Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(1): 108592, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38205240

RESUMEN

A key regulatory mechanism involves circular RNA (circRNA) acting as a sponge to modulate microRNA (miRNA), and thus, studying their interaction has significant medical implications. In this field, there are currently two pressing issues that remain unresolved. Firstly, due to the scarcity of verified interactions, we require a minimal amount of samples for training. Secondly, the current models lack interpretability. Therefore, we propose SPBCMI, a method that combines sequence features extracted using the Bidirectional Encoder Representations from Transformer (BERT) model and structural features of biological molecule networks extracted through graph embedding to train a GBDT (Gradient-boosted decision trees) classifier for prediction. Our method yielded an AUC of 0.9143, which is currently the best for this problem. Furthermore, in the case study, SPBCMI accurately predicted 7 out of 10 circRNA-miRNA interactions. These results show that our method provides an innovative and high-performing approach to understanding the interaction between circRNA and miRNA.

2.
BMC Bioinformatics ; 25(1): 6, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166644

RESUMEN

According to the expression of miRNA in pathological processes, miRNAs can be divided into oncogenes or tumor suppressors. Prediction of the regulation relations between miRNAs and small molecules (SMs) becomes a vital goal for miRNA-target therapy. But traditional biological approaches are laborious and expensive. Thus, there is an urgent need to develop a computational model. In this study, we proposed a computational model to predict whether the regulatory relationship between miRNAs and SMs is up-regulated or down-regulated. Specifically, we first use the Large-scale Information Network Embedding (LINE) algorithm to construct the node features from the self-similarity networks, then use the General Attributed Multiplex Heterogeneous Network Embedding (GATNE) algorithm to extract the topological information from the attribute network, and finally utilize the Light Gradient Boosting Machine (LightGBM) algorithm to predict the regulatory relationship between miRNAs and SMs. In the fivefold cross-validation experiment, the average accuracies of the proposed model on the SM2miR dataset reached 79.59% and 80.37% for up-regulation pairs and down-regulation pairs, respectively. In addition, we compared our model with another published model. Moreover, in the case study for 5-FU, 7 of 10 candidate miRNAs are confirmed by related literature. Therefore, we believe that our model can promote the research of miRNA-targeted therapy.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Biología Computacional , Algoritmos , Oncogenes
3.
Comput Biol Med ; 165: 107421, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37672925

RESUMEN

MOTIVATION: Accumulating clinical evidence shows that circular RNA (circRNA) plays an important regulatory role in the occurrence and development of human diseases, which is expected to provide a new perspective for the diagnosis and treatment of related diseases. Using computational methods can provide high probability preselection for wet experiments to save resources. However, due to the lack of neighborhood structure in sparse biological networks, the model based on network embedding and graph embedding is difficult to achieve ideal results. RESULTS: In this paper, we propose BioDGW-CMI, which combines biological text mining and wavelet diffusion-based sparse network structure embedding to predict circRNA-miRNA interaction (CMI). In detail, BioDGW-CMI first uses the Bidirectional Encoder Representations from Transformers (BERT) for biological text mining to mine hidden features in RNA sequences, then constructs a CMI network, obtains the topological structure embedding of nodes in the network through heat wavelet diffusion patterns. Next, the Denoising autoencoder organically combines the structural features and Gaussian kernel similarity, finally, the feature is sent to lightGBM for training and prediction. BioDGW-CMI achieves the highest prediction performance in all three datasets in the field of CMI prediction. In the case study, all the 8 pairs of CMI based on circ-ITCH were successfully predicted. AVAILABILITY: The data and source code can be found at https://github.com/1axin/BioDGW-CMI-model.

4.
Brief Funct Genomics ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37539561

RESUMEN

Recently, the role of competing endogenous RNAs in regulating gene expression through the interaction of microRNAs has been closely associated with the expression of circular RNAs (circRNAs) in various biological processes such as reproduction and apoptosis. While the number of confirmed circRNA-miRNA interactions (CMIs) continues to increase, the conventional in vitro approaches for discovery are expensive, labor intensive, and time consuming. Therefore, there is an urgent need for effective prediction of potential CMIs through appropriate data modeling and prediction based on known information. In this study, we proposed a novel model, called DeepCMI, that utilizes multi-source information on circRNA/miRNA to predict potential CMIs. Comprehensive evaluations on the CMI-9905 and CMI-9589 datasets demonstrated that DeepCMI successfully infers potential CMIs. Specifically, DeepCMI achieved AUC values of 90.54% and 94.8% on the CMI-9905 and CMI-9589 datasets, respectively. These results suggest that DeepCMI is an effective model for predicting potential CMIs and has the potential to significantly reduce the need for downstream in vitro studies. To facilitate the use of our trained model and data, we have constructed a computational platform, which is available at http://120.77.11.78/DeepCMI/. The source code and datasets used in this work are available at https://github.com/LiYuechao1998/DeepCMI.

