Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39095994

RESUMEN

Understanding how maize (Zea mays L.) responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite the extensive utilization of the genome-wide association study (GWAS) approach in exploring favorable natural alleles associated with maize cold tolerance, there are few reports that have successfully identified the candidate genes contributing to maize cold tolerance. In this study, by employing a diverse panel of maize inbred lines collected from different germplasm sources, we conducted a GWAS on the variation of the relative injured area of maize true leaves during cold stress-a trait most closely correlated with maize cold tolerance-and identified HSF21, encoding a B-class heat shock transcription factor, which positively regulates cold tolerance at both seedling and germination stages. The natural variations within the promoter of the cold-tolerant HSF21Hap1 allele led to increased HSF21 expression under cold stress by inhibiting the binding of bZIP68 transcription factor, a negative regulator of cold tolerance. Through integrated transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we unveiled the function of HSF21 in regulating lipid metabolism homeostasis for modulating cold tolerance in maize. Additionally, HSF21 confers maize cold tolerance without incurring yield penalties. This study thereby establishes HSF21 as a key regulator that enhances cold tolerance in maize, thus providing valuable genetic resources for the breeding of cold-tolerant maize varieties.

2.
Front Plant Sci ; 15: 1394724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081518

RESUMEN

Seed size (SS) constitutes a pivotal trait in watermelon breeding. In this study, we present findings from an examination of two watermelon accessions, namely, BW85 and F211. Seeds from BW85 exhibited a significant enlargement compared to those of F211 at 13 days after pollination (DAP), with the maximal disparity in seed length and width manifesting at 17 DAP. A comprehensive study involving both metabolic and transcriptomic analyses indicated a significant enrichment of the ubiquinone and other terpenoid-quinone biosynthesis KEGG pathways. To detect the genetic region governing seed size, a BSA-seq analysis was conducted utilizing the F2 (BW85 × F211) population, which resulted in the identification of two adjacent QTLs, namely, SS6.1 and SS6.2, located on chromosomes 6. SS6.1 spanned from Chr06:4847169 to Chr06:5163486, encompassing 33 genes, while SS6.2 ranged from Chr06:5379337 to Chr06:5419136, which included only one gene. Among these genes, 11 exhibited a significant differential expression between BW85 and F211 according to transcriptomic analysis. Notably, three genes (Cla97C06G113960, Cla97C06G114180, and Cla97C06G114000) presented a differential expression at both 13 and 17 DAP. Through annotation, Cla97C06G113960 was identified as a ubiquitin-conjugating enzyme E2, playing a role in the ubiquitin pathway that mediates seed size control. Taken together, our results provide a novel candidate gene influencing the seed size in watermelon, shedding light on the mechanism underlying seed development.

3.
J Integr Plant Biol ; 66(7): 1313-1333, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751035

RESUMEN

Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.


Asunto(s)
Ácido Abscísico , Calcio , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Proteínas Quinasas , Zea mays , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Zea mays/genética , Zea mays/fisiología , Calcio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosforilación , Proteínas Quinasas/metabolismo , Plantas Modificadas Genéticamente , Estrés Fisiológico/efectos de los fármacos , Unión Proteica/efectos de los fármacos
4.
Nat Commun ; 15(1): 1264, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341446

RESUMEN

Nitrate (NO3‒) pollution poses significant threats to water quality and global nitrogen cycles. Alkaline electrocatalytic NO3‒ reduction reaction (NO3RR) emerges as an attractive route for enabling NO3‒ removal and sustainable ammonia (NH3) synthesis. However, it suffers from insufficient proton (H+) supply in high pH conditions, restricting NO3‒-to-NH3 activity. Herein, we propose a halogen-mediated H+ feeding strategy to enhance the alkaline NO3RR performance. Our platform achieves near-100% NH3 Faradaic efficiency (pH = 14) with a current density of 2 A cm-2 and enables an over 99% NO3--to-NH3 conversion efficiency. We also convert NO3‒ to high-purity NH4Cl with near-unity efficiency, suggesting a practical approach to valorizing pollutants into valuable ammonia products. Theoretical simulations and in situ experiments reveal that Cl-coordination endows a shifted d-band center of Pd atoms to construct local H+-abundant environments, through arousing dangling O-H water dissociation and fast *H desorption, for *NO intermediate hydrogenation and finally effective NO3‒-to-NH3 conversion.

5.
Bioresour Technol ; 395: 130371, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278455

RESUMEN

In this study, a novel Fe-based nanomaterial catalyst (Fe0/FeS) was synthesized via a self-heating process and employed to explore its impact on the formation of humic substances and the mitigation of microplastics. The results reveal that Fe0/FeS exhibited a significant increase in humic acid content (71.01 mg kg-1). Similarly, the formation of humic substances resulted in a higher humification index (4.91). Moreover, the addition of Fe0/FeS accelerated the degradation of microplastics (MPs), resulting in a lower concentration of MPs (9487 particles/kg) compared to the control experiments (22792 particles/kg). Fe0/FeS significantly increased the abundance of medium-sized MPs (50-200 µm) and reduced the abundance of small-sized (10-50 µm) and large-sized MPs (>1000 µm). These results can be attributed to the Fe0/FeS regulating the ▪OH production and specific microorganisms to promote humic substance formation and the degradation of MPs. This study proposes a feasible strategy to improve composting characteristics and reduce contaminants.


Asunto(s)
Compostaje , Sustancias Húmicas , Sustancias Húmicas/análisis , Aguas del Alcantarillado , Microplásticos , Plásticos , Suelo
6.
J Environ Manage ; 353: 120213, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38295637

RESUMEN

Contamination of heavy metals has always been a pressing concern. The dry-wet alternately treated carboxymethylcellulose bentonite (DW-CB) was successfully prepared by intercalating bentonite (BT) with carboxymethyl cellulose (CMC) obtained by solvent processes using enzymatically digested wastepaper as cellulosic raw material, and the adsorption capacity of Cu2+ on DW-CB in aqueous solution was investigated. A 98.18 ± 2.31 % removal efficiency was achieved by 4 g/L of DW-CB after 8 h in a solution containing 100 mg/L of Cu2+, which were 4.1 times and 1.5 times of that of BT and adsorbent prepared without alternating dry-wet process, respectively. The introduction of -COOH groups during the preparation of DW-CB enhanced the electrostatic interaction between DW-CB and Cu2+, which was the main driving force for Cu2+ removal. The pseudo-first-order kinetic model and Langmuir model better described the adsorption process and adsorption capacity of Cu2+ on DW-CB. DW-CB still showed high removal of Cu2+ (19.61 ± 0.99 mg/g) in the presence of multiple metal ions, while exhibiting the potential for removal of Zn2+, Mg2+ and K+, especially Mg2+ (22.69 ± 1.48 mg/g). However, the interactions of organics with Cu2+ severely affected the removal of Cu2+ by DW-CB (removal efficiency: 17.90 ± 4.17 % - 95.33 ± 0.27 %). In this study, an adsorbent with high targeted adsorption of Cu2+ was prepared by utilizing wastepaper and BT, which broadened the way of wastepaper resource utilization and had good economic and social benefits.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Bentonita , Cobre/análisis , Contaminantes Químicos del Agua/análisis , Agua , Cinética , Adsorción , Concentración de Iones de Hidrógeno
7.
Adv Mater ; 36(5): e2303902, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37651690

RESUMEN

Electrocatalytic CO2 reduction into value-added fuels and chemicals by renewable electric energy is one of the important strategies to address global energy shortage and carbon emission. Though the classical H-type electrolytic cell can quickly screen high-efficiency catalysts, the low current density and limited CO2 mass transfer process essentially impede its industrial applications. The electrolytic cells based on electrolyte flow system (flow cells) have shown great potential for industrial devices, due to higher current density, improved local CO2 concentration, and better mass transfer efficiency. The design and optimization of flow cells are of great significance to further accelerate the industrialization of electrocatalytic CO2 reduction reaction (CO2 RR). In this review, the progress of flow cells for CO2 RR to C2+ products is concerned. Firstly, the main events in the development of the flow cells for CO2 RR are outlined. Second, the main design principles of CO2 RR to C2+ products, the architectures, and types of flow cells are summarized. Third, the main strategies for optimizing flow cells to generate C2+ products are reviewed in detail, including cathode, anode, ion exchange membrane, and electrolyte. Finally, the preliminary attempts, challenges, and the research prospects of flow cells for industrial CO2 RR toward C2+ products are discussed.

8.
Chem Commun (Camb) ; 59(100): 14803-14806, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38015474

RESUMEN

During the electrocatalytic CO2 reduction reaction, the faradaic efficiency of products seriously deviates from 100% due to the misjudgment of outlet flow, especially at industrial-level large current density. In this work, several modified equations and internal standard methods are recommended to calibrate the thermal mass flowmeter and establish benchmarks for CO2 reduction performance assessment.

9.
Chemosphere ; 342: 140137, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730021

RESUMEN

Pyrolysis of biomass feedstocks can produce valuable biofuel, however, the final products may present excessive corrosion and poor stability due to the lack of hydrogen content. Co-pyrolysis with hydrogen-rich substances such as waste plastics may compensate for these shortcomings. In this study, the co-pyrolysis of a common biomass, i.e. distiller's grains (DG), and waste polypropylene plastic (PP) were investigated towards increasing the quantity and quality of the production of biofuel. Results from the thermogravimetric analyses showed that the reaction interval of individual pyrolysis of DG and PP was 124-471 °C and 260-461 °C, respectively. Conversely, an interaction effect between DG and PP was observed during co-pyrolysis, resulting in a slower rate of weight loss, a longer temperature range for the pyrolysis reaction, and an increase in the temperature difference between the evolution of products. Likewise, the Coats-Redfern model showed that the activation energies of DG, PP and an equal mixture of both were 42.90, 130.27 and 47.74 kJ mol-1, respectively. It thus follows that co-pyrolysis of DG and PP can effectively reduce the activation energy of the reaction system and promote the degree of pyrolysis. Synergistic effects essentially promoted the free radical reaction of the PP during co-pyrolysis, thereby reducing the activation energy of the process. Moreover, due to this synergistic effect in the co-pyrolysis of DG and PP, the ratio of elements was effectively optimized, especially the content of oxygen-containing species was reduced, and the hydrocarbon content of products was increased. These results will not only advance our understanding of the characteristics of co-pyrolysis of DG and PP, but will also support further research toward improving an efficient co-pyrolysis reactor system and the pyrolysis process itself.

10.
Angew Chem Int Ed Engl ; 62(42): e202309351, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37639659

RESUMEN

Electrocatalytic CO2 reduction reaction (CO2 RR) to multi-carbon products (C2+ ) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+ ) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C-C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2 RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) - thus breaking the K+ solubility limit (3.5 M) - which enables a highly efficient CO2 RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+ ) can be achieved at 1400 mA.cm-2 , simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.

11.
J Agric Food Chem ; 71(26): 10133-10143, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37350414

RESUMEN

Linalool, a plant-derived high-value monoterpene, is widely used in the perfume, cosmetic, and pharmaceutical industries. Recently, engineering microbes to produce linalool has become an attractive alternative to plant extraction or chemical synthesis approaches. However, the low catalytic activity of linalool synthase and the shortage of precursor pools have been considered as two key factors for low yields of linalool. In this study, we rationally engineered the entrance of the substrate-binding pocket of linalool synthase (t67OMcLISM) and successfully increased the catalytic efficiency of this enzyme toward geranyl pyrophosphate. Specifically, F447E and F447A, with decreased entrance hydrophobicity and steric hindrance, increased linalool production by 2.2 and 1.9 folds, respectively. Subsequently, cytoplasm and peroxisomes were harnessed to boost linalool synthesis in Saccharomyces cerevisiae, achieving a high titer of linalool (219.1 mg/L) in shake-flask cultivation. Finally, the engineered diploid strain produced 2.6 g/L of linalool by 5 L fed-batch fermentation, which was the highest production in yeast to date. The protein engineering and biosynthetic pathway compartmentalization in the peroxisome provide references for the microbial production of other monoterpenes.


Asunto(s)
Monoterpenos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos Acíclicos/metabolismo , Monoterpenos/metabolismo , Proteínas/metabolismo , Orgánulos/metabolismo , Ingeniería Metabólica
12.
Genome Biol ; 24(1): 94, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098597

RESUMEN

BACKGROUND: Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples. RESULTS: Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number. CONCLUSIONS: Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.


Asunto(s)
Sitios de Carácter Cuantitativo , Zea mays , Mapeo Cromosómico , Fenotipo , Genotipo
13.
Biotechnol Biofuels Bioprod ; 16(1): 43, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36915198

RESUMEN

Straw biorefinery offers economical and sustainable production of chemicals. The merits of cell immobilization technology have become the key technology to meet D-lactic acid production from non- detoxified corn stover. In this paper, Low acyl gellan gum (LA-GAGR) was employed first time for Lactobacillus bulgaricus T15 immobilization and applied in D-lactic acid (D-LA) production from non-detoxified corn stover hydrolysate. Compared with the conventional calcium alginate (E404), LA-GAGR has a hencky stress of 82.09 kPa and excellent tolerance to 5-hydroxymethylfurfural (5-HMF), ferulic acid (FA), and vanillin. These features make LA-GAGR immobilized T15 work for 50 days via cell-recycle fermentation with D-LA yield of 2.77 ± 0.27 g/L h, while E404 immobilized T15 can only work for 30 days. The production of D-LA from non-detoxified corn stover hydrolysate with LA-GAGR immobilized T15 was also higher than that of free T15 fermentation and E404 immobilized T15 fermentation. In conclusion, LA-GAGR is an excellent cell immobilization material with great potential for industrial application in straw biorefinery industry.

14.
Chemosphere ; 327: 138544, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36996923

RESUMEN

Microplastics (MPs) are emerging pollutants that interact extensively with dissolved organic matter (DOM) and this influences the environmental behavior of MPs in aqueous ecosystems. However, the effect of DOM on the photodegradation of MPs in aqueous systems is still unclear. The photodegradation characteristics of polystyrene microplastics (PS-MPs) in an aqueous system in the presence of humic acid (HA, a signature compound of DOM) under ultraviolet light conditions were investigated in this study through Fourier transform infrared spectroscopy coupled with two-dimensional correlation analysis, electron paramagnetic resonance, and gas chromatography-mass spectrometry (GC/MS). HA was found to promote higher levels of reactive oxygen species (0.631 mM of ▪OH), which accelerated the photodegradation of PS-MPs, with a higher degree of weight loss (4.3%), higher level of oxygen-containing functional groups, and lower average particle size (89.5 µm). Likewise, GC/MS analysis showed that HA contributed to a higher content of oxygen-containing compounds (42.62%) in the photodegradation of PS-MPs. Moreover, the intermediates and final degradation products of PS-MPs with HA were significantly different in the absence of HA during 40 days of irradiation. These results provide an insight into the co-existing compounds on the degradation and migration processes of MP and also support further research toward the remediation of MPs pollution in aqueous ecosystems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Poliestirenos/química , Plásticos , Rayos Ultravioleta , Sustancias Húmicas/análisis , Ecosistema , Materia Orgánica Disuelta , Contaminantes Químicos del Agua/análisis , Oxígeno/análisis
15.
Heliyon ; 9(2): e13246, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36755604

RESUMEN

In this paper, the relationship between black liquor and microbial growth, enzymatic secretion and humus formation in composting was studied. The results showed that black liquor inoculation is an effective way to promote fermentation process. After black liquor inoculation, the abundance of Corynebacterium, Aequorivita, and Pedobacter, which have the catalase and oxidase activity, has been significantly increased. The enzymatic activity of alkaline phosphatase, catalase, peroxidase and invertase was 40 mg/(g·24h), 6.5 mg/(g·20 min), 13 100 mg/(g·24h), and 6100 mg/(g·24h) respectively at day 18. Humic acid and fulvic acid concentration was 12 g/kg and 11 g/kg which is higher than that of the treatments of no black liquor inoculation. The results suggested that black liquor inoculation was beneficial to indigenous microorganisms reproduce efficiently, then the secretion of enzymes related to cellulose, hemicellulose, and lipid hydrolysis, and the formation of humic substances.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36613125

RESUMEN

The objective of this study was to optimize the process parameters of the anaerobic co-digestion of pig manure and rice straw to maximize methane production and system stability. In this study, batch experiments were conducted with different mixing ratios of pig manure and rice straw (1:0, 1:1, 1:5, 1:10, and 0:1), total solid concentrations (6%, 8%, 10%, 12%, and 14%), and inoculum accounts (5%, 10%, 15%, 20%, and 25%). The results show that a 1:5 mixing ratio of pig manure to rice straw, a 12% total solid content, and a 15% inoculum account yielded biogas up to 553.79 mL/g VS, which was a result of co-digestion increasing the cooperative index (CPI > 1). Likewise, the evolution of the pH and VFAs indicated that the co-digestion system was well-buffered and not easily inhibited by acidification or ammonia nitrogen. Moreover, the results of the Gompertz model's fitting showed that the cumulative methane production, delay period, effective methane production time, and methane production rate under optimal conditions were significantly superior compared to the other groups employed.


Asunto(s)
Estiércol , Oryza , Animales , Porcinos , Anaerobiosis , Biocombustibles , Oryza/química , Metano , Digestión , Reactores Biológicos
17.
Clin Chim Acta ; 537: 146-153, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279941

RESUMEN

BACKGROUND AND AIMS: To establish reference intervals (RIs) for PTX-3 and to validate the performance of these RIs in a population including healthy volunteers and Takayasu's arteritis (TAK) patients. MATERIALS AND METHODS: Plasma PTX-3 levels were determined in 166 healthy volunteers and 63 TAK patients. RIs were established in healthy volunteers according to guidelines from the Clinical and Laboratory Standards Institute (CLSI, C28-A3). Global assessment was used to quantitatively diagnose active/non-active TAK patients. Screening and monitoring performances were validated by identifying active TAK patients from the whole population or diagnosed TAK patients. RESULTS: The PTX-3 RI was calculated to be 0.87-2.78 ng/mL. For screening purposes, 1.55 ng/mL had a high sensitivity of 90.32 % and the RI upper limit (2.78 ng/mL) had a high specificity of 97.94 %. For monitoring purposes, the sensitivity/specificity of the cut-off value (1.55 ng/mL) and RI median were 90.32 %/90.63 % and 80.85 %/90.63 %, respectively. These screening and monitoring performances of PTX-3 were superior to those of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). CONCLUSION: The distribution of serum PTX-3 levels was stable and uniform across the population. The screening and monitoring performances of the cut-off value and RI-derived values of PTX-3 were higher than CRP and ESR.


Asunto(s)
Arteritis de Takayasu , Humanos , Arteritis de Takayasu/diagnóstico , Arteritis de Takayasu/metabolismo , Proteína C-Reactiva/metabolismo , Voluntarios Sanos , Sedimentación Sanguínea , Valores de Referencia
18.
Bioengineering (Basel) ; 9(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36134962

RESUMEN

The hazards caused by drug-resistant bacteria are rocketing along with the indiscriminate use of antibiotics. The development of new non-antibiotic antibacterial drugs is urgent. The excellent biocompatibility and diverse multifunctionalities of liquid metal have stimulated the studies of antibacterial application. Several gallium-based antimicrobial agents have been developed based on the mechanism that gallium (a type of liquid metal) ions disorder the normal metabolism of iron ions. Other emerging strategies, such as physical sterilization by directly using LM microparticles to destroy the biofilm of bacteria or thermal destruction via infrared laser irradiation, are gaining increasing attention. Different from traditional antibacterial agents of gallium compounds, the pronounced property of gallium-based liquid metal materials would bring innovation to the antibacterial field. Here, LM-based antimicrobial mechanisms, including iron metabolism disorder, production of reactive oxygen species, thermal injury, and mechanical destruction, are highlighted. Antimicrobial applications of LM-based materials are summarized and divided into five categories, including liquid metal motors, antibacterial fabrics, magnetic field-responsive microparticles, liquid metal films, and liquid metal polymer composites. In addition, future opportunities and challenges towards the development and application of LM-based antimicrobial materials are presented.

19.
Bioprocess Biosyst Eng ; 45(9): 1581-1593, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35932338

RESUMEN

Chlorophenols are widely used in industry and are known environmental pollutants. The degradation of chlorophenols is important for environmental remediation. In this study, we evaluated the biodegradation of 2-chlorophenol using crude laccase produced by Myrothecium verrucaria. Atmospheric and room temperature plasma technology was used to increase laccase production. The culture conditions of the M-6 mutant were optimized. Our results showed that corn stover could replace glucose as a carbon source and promote laccase production. The maximum laccase activity of 30.08 U/mL was achieved after optimization, which was a 19.04-fold increase. The biodegradation rate of 2-chlorophenol using crude laccase was 97.13%, a positive correlation was determined between laccase activity and degradation rate. The toxicity of 2-CP was substantially reduced after degradation by laccase solution. Our findings show the feasibility of the use of corn stover in laccase production by M. verrucaria mutant and the subsequent biodegradation of 2-chlorophenol using crude laccase.


Asunto(s)
Clorofenoles , Lacasa , Biodegradación Ambiental , Carbono , Clorofenoles/metabolismo , Hypocreales , Zea mays
20.
Front Plant Sci ; 13: 885794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991404

RESUMEN

Estimation of the amino acid content in maize leaves is helpful for improving maize yield estimation and nitrogen use efficiency. Hyperspectral imaging can be used to obtain the physiological and biochemical parameters of maize leaves with the advantages of being rapid, non-destructive, and high throughput. This study aims to estimate the multiple amino acid contents in maize leaves using hyperspectral imaging data. Two nitrogen (N) fertilizer experiments were carried out to obtain the hyperspectral images of fresh maize leaves. The partial least squares regression (PLSR) method was used to build the estimation models of various amino acid contents by using the reflectance of all bands, sensitive band range, and sensitive bands. The models were then validated with the independent dataset. The results showed that (1) the spectral reflectance of most amino acids was more sensitive in the range of 400-717.08 nm than other bands. The estimation accuracy was better by using the reflectance of the sensitive band range than that of all bands; (2) the sensitive bands of most amino acids were in the ranges of 505.39-605 nm and 651-714 nm; and (3) among the 24 amino acids, the estimation models of the ß-aminobutyric acid, ornithine, citrulline, methionine, and histidine achieved higher accuracy than those of other amino acids, with the R 2, relative root mean square error (RE), and relative percent deviation (RPD) of the measured and estimated value of testing samples in the range of 0.84-0.96, 8.79%-19.77%, and 2.58-5.18, respectively. This study can provide a non-destructive and rapid diagnostic method for genetic sensitive analysis and variety improvement of maize.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA