Sulfide/chemistry , Serum Albumin, Bovine/chemistry , Male , Apoptosis/drug effects , Glutathione/metabolism , Mice , Cytokines/metabolism , Humans , NF-kappa B/metabolism
4.
Int J Biol Macromol ; 263(Pt 1): 130321, 2024 Apr.
Article En | MEDLINE | ID: mdl-38382780

As a global public health issue, the treatment of acute liver injury (ALI) is severely limited due to the lack of specific drugs. In order to address the challenges, innovative strategies for selenium nanoparticles (Se NPs) with excellent antioxidant properties have been actively developed to effectively prevent ALI. However, the functional activity of Se NPs is severely affected by poor stability and bioavailability. The aim of this work is to develop a stabilization system (ASP-Se NPs) for Angelica sinensis polysaccharides modified Se NPs. The results showed that ASP-Se NPs with smaller size (62.38 ± 2.96 nm) showed good stability, specific accumulation in liver and enhanced cell uptake, thus exerting strong antioxidant and anti-inflammatory functions. The results of in vivo experiments further confirmed that ASP-Se NPs effectively prevented CCl4-induced ALI by improving liver function, inhibiting oxidative stress and inflammatory response, and liver pathological damage. This work provides a new alternative method for effectively preventing ALI and improving liver function.


Angelica sinensis , Nanoparticles , Selenium , Selenium/pharmacology , Antioxidants/pharmacology , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Liver , Nanoparticles/therapeutic use
5.
Int J Biol Macromol ; 253(Pt 8): 127570, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37866556

Exacerbated intestinal inflammation, oxidative stress imbalance, and damage to intestinal mucosal barrier are closely related to the pathogenesis and progression of ulcerative colitis (UC). Selenium nanoparticles (Se NPs) have demonstrated promising potential to alleviate UC symptoms, however, their poor solubility and stability leading to aggregation and large precipitates have significantly limit their clinical application. In this study, we aimed to enhance the performance of Se NPs by functionalizing them with Porphyra haitanensis polysaccharide, yielding PHP-Se NPs. As expected, these PHP-Se NPs exhibited reduced particle size (70.51 ± 2.92 nm), enhanced cellular uptake compared to native Se NPs, and preferential accumulation in the colonic tissue, providing targeted UC treatment. In vivo animal experiments revealed that PHP-Se NPs significantly improved weight loss, shortened colon length, and higher disease activity index (DAI) scores in DSS-induced UC mice. Moreover, PHP-Se NPs significantly inhibited the levels of inflammatory factors in colitis tissues and oxidative stress in serum of UC mice, improved histological damage in colitis tissues, and restored the intestinal mucosal barrier. Taken together, our study offers an innovative approach to augment the bioavailability of Se NPs, presenting a promising strategy for the effective prevention and management of UC.


Colitis, Ulcerative , Colitis , Nanoparticles , Porphyra , Selenium , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Selenium/pharmacology , Colon , Polysaccharides/adverse effects , Disease Models, Animal , Dextran Sulfate/adverse effects , Mice, Inbred C57BL
6.
Int J Pharm ; 645: 123372, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37716487

Ethanol-induced acute gastric injury is a prevalent type of digestive tract ulcer, yet conventional treatments strategies frequently encounter several limitations, such as poor bioavailability, degradation of enzymes and adverse side effects. Gallic acid (GA), a natural compound extracted from dogwood, has demonstrated potential protective effects in mitigating acute gastric injury. However, its poor stability and limited bioavailability have restricted applications in vivo. To address these issues, we report a hydrogel constructed only by gallic acid with high bioavailability for alleviation of gastric injury. Molecular dynamic simulation studies revealed that the self-assembly of GA into hydrogel was predominantly attributed to π-π and hydrogen bonds. After assembling, the GA hydrogel exhibits superior anti-oxidative stress, anti-apoptosis and anti-inflammatory properties compared with free GA. As anticipated, in vitro experiments demonstrated that GA hydrogel possessed the remarkable ability to promote the proliferation of GES-1 cells, and alleviates apoptosis and inflammation caused by ethanol. Subsequent in vivo investigation further confirmed that GA hydrogel significantly alleviated ethanol-triggered acute gastric injury. Mechanistically, GA hydrogel treatment enhanced the antioxidant capacity, reduced oxidative stress while simultaneously suppressing the secretion of pro-inflammatory cytokines and reduced the production of pro-apoptotic proteins during the process of gastric injury. Our finding suggest that this multifunctional GA hydrogel is a promising candidate for gastric injury, particularly in cases of ethanol-induced acute gastric injury.

7.
Colloids Surf B Biointerfaces ; 228: 113440, 2023 Aug.
Article En | MEDLINE | ID: mdl-37421764

Wound healing remains a considerable challenge due to its complex inflammatory microenvironment. Developing novel wound dressing materials with superior wound repair capabilities is highly required. However, conventional dressing hydrogels for wound healing are often limited by their complex cross-linking, high treatment costs, and drug-related side effects. In this study, we report a novel dressing hydrogel constructed only by the self-assembly of chlorogenic acid (CA). Molecular dynamic simulation studies revealed the formation of CA hydrogel was mainly through non-covalent interactions, such as π-π and hydrogen bond. Meanwhile, CA hydrogel exhibited superior self-healing, injectability, and biocompatibility properties, making it a promising candidate for wound treatment. As expected, in vitro experiments demonstrated that CA hydrogel possessed remarkable anti-inflammatory activity, and its ability to promote the generation of microvessels in HUVEC cells, as well as the promotion of microvessel formation in HUVEC cells and proliferation of HaCAT cells. Subsequent in vivo investigation further demonstrated that CA hydrogel accelerated wound healing in rats through regulating macrophage polarization. Mechanistically, the CA hydrogel treatment enhanced the closure rate, collagen deposition, and re-epithelialization while simultaneously suppressing the secretion of pro-inflammatory cytokines and increasing the production of CD31 and VEGF during the wound healing process. Our findings indicate that this multifunctional CA hydrogel is a promising candidate for wound healing, particularly in cases of impaired angiogenesis and inflammatory responses.


Chlorogenic Acid , Hydrogels , Rats , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Chlorogenic Acid/pharmacology , Wound Healing , Bandages , Anti-Inflammatory Agents/pharmacology , Anti-Bacterial Agents/pharmacology
8.
J Agric Food Chem ; 71(9): 4016-4028, 2023 Mar 08.
Article En | MEDLINE | ID: mdl-36812066

Mucoadhesive hydrogels with multifunctional properties such as gastric acid resistance and sustained drug release in the intestinal tract are highly desirable for the oral treatment of inflammatory bowel diseases (IBDs). Polyphenols are proven to have great efficacies compared with the first-line drugs for IBD treatments. We recently reported that gallic acid (GA) was capable of forming a hydrogel. However, this hydrogel is prone to easy degradation and poor adhesion in vivo. To tackle this problem, the current study introduced sodium alginate (SA) to form a gallic acid/sodium alginate hybrid hydrogel (GAS). As expected, the GAS hydrogel showed excellent antiacid, mucoadhesive, and sustained degradation properties in the intestinal tract. In vitro studies demonstrated that the GAS hydrogel significantly alleviated ulcerative colitis (UC) in mice. The colonic length of the GAS group (7.75 ± 0.38 cm) was significantly longer than that of the UC group (6.12 ± 0.25 cm). The disease activity index (DAI) value of the UC group was (5.5 ± 0.57), which was markedly higher than that of the GAS group (2.5 ± 0.65). The GAS hydrogel also could inhibit the expression of inflammatory cytokines, regulating macrophage polarization and improving the intestinal mucosal barrier functions. All these results indicated that the GAS hydrogel was an ideal candidate for oral treatment of UC.


Colitis, Ulcerative , Colitis , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Hydrogels/metabolism , Delayed-Action Preparations/metabolism , Colon/metabolism , Alginates , Gallic Acid/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Colitis/drug therapy , Mice, Inbred C57BL
9.
Int J Biol Macromol ; 227: 698-710, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36526068

Gallic acid (GA) has attracted extensive attention due to its excellent health benefits. Our recent work demonstrated that GA could be self-assembled into hydrogels. However, the poor mechanical properties and rapid degradation of GA hydrogels presented challenges for further applications. In this study, agarose (AG), a water-soluble polysaccharide, was used with GA to develop a double network hydrogel (GA-AG). Physical and chemical tests demonstrated that the GA-AG hydrogel at ratio of 4:5 had the highest cross-linked structure, along with excellent porosity, good water retention and a swelling ratio of 9.72 %. In addition, the cross-linked network structure enabled the GA-AG hydrogel to have good mechanical properties and better viscosity than the pure GA hydrogel. The glass transition temperature of the GA-AG hydrogel increased from 59.49 °C to 65.54 °C, while its disintegration rate decreased from 99.07 % to 64.37 % within 48 h. In vitro tests showed that the GA-AG hydrogel had excellent antibacterial activity and biocompatibility. Meanwhile, we demonstrated that this double network hydrogel significantly reduced inflammation and accelerated wound healing in vivo. From the results of our study, we expect that this stable GA-AG double network hydrogel has potential applications in wound healing.


Gallic Acid , Hydrogels , Sepharose , Gallic Acid/pharmacology , Hydrogels/pharmacology , Hydrogels/chemistry , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents/pharmacology
10.
Colloids Surf B Biointerfaces ; 222: 112975, 2023 Feb.
Article En | MEDLINE | ID: mdl-36442387

The current antibacterial wound dressings with antibiotic substances or metal bactericidal agents may lead to severe multidrug resistance and poor biocompatibilities. Herein, we report an inherent antibacterial hydrogel constructed by only two naturally small molecules gallic acid (GA) and diammonium glycyrrhizinate (DG) for promoting Staphylococcus aureus (S. aureus)-infected wound healing. The resultant GAD hydrogel can be fabricated by co-assembly of these two materials through simple steps. Thanks to the incorporation of GA and DG, GAD hydrogel enabled a strong mechanical performance and great self-healing property with a sustained-release of drugs into skin wounds. Moreover, the cell viability assays showed that GAD hydrogel had good cytocompatibility by promoting cell proliferation and migration. In addition, GAD hydrogel had broad antibacterial efficiency against both Gram-positive and Gram-negative bacteria. Taken together, GAD hydrogel is a promising dressing to accelerate bacterial-infected wound healing through reconstructing an intact and thick epidermis without antibiotics or cytokines.


Glycyrrhizic Acid , Hydrogels , Glycyrrhizic Acid/pharmacology , Hydrogels/pharmacology , Gram-Negative Bacteria , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Staphylococcus aureus , Gallic Acid/pharmacology
11.
ACS Biomater Sci Eng ; 9(1): 375-387, 2023 01 09.
Article En | MEDLINE | ID: mdl-36520681

Wound healing remains a critical challenge due to its vulnerability to bacterial infection and the complicated inflammatory microenvironment. Herein, we report a novel antibacterial hydrogel constructed only by gallic acid (GA) and phycocyanin (PC), which is expected for the treatment of bacteria-infected wounds. These GA/PC hydrogels (GP) was found to coassemble into fibrous networks with a diameter of around 2 µm mainly through noncovalent interactions of hydrogen bonds, van der Waals force, and π interaction. Notably, these GP hydrogels showed excellent rheological properties (i.e., storage modulus of more than 9.0 × 104 Pa) and outstanding biocompatibility and antibacterial activities. Thanks to the incorporation of GA and PC, the GP hydrogels enabled adherence to the moist wound tissue and achieved a sustained release of GA and PC into the wound skin, therefore effectively attenuating inflammation and accelerating wound healing both in normal mice and bacteria-infected mice through regulating the expression of the tight junction protein and the alleviation of oxidative stress. Considering these results, these GP hydrogels are demonstrated to be a promising candidate for bacteria-infected wound healing.


Anti-Bacterial Agents , Hydrogels , Animals , Mice , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Gallic Acid/pharmacology , Oxidative Stress , Wound Healing
12.
Biomater Sci ; 10(23): 6836-6849, 2022 Nov 22.
Article En | MEDLINE | ID: mdl-36321606

The purpose of this study is to provide a new strategy for constructing a temperature-controlled hydrogel as a promising agent for wound healing using natural products through physical co-assembly. Herein, the temperature-controlled physically assembled hydrogel consisting of gallic acid and lysozyme (GL) could be co-assembled into a regular fibrous structure accompanied by strong blue fluorescence with three-dimensional networks at micron levels through hydrophobic interactions, π-π interactions and hydrogen bonding. This GL hydrogel has excellent temperature sensitivity and self-healing properties, as proved by cycle high-low temperature tests. In addition, it possesses stable rheological properties, great sustained release ability, and could realize the spatiotemporal delivery of gallic acid and lysozyme. Biocompatibility and antibacterial tests proved that this well-assembled GL hydrogel has no cytotoxicity but excellent antibacterial activity. Both in vitro and in vivo experiments demonstrated that the GL hydrogel has excellent anti-inflammation efficiency and promotes the healing of chronic wounds by suppressing the expression of pro-inflammatory related genes. Tests using an E. coli-infected wound model confirmed that the GL hydrogel could terminate the inflammatory phase early and ultimately promote the healing of wounds infected by E. coli. This study provides a promising strategy for the effective treatment of wounds through a physical self-assembled hydrogel.


Anti-Infective Agents , Hydrogels , Hydrogels/chemistry , Muramidase , Escherichia coli , Gallic Acid , Delayed-Action Preparations , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
13.
Biomater Adv ; 140: 213034, 2022 Sep.
Article En | MEDLINE | ID: mdl-35914325

Diabetic wound healing is a major clinical challenge due to its vulnerability to bacterial infection and the prolonged inflammation in the wound. Traditional dressings for the healing of diabetic wounds are often suffered from unsatisfactory efficacy and frequent dressing changes which may cause secondary damage. Therefore, it is necessary to find a wound dressing that balances material functionality, degradation, safety, and tissue regeneration. Our recent studies demonstrated that gallic acid (GA) could spontaneously form supramolecular hydrogels at a relatively high concentration. However, a single network of GA hydrogel is prone to degradation, poor adhesion, and poor swelling, and may not be suitable for wound healing dressings. In this study, a composite hydrogel (GAK) was constructed by introducing konjac glucomannan (KGM) into the gel system of gallic acid (GA) and applied to promote diabetic wound healing. The composite hydrogel (GAK) with superior surface adhesion, stability, and swelling properties than the single-network of GA hydrogel. Moreover, in vitro experiments showed that GAK hydrogel had excellent biocompatibility and exhibited antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Additionally, the GAK hydrogel could significantly accelerate angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice, reducing the expression of related inflammatory proteins interleukin-1ß (IL-1ß), tumor necrosis factor-alpha (TNF-α), and cyclooxygenase-2 (COX-2), and improving the wound closure rate. The findings of this study suggest that this composite hydrogel (GAK) can be an ideal dressing material for accelerating diabetic wound healing.


Diabetes Mellitus, Experimental , Hydrogels , Animals , Diabetes Mellitus, Experimental/complications , Escherichia coli , Gallic Acid/pharmacology , Mice , Staphylococcus aureus , Wound Healing
14.
Adv Healthc Mater ; 11(12): e2102476, 2022 06.
Article En | MEDLINE | ID: mdl-35306757

Self-assemblies of bioactively natural compounds into supramolecular hydrogels without structural modifications are of interest to improve their sustained releases and bioavailabilities in vivo. However, it is still a formidable challenge to dig out such a naturally small molecule with a meticulous structure which can be self-assembled to form a hydrogel for biomedical applications. Here, a new hydrogel consisting only of gallic acid (GA) via π-π stacking and hydrogen bond interactions, whereas none of GA analogues can form the similar supramolecular hydrogels, is reported. This interesting phenomenon is intriguing to further investigate the potential applications of GA hydrogels in wound healing. Notably, this GA hydrogel has rod-like structures with lengths varying from 10 to 100 µm. The biocompatibility and antibacterial tests prove that this well-assembled GA hydrogel has no cytotoxicity and excellent antibacterial activities against Escherichia coli and Staphylococcus aureus. Moreover, the GA hydrogel can significantly accelerate the process of wound healing with or without bacterial infections by mediation of inflammation signaling pathways. It is believed that the current study may shed a new light on the design of a supramolecular hydrogel based on self-assemblies of naturally small molecules to improve their bioavailabilities and diversify their uses in biomedical applications.


Staphylococcus aureus , Wound Healing , Anti-Bacterial Agents/chemistry , Escherichia coli , Hydrogels/chemistry , Hydrogels/pharmacology
15.
Biomacromolecules ; 23(4): 1680-1692, 2022 04 11.
Article En | MEDLINE | ID: mdl-35258295

Programing self-assembly of naturally bioactive molecules has been a wide topic of great significance for biomedical uses. Despite the fact that plant-derived polyphenols with catechol or pyrogallol moieties have been widely studied to construct nanocomplexes or nanocoatings via self-polymerization, there is no report on the self-assembly of these polyphenols into therapeutic hydrogels for potential applications. Here, we reported that adding a very small amount of resveratrol (Res) into the gallic acid (GA) aqueous solution could trigger the quick self-assembly of GA to form a fibrous hydrogel within 5 min through hydrogen bonds and π-π interactions. The length of GA/Res (GR) fibrils in gels varied from 100 to 1000 microns, with a diameter of around 1 µm. Notably, these GR hydrogels showed excellent colloid stability, providing better slow release and outstanding biocompatibility. Also, in vivo experiments indicated the hydrogels had high antibacterial effects and excellent wound healing capabilities in a total skin defect model via regulating the expression of inflammatory factors (IL-6, IL-1ß, and TNF-α) due to the release of therapeutic agents (GA and Res) into the matrix. Overall, our results provide a new strategy to accelerate self-assembly of GA by adding Res to form hydrogels, which is further proved as a promising therapeutic carrier for wound healing.


Gallic Acid , Hydrogels , Anti-Bacterial Agents/pharmacology , Gallic Acid/chemistry , Gallic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Polyphenols , Resveratrol/pharmacology , Wound Healing
16.
Environ Manage ; 52(3): 612-20, 2013 Sep.
Article En | MEDLINE | ID: mdl-23793545

Monitoring the dynamics of forest biomass at various spatial scales is important for better understanding the terrestrial carbon cycle as well as improving the effectiveness of forest policies and forest management activities. In this article, field data and Landsat image data acquired in 1999 and 2007 were utilized to quantify spatiotemporal changes of forest biomass for Dongsheng Forestry Farm in Changbai Mountain region of northeastern China. We found that Landsat TM band 4 and Difference Vegetation Index with a 3 × 3 window size were the best predictors associated with forest biomass estimations in the study area. The inverse regression model with Landsat TM band 4 predictor was found to be the best model. The total forest biomass in the study area decreased slightly from 2.77 × 10(6) Mg in 1999 to 2.73 × 10(6) Mg in 2007, which agreed closely with field-based model estimates. The area of forested land increased from 17.9 × 10(3) ha in 1999 to 18.1 × 10(3) ha in 2007. The stabilization of forest biomass and the slight increase of forested land occurred in the period following implementations of national forest policies in China in 1999. The pattern of changes in both forest biomass and biomass density was altered due to different management regimes adopted in light of those policies. This study reveals the usefulness of the remote sensing-based approach for detecting and monitoring quantitative changes in forest biomass at a landscape scale.


Biomass , Forestry/legislation & jurisprudence , Remote Sensing Technology , China , Environmental Monitoring
17.
Ying Yong Sheng Tai Xue Bao ; 24(1): 10-6, 2013 Jan.
Article Zh | MEDLINE | ID: mdl-23717984

A sampling plot investigation was conducted to study the soil organic carbon (SOC) storage in 0-40 cm layer in 10-, 15-, 26- and 61 years old Larix gmelinii plantations in Great Xing' an Mountains of Northeast China as well as the temporal variation pattern of the SOC source/sink during the plantation management after the clear cutting of primary L. gmelinii forest. With the increasing age of the plantations, the SOC storage increased after an initial decrease, and the inflection point was at a stand age between 15- and 26-years old. Compared with that of primary forest, the SOC storage of the plantations played a role of carbon source at early stage (10-26 years old), but gradually transformed into carbon sink then, with a SOC storage of 158.91 t x hm(-2) in 61-year-old plantation. The SOC storage of the plantations increased with soil depth initially, but was higher in upper soil layer than in deeper soil layer after the stand age being 26, which implied that human disturbance had strong effects on the vertical distribution of SOC. It was considered that the appropriate cutting age for the L. gmelinii plantations in Great Xing' an Mountains could be at least 60 years old.


Carbon/analysis , Larix/growth & development , Organic Chemicals/analysis , Soil/chemistry , China , Ecosystem , Time Factors
18.
Ying Yong Sheng Tai Xue Bao ; 22(8): 2013-20, 2011 Aug.
Article Zh | MEDLINE | ID: mdl-22097362

By using forest resources inventory data and field investigation data, this paper studied the carbon storage, density, and distribution characteristics in forest ecosystems in Jilin Province of Northeast China. The total carbon storage in the forest ecosystems was 1827.293 Tg C, and the carbon storages in arbor layer, shrub-grass layer, litter layer, and soil were 439.152 Tg C, 5.195 Tg C, 45.600 Tg C, and 1330.466 Tg C, accounting for 24.1%, 0.3%, 2.5%, and 73.1% of the total, respectively. The carbon density in the forest ecosystems was 225.304 Mg C x hm(-2), with 54.352 Mg C x hm(-2) in arbor layer, 0.643 Mg C x hm(-2) in shrub-grass layer, 5.644 Mg C x hm(-2) in litter layer, and 164.666 Mg C x hm(-2) in soil. Different types of the forest ecosystems had a carbon storage varied from 9.357 Tg C to 959.716 Tg C and a carbon density ranged from 180.648 Mg C * hm(-2) to 254.627 Mg C x hm(-2), with the highest values in soil and the lowest values in shrub-grass layer. Overall, the carbon storage and density in the forest ecosystems were greater in eastern mountainous area than in central and western plains. In the Province, middle-aged forests had a greater proportion than the forests in other age classes, and thereby, a proper management of the present forests could increase the carbon sequestration of the forest ecosystems.


Carbon/metabolism , Ecosystem , Soil/analysis , Trees/growth & development , China , Trees/metabolism
19.
Environ Manage ; 48(6): 1095-106, 2011 Dec.
Article En | MEDLINE | ID: mdl-21761247

The maintenance of a timely, reliable and accurate spatial database on current forest ecosystem conditions and changes is essential to characterize and assess forest resources and support sustainable forest management. Information for such a database can be obtained only through a continuous forest inventory. The National Forest Continuous Inventory (NFCI) is the first level of China's three-tiered inventory system. The NFCI is administered by the State Forestry Administration; data are acquired by five inventory institutions around the country. Several important components of the database include land type, forest classification and ageclass/ age-group. The NFCI database in China is constructed based on 5-year inventory periods, resulting in some of the data not being timely when reports are issued. To address this problem, a forest growth simulation model has been developed to update the database for years between the periodic inventories. In order to aid in forest plan design and management, a three-dimensional virtual reality system of forest landscapes for selected units in the database (compartment or sub-compartment) has also been developed based on Virtual Reality Modeling Language. In addition, a transparent internet publishing system for a spatial database based on open source WebGIS (UMN Map Server) has been designed and utilized to enhance public understanding and encourage free participation of interested parties in the development, implementation, and planning of sustainable forest management.


Databases, Factual , Trees , China , Conservation of Natural Resources , Ecosystem , Forestry/methods , Geographic Information Systems , Geography
20.
Ying Yong Sheng Tai Xue Bao ; 22(2): 273-9, 2011 Feb.
Article Zh | MEDLINE | ID: mdl-21608236

Through sampling site investigation, this paper studied the carbon storage of arbor, herb, and whole vegetation in 10-, 12-, 15-, 26-, and 61-year old Larix gmelinii plantations in Huzhong Forestry Bureau of Great Xing' an Mountains, Northeast China, and 'temporal for spatial' method was employed to approach the variations of the vegetation carbon storage during the growth of the plantations. The results revealed that the vegetation carbon storage in the plantations increased with stand age, and reached 105.69 t x hm(-2) at age of 61 years, representing a marked role as a carbon sink. The L. gmelinii plantations at the ages from 15 to 26 years had the strongest capability in carbon sequestration, in which, the carbon storage in trunk occupied 54.3% -73.9% of the total carbon storage of arbor, and, with the increase of stand age, the trunk's carbon storage to the total carbon storage of arbor as well as the trunk's carbon density increased. As for the other organs, the rate of their carbon storage to the total carbon storage of arbor decreased with stand age, while their carbon density increased first but eventually leveled off or had a slight decrease till at age of 61 years. Based on these results, the rotation age for the L. gmelinii plantations in Great Xing' an Mountains would properly be lengthened to at least 60 years.


Carbon Dioxide/metabolism , Carbon/analysis , Larix/growth & development , Larix/metabolism , Plant Stems/metabolism , Biomass , China
...