5.
iScience ; 26(8): 107478, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37583550

RESUMEN

Circular RNA (circRNA) plays an important role in the diagnosis, treatment, and prognosis of human diseases. The discovery of potential circRNA-miRNA interactions (CMI) is of guiding significance for subsequent biological experiments. Limited by the small amount of experimentally supported data and high randomness, existing models are difficult to accomplish the CMI prediction task based on real cases. In this paper, we propose KS-CMI, a novel method for effectively accomplishing CMI prediction in real cases. KS-CMI enriches the 'behavior relationships' of molecules by constructing circRNA-miRNA-cancer (CMCI) networks and extracts the behavior relationship attribute of molecules based on balance theory. Next, the denoising autoencoder (DAE) is used to enhance the feature representation of molecules. Finally, the CatBoost classifier was used for prediction. KS-CMI achieved the most reliable prediction results in real cases and achieved competitive performance in all datasets in the CMI prediction.

6.
Nat Commun ; 14(1): 5087, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607928

RESUMEN

Dynamic infrared emissivity regulators, which can efficiently modulate infrared radiation beyond vision, have emerged as an attractive technology in the energy and information fields. The realization of the independent modulation of visible and infrared spectra is a challenging and important task for the application of dynamic infrared emissivity regulators in the fields of smart thermal management and multispectral camouflage. Here, we demonstrate an electrically controlled infrared emissivity regulator that can achieve independent modulation of the infrared emissivity while maintaining a high visible transparency (84.7% at 400-760 nm). The regulators show high degree of emissivity regulation (0.51 at 3-5 µm, 0.41 at 7.5-13 µm), fast response ( < 600 ms), and long cycle life ( > 104 cycles). The infrared emissivity regulation is attributed to the modification of the carrier concentration in the surface depletion layer of aluminum-doped zinc oxide nanocrystals. This transparent infrared emissivity regulator provides opportunities for applications such as on-demand smart thermal management, multispectral displays, and adaptive camouflage.

7.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36971393

RESUMEN

MOTIVATION: A large number of studies have shown that circular RNA (circRNA) affects biological processes by competitively binding miRNA, providing a new perspective for the diagnosis, and treatment of human diseases. Therefore, exploring the potential circRNA-miRNA interactions (CMIs) is an important and urgent task at present. Although some computational methods have been tried, their performance is limited by the incompleteness of feature extraction in sparse networks and the low computational efficiency of lengthy data. RESULTS: In this paper, we proposed JSNDCMI, which combines the multi-structure feature extraction framework and Denoising Autoencoder (DAE) to meet the challenge of CMI prediction in sparse networks. In detail, JSNDCMI integrates functional similarity and local topological structure similarity in the CMI network through the multi-structure feature extraction framework, then forces the neural network to learn the robust representation of features through DAE and finally uses the Gradient Boosting Decision Tree classifier to predict the potential CMIs. JSNDCMI produces the best performance in the 5-fold cross-validation of all data sets. In the case study, seven of the top 10 CMIs with the highest score were verified in PubMed. AVAILABILITY: The data and source code can be found at https://github.com/1axin/JSNDCMI.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , ARN Circular , Redes Neurales de la Computación , Programas Informáticos , Biología Computacional/métodos
8.
Front Genet ; 14: 1122909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845392

RESUMEN

LncRNA-protein interaction plays an important role in the development and treatment of many human diseases. As the experimental approaches to determine lncRNA-protein interactions are expensive and time-consuming, considering that there are few calculation methods, therefore, it is urgent to develop efficient and accurate methods to predict lncRNA-protein interactions. In this work, a model for heterogeneous network embedding based on meta-path, namely LPIH2V, is proposed. The heterogeneous network is composed of lncRNA similarity networks, protein similarity networks, and known lncRNA-protein interaction networks. The behavioral features are extracted in a heterogeneous network using the HIN2Vec method of network embedding. The results showed that LPIH2V obtains an AUC of 0.97 and ACC of 0.95 in the 5-fold cross-validation test. The model successfully showed superiority and good generalization ability. Compared to other models, LPIH2V not only extracts attribute characteristics by similarity, but also acquires behavior properties by meta-path wandering in heterogeneous networks. LPIH2V would be beneficial in forecasting interactions between lncRNA and protein.

9.
J Transl Med ; 21(1): 48, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698208

RESUMEN

BACKGROUND: Drug-target interaction (DTI) prediction has become a crucial prerequisite in drug design and drug discovery. However, the traditional biological experiment is time-consuming and expensive, as there are abundant complex interactions present in the large size of genomic and chemical spaces. For alleviating this phenomenon, plenty of computational methods are conducted to effectively complement biological experiments and narrow the search spaces into a preferred candidate domain. Whereas, most of the previous approaches cannot fully consider association behavior semantic information based on several schemas to represent complex the structure of heterogeneous biological networks. Additionally, the prediction of DTI based on single modalities cannot satisfy the demand for prediction accuracy. METHODS: We propose a multi-modal representation framework of 'DeepMPF' based on meta-path semantic analysis, which effectively utilizes heterogeneous information to predict DTI. Specifically, we first construct protein-drug-disease heterogeneous networks composed of three entities. Then the feature information is obtained under three views, containing sequence modality, heterogeneous structure modality and similarity modality. We proposed six representative schemas of meta-path to preserve the high-order nonlinear structure and catch hidden structural information of the heterogeneous network. Finally, DeepMPF generates highly representative comprehensive feature descriptors and calculates the probability of interaction through joint learning. RESULTS: To evaluate the predictive performance of DeepMPF, comparison experiments are conducted on four gold datasets. Our method can obtain competitive performance in all datasets. We also explore the influence of the different feature embedding dimensions, learning strategies and classification methods. Meaningfully, the drug repositioning experiments on COVID-19 and HIV demonstrate DeepMPF can be applied to solve problems in reality and help drug discovery. The further analysis of molecular docking experiments enhances the credibility of the drug candidates predicted by DeepMPF. CONCLUSIONS: All the results demonstrate the effectively predictive capability of DeepMPF for drug-target interactions. It can be utilized as a useful tool to prescreen the most potential drug candidates for the protein. The web server of the DeepMPF predictor is freely available at http://120.77.11.78/DeepMPF/ , which can help relevant researchers to further study.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Simulación del Acoplamiento Molecular , Semántica , Descubrimiento de Drogas/métodos , Proteínas
10.
Front Genet ; 13: 958096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051691

RESUMEN

Emerging evidence has revealed that circular RNA (circRNA) is widely distributed in mammalian cells and functions as microRNA (miRNA) sponges involved in transcriptional and posttranscriptional regulation of gene expression. Recognizing the circRNA-miRNA interaction provides a new perspective for the detection and treatment of human complex diseases. Compared with the traditional biological experimental methods used to predict the association of molecules, which are limited to the small-scale and are time-consuming and laborious, computing models can provide a basis for biological experiments at low cost. Considering that the proposed calculation model is limited, it is necessary to develop an effective computational method to predict the circRNA-miRNA interaction. This study thus proposed a novel computing method, named KGDCMI, to predict the interactions between circRNA and miRNA based on multi-source information extraction and fusion. The KGDCMI obtains RNA attribute information from sequence and similarity, capturing the behavior information in RNA association through a graph-embedding algorithm. Then, the obtained feature vector is extracted further by principal component analysis and sent to the deep neural network for information fusion and prediction. At last, KGDCMI obtains the prediction accuracy (area under the curve [AUC] = 89.30% and area under the precision-recall curve [AUPR] = 87.67%). Meanwhile, with the same dataset, KGDCMI is 2.37% and 3.08%, respectively, higher than the only existing model, and we conducted three groups of comparative experiments, obtaining the best classification strategy, feature extraction parameters, and dimensions. In addition, in the performed case study, 7 of the top 10 interaction pairs were confirmed in PubMed. These results suggest that KGDCMI is a feasible and useful method to predict the circRNA-miRNA interaction and can act as a reliable candidate for related RNA biological experiments.

11.
Biology (Basel) ; 11(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36138829

RESUMEN

Computational prediction of miRNAs, diseases, and genes associated with circRNAs has important implications for circRNA research, as well as provides a reference for wet experiments to save costs and time. In this study, SGCNCMI, a computational model combining multimodal information and graph convolutional neural networks, combines node similarity to form node information and then predicts associated nodes using GCN with a distributive contribution mechanism. The model can be used not only to predict the molecular level of circRNA-miRNA interactions but also to predict circRNA-cancer and circRNA-gene associations. The AUCs of circRNA-miRNA, circRNA-disease, and circRNA-gene associations in the five-fold cross-validation experiment of SGCNCMI is 89.42%, 84.18%, and 82.44%, respectively. SGCNCMI is one of the few models in this field and achieved the best results. In addition, in our case study, six of the top ten relationship pairs with the highest prediction scores were verified in PubMed.

12.
Brief Funct Genomics ; 21(3): 216-229, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35368060

RESUMEN

The way of co-administration of drugs is a sensible strategy for treating complex diseases efficiently. Because of existing massive unknown interactions among drugs, predicting potential adverse drug-drug interactions (DDIs) accurately is promotive to prevent unanticipated interactions, which may cause significant harm to patients. Currently, numerous computational studies are focusing on potential DDIs prediction on account of traditional experiments in wet lab being time-consuming, labor-consuming, costly and inaccurate. These approaches performed well; however, many approaches did not consider multi-scale features and have the limitation that they cannot predict interactions among novel drugs. In this paper, we proposed a model of BioDKG-DDI, which integrates multi-feature with biochemical information to predict potential DDIs through an attention machine with superior performance. Molecular structure features, representation of drug global association using drug knowledge graph (DKG) and drug functional similarity features are fused by attention machine and predicted through deep neural network. A novel negative selecting method is proposed to certify the robustness and stability of our method. Then, three datasets with different sizes are used to test BioDKG-DDI. Furthermore, the comparison experiments and case studies can demonstrate the reliability of our method. Upon our finding, BioDKG-DDI is a robust, yet simple method and can be used as a benefic supplement to the experimental process.


Asunto(s)
Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas , Interacciones Farmacológicas , Humanos , Preparaciones Farmacéuticas , Reproducibilidad de los Resultados
13.
Microb Pathog ; 158: 105019, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34107344

RESUMEN

Prostaglandin E2 (PGE2) enhances Staphylococcus aureus infection but its mechanism is not well understood. Here, we examined the effect of PGE2 on Staphylococcal Protein A (SPA) expression in bovine endometrium and determined the role of select PGE2 receptors (i.e., EP2 and EP4) in adhesion and internalization of S. aureus. S. aureus isolate SA113 was used for in vitro infection of bovine endometrial tissues and epithelial cells, with treatment conditions consisting of untreated control, SA113 treatment, SA113 + PGE2, SA113 + PGE2 + EP2 receptor antagonist (AH-6809), and SA113 + PGE2 + EP4 receptor antagonist (AH-23848). Immunofluorescence assay revealed that PGE2 could promote SPA expression in S. aureus-infected bovine endometrial tissues. PGE2 also enhanced the adhesion and internalization of S. aureus in bovine endometrial cells. The addition of EP4 antagonist, but not the EP2 antagonist, abrogated the ability of PGE2 to promote S. aureus SPA expression, adhesion, and internalization in endometrial cells. Our findings suggest that S. aureus infection in the endometrium is enhanced by PGE2 through the EP4 receptor. This result is essential for the development of new approach to treating S. aureus infection, such as the application of EP4 antagonist as an adjunct drug treatment.


Asunto(s)
Dinoprostona , Infecciones Estafilocócicas , Animales , Bovinos , Endometrio , Femenino , Subtipo EP2 de Receptores de Prostaglandina E , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus
14.
Chemosphere ; 254: 126813, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32334261

RESUMEN

TiO2/cement composites were prepared by a spraying method to degrade organic pollutants. After coated with waterproof liquid, pure cement pastes/mortars were sprayed with TiO2 suspensions with different TiO2 contents and spraying times. Photocatalytic properties, mechanical strength and durability were studied. Maximum photocatalytic activity and uniform TiO2 distribution were achieved at the optimal conditions of 10 wt% TiO2 content in suspension and 3 spraying times. The TiO2/cement pastes had better degradation performance over Rhodamine B (RhB) and methylene blue (MB) than that over methyl orange (MO). After 20 times of cycling degradation, the photocatalytic efficiencies had no significant reduction. The TiO2/cement mortars had good mechanical strengths, meeting the mechanical demands of wastewater treatment tanks. In durability, the TiO2/cement mortars had better water penetration resistance, chloride penetration resistance and anti-carbonation than pure cement mortars.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Compuestos Azo , Catálisis , Contaminantes Ambientales , Azul de Metileno , Rodaminas , Titanio/química , Rayos Ultravioleta , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA