Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Heliyon ; 10(17): e36579, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39319146

RESUMEN

Ethnopharmacological relevance: Yiai Fuzheng formula (YAFZF), as a Traditional Chinese Medicine (TCM) prescription, has been used widely at Zhongnan Hospital of Wuhan University for its therapeutic effects and high safety on triple-negative breast cancer (TNBC). Objective: In this study, we employed ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS), network pharmacology, and experimental validation to elucidate the underlying action mechanism of YAFZF in the treatment of TNBC. Methods: The key active ingredients in YAFZF were analyzed using UPLC-Q-Orbitrap-HRMS, and then the potential components, target genes and signalling pathways of YAFZF were predicted using the network pharmacological method. We then used molecular docking to visualize the combination characteristics between major active components and macromolecules in the crucial pathway. In vitro experiments were conducted to investigate the inhibitory effects of YAFZF treatment on the cell viability, invasion, and migration of 4T1 and MDA-MB-231 cells. The xenograft TNBC models were constructed using female Balb/c mice, and their body weights, tumour volumes, and weights were monitored during YAFZF treatment. Quantitative real-time PCR (qRT-PCR), Hematoxylin-eosin (HE), immunohistochemistry (IHC) staining, Western blot (WB), and terminal deoxynucleotidyl transferase (TdT)-dUTP nick-end labeling (TUNEL) staining were used for further experimental validation. Results: Based on UPLC-Q-Orbitrap-HRMS and network pharmacology analysis, 6 major bioactive components and 153 intersecting genes were obtained for YAFZF against TNBC. Functional enrichment analysis identified that the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signalling pathway might be the mechanism of action of YAFZF in the treatment of TNBC. Molecular docking results suggested that the main active compounds in YAFZF had strong binding energies with the proteins in the PI3K/Akt pathway. In vitro experiments showed that YAFZF inhibited the cell viability, invasion, and migration abilities of TNBC cells. Animal experiments confirmed that YAFZF treatment suppressed tumour cell proliferation and increased apoptotic cells. PCR, HE, WB, and IHC results indicated that YAFZF could suppress xenograft tumour metastases by inhibiting the PI3K/AKT/mTOR pathway regulating the epithelial-mesenchymal transition (EMT) process. Conclusion: YAFZF therapy showed its potential for reducing proliferation, invasion, and migration abilities, increasing apoptosis of TNBC cells. Furthermore, YAFZF treated TNBC by inhibiting xenograft tumour distant metastases via the regulation of EMT by the PI3K/Akt/mTOR pathway, suggesting that it may be useful as an adjuvant treatment.

2.
World J Clin Cases ; 12(26): 5850-5853, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39286373

RESUMEN

In this editorial, we comment on the article by Cao et al. Through applying isobaric tags for relative and absolute quantification technology coupled with liquid chromatography-tandem mass spectrometry, the researchers observed significant differential expression of 47 proteins when comparing serum samples from pregnant women with gestational diabetes mellitus (GDM) to the healthy ones. GDM symptoms may involve abnormalities in inflammatory response, complement system, coagulation cascade activation, and lipid metabolism. Retinol binding protein 4 and angiopoietin like 8 are potential early indicators of GDM. GDM stands out as one of the most prevalent metabolic complications during pregnancy and is linked to severe maternal and fetal outcomes like pre-eclampsia and stillbirth. Nevertheless, none of the biomarkers discovered so far have demonstrated effectiveness in predicting GDM. Our topic was designed to foster insights into advances in the application of proteomics for early prenatal screening of GDM.

3.
Drug Des Devel Ther ; 18: 4003-4016, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258275

RESUMEN

Background: Acne vulgaris (AV), a chronic inflammatory pilosebaceous disorder, affects 80-90% of teenagers. This study aimed to discover lipid profiles and biomarkers of the rabbit ear acne model, and investigate the mechanism of isotretinoin in treating acne at the lipid level. Methods: Untargeted lipidomic analysis using ultra-high performance liquid chromatography system (UHPLC) coupled to q-extraction plus was performed to identify skin lipid metabolites in blank control (groups C), model group (group M) and isotretinoin group (group T). Multivariate statistical analysis was used to process the lipidomics data. Results: A total of 43 lipid classes comprising 6989 lipid species were identified from the mass spectrometry data. The orthogonal partial least squares discriminant analysis (OPLS-DA) model demonstrated significant separation in skin lipidomic profiles between group M and group C. With variable influence on projection (VIP) > 1.0 and P-value < 0.05, 299 significantly different lipid metabolites were identified. These lipid metabolites consisted mainly of ceramides (Cer) (53.85%), phosphatidylethanolamines (PE) (9.03%), phosphatidylcholines (PC)(5.35%), and sphingomyelin (SM)(4.01%). Combining with AUC ≥ 0.9 as the elected criteria, Cer (d18;1_24:0), zymosterol (ZyE)(33:5), Cer (t43:1), ZyE (33:6), ZyE (24:7), and ZyE (35:6) have "high" accuracy. Isotretinoin treatment normalized 25 lipid metabolites in the acne model. Conclusion: Our findings provide new insights into the role of lipid metabolism in the pathogenesis of acne and the action mechanism of isotretinoin.


Asunto(s)
Acné Vulgar , Biomarcadores , Modelos Animales de Enfermedad , Isotretinoína , Lipidómica , Lípidos , Isotretinoína/farmacología , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/metabolismo , Animales , Conejos , Biomarcadores/metabolismo , Biomarcadores/análisis , Lípidos/análisis , Cromatografía Líquida de Alta Presión , Masculino , Fármacos Dermatológicos/farmacología , Fármacos Dermatológicos/uso terapéutico
4.
Sci Rep ; 14(1): 21213, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261661

RESUMEN

Although graphene oxide (GO) has extensive recognized application prospects in slow-release fertilizer, plant pest control, and plant growth regulation, the incorporation of GO into nano herbicides is still in its early stages of development. This study selected a pair of sweet corn sister lines, nicosulfuron (NIF)-resistant HK301 and NIF-sensitive HK320, and sprayed them both with 80 mg kg-1 of GO-NIF, with clean water as a control, to study the effect of GO-NIF on sweet corn seedling growth, photosynthesis, chlorophyll fluorescence, and antioxidant system enzyme activity. Compared to spraying water and GO alone, spraying GO-NIF was able to effectively reduce the toxic effect of NIF on sweet corn seedlings. Compared with NIF treatment, 10 days after of spraying GO-NIF, the net photosynthetic rate (A), stomatal conductance (Gs), transpiration rate (E), photosystem II photochemical maximum quantum yield (Fv/Fm), photochemical quenching coefficient (qP), and photosynthetic electron transfer rate (ETR) of GO-NIF treatment were significantly increased by 328.31%, 132.44%, 574.39%, 73.53%, 152.41%, and 140.72%, respectively, compared to HK320. Compared to the imbalance of redox reactions continuously induced by NIF in HK320, GO-NIF effectively alleviated the observed oxidative pressure. Furthermore, compared to NIF treatment alone, GO-NIF treatment effectively increased the activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in both lines, indicating GO induced resistance to the damage caused by NIF to sweet corn seedlings. This study will provides an empirical basis for understanding the detoxification promoting effect of GO in NIF and analyzing the mechanism of GO induced allogeneic detoxification in cells.


Asunto(s)
Antioxidantes , Clorofila , Grafito , Herbicidas , Fotosíntesis , Compuestos de Sulfonilurea , Zea mays , Fotosíntesis/efectos de los fármacos , Clorofila/metabolismo , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Compuestos de Sulfonilurea/farmacología , Compuestos de Sulfonilurea/toxicidad , Antioxidantes/metabolismo , Grafito/toxicidad , Herbicidas/toxicidad , Herbicidas/farmacología , Piridinas/farmacología , Fluorescencia , Superóxido Dismutasa/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
5.
Bioresour Technol ; 409: 131236, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122132

RESUMEN

This study used 16S rRNA gene sequencing and metatranscriptomic analysis to comprehensively illustrate how ammonia stress influenced medium-chain fatty acids (MCFA) biosynthesis. MCFA synthesis was inhibited at total ammonia nitrogen (TAN) concentrations above 1000 mg N/L. TAN stress hindered organic hydrolysis, acidification, and volatile fatty acids elongation. Chain-elongating bacteria (e.g., Clostridium_sensu_stricto_12, Clostridium_sensu_stricto_1, Caproiciproducens) abundance remained unchanged, but their activity decreased, partially due to the increased reactive oxygen species. Metatranscriptomic analysis revealed reduced activity of enzymes critical for MCFA production under TAN stress. Fatty acid biosynthesis pathway rather than reverse ß-oxidation pathway primarily contributed to MCFA production, and was inhibited under TAN stress. Functional populations likely survived TAN stress through osmoprotectant generation and potassium uptake regulation to maintain osmotic pressure, with NADH-ubiquinone oxidoreductase potentially compensating for ATP loss. This study enhances understanding of MCFA biosynthesis under TAN stress, aiding MCFA production system stability and efficiency improvement.


Asunto(s)
Adenosina Trifosfato , Amoníaco , Ácidos Grasos , Amoníaco/metabolismo , Adenosina Trifosfato/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Hidrólisis , Nitrógeno/metabolismo , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/genética , Transporte Biológico
6.
J Tradit Complement Med ; 14(4): 424-434, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035690

RESUMEN

Background and aim: Type-2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) induced by hyperglycaemia and insufficient insulin secretion. We employed a diabetic fly model to examine the effect and molecular mechanism of Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. (AMK-CCL) extract as traditional Chinese medicine in treating IR and T2DM. Experimental procedure: The contents of the active ingredients (rhamnose, xylose, mannose, and hyperoside) in AMK-CCL extract were determined by high-performance liquid chromatography. Wild-type (Cg-GAL4/+) or diabetic (Cg > InRK1409A) Drosophila flies were divided into the control group or metformin group and AMK-CCL (0.0125, 0.025, 0.05, 0.1 g/ml) groups. Food intake, haemolymph glucose and trehalose, protein, weight, triglycerides (TAG), and glycogen were measured to assess glycolipid metabolism. Phosphatidylinositol-3-kinase (PI3K)/Akt signalling was detected using fluorescent reporters [tGPH, Drosophila forkhead box O (dFoxO)-green fluorescent protein (GFP), Glut1-GFP, 2-NBDG] in vivo. Glut1/3 mRNA levels and Akt phosphorylation levels were detected by quantitative polymerase chain reaction and western blotting, respectively, in vitro. Results: AMK-CCL extract contained 0.038 % rhamnose, 0.017 % xylose, 0.69 % mannose, and 0.039 % hyperoside. AMK-CCL at 0.0125 g/mL significantly suppressed the increase in circulating glucose, and the decrease in body weight, TAG, and glycogen contents of diabetic flies. AMK-CCL improved PI3K activity, Akt phosphorylation, Glut1/3 expression, and glucose uptake in diabetic flies, and also rescued diabetes-induced dFoxO nuclear localisation. Conclusions: These findings indicate that AMK-CCL extract ameliorates IR-induced diabetes via the PI3K/Akt signalling pathway, providing an experimental basis for clinical treatment.

7.
Eur J Med Res ; 29(1): 356, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970130

RESUMEN

BACKGROUND: To date, multiple cases of adverse reactions to COVID-19 vaccines have been reported worldwide. Alopecia areata (AA) is an uncommon type of adverse reaction reported in some articles and has a significant social and psychological impact on patients. Our study aimed to review the AA and COVID-19 vaccine literature. METHODS: This systematic review was conducted by searching for articles on AA following COVID-19 vaccines in international databases such as Embase, MEDLINE, PubMed, Web of Knowledge, and Ovid from December 2019 to December 30, 2023. We included studies that provided data for AA patients following COVID-19 vaccination with at least one dose. Data on sex, age, country/region of origin, vaccine type, days between vaccination and symptom presentation, manifestations of AA, trichoscopy and histopathological findings, treatment, and outcomes were included. RESULTS: In total, 579 explored studies were identified and assessed, and 25 articles with a total of 51 patients were included in the review. Twenty-seven (52.9%) patients developed new-onset AA following receiving the COVID-19 vaccine, and AA recurrence or exacerbation occurred after receiving the COVID-19 vaccine in 24 (47.1%) patients with preexisting disease. Five vaccines were reported to cause AA in all cases. The Pfizer vaccine (45.1%) was the most frequently reported, followed by the ChAdOx1 nCoV-19 vaccine (27.5%), Moderna mRNA-1273 (19.6%), Sinopharm (3.9%) and SinoVac (3.9%). AA occurred most frequently within one month after the 1st dose, and then, the incidence decreased gradually with time. Topical or systemic corticosteroids were used in 38 patients. Eleven patients were treated with a Janus Kinase inhibitor (jakinib) inhibitor, eight with tofacitinib, and three with an unspecified jakinib. However, 3 of the 11 patients experienced exacerbations after treatment. CONCLUSION: AA after COVID-19 vaccination is rare, and physicians should be aware of this phenomenon to improve early diagnosis and appropriate treatment.


Asunto(s)
Alopecia Areata , Vacunas contra la COVID-19 , COVID-19 , Humanos , Alopecia Areata/inducido químicamente , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , COVID-19/complicaciones , COVID-19/epidemiología , SARS-CoV-2/inmunología , Masculino , Femenino
8.
Front Pediatr ; 12: 1415941, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044731

RESUMEN

This study examines research perspective in the clinical diagnosis, treatment, and prevention of cardiovascular complications in Kawasaki Disease (KD). Starting with an overview of the disease, it introduces KD's clinical manifestations, etiology, epidemiological features, and its impact on the cardiovascular system. Subsequently, the study discusses in detail the diagnostic methods, pathological mechanisms, and treatment strategies for KD, including foundational and emerging approaches such as high-dose intravenous immunoglobulin and aspirin therapy, biologic therapy, and corticosteroid pulse therapy. Additionally, it outlines strategies for preventing cardiovascular complications, including early risk assessment and long-term management. The study also explores the intersection of the COVID-19 pandemic with an increase in KD-like symptoms, emphasizing the need for further studies on the association between SARS-CoV-2 and KD. Lastly, it explores future research directions to enhance understanding of KD and improve patient outcomes and quality of life. This study provides valuable insights into the comprehensive treatment and management of KD and highlights avenues for future research.

9.
BMC Genomics ; 25(1): 645, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943081

RESUMEN

BACKGROUND: Wenchang chickens are one of the most popular local chicken breeds in the Chinese chicken industry. However, the low feed efficiency is the main shortcoming of this breed. Therefore, there is a need to find a more precise breeding method to improve the feed efficiency of Wenchang chickens. In this study, we explored important candidate genes and variants for feed efficiency and growth traits through genome-wide association study (GWAS) analysis. RESULTS: Estimates of genomic heritability for growth and feed efficiency traits, including residual feed intake (RFI) of 0.05, average daily food intake (ADFI) of 0.21, average daily weight gain (ADG) of 0.24, body weight (BW) at 87, 95, 104, 113 days of age (BW87, BW95, BW104 and BW113) ranged from 0.30 to 0.44. Important candidate genes related to feed efficiency and growth traits were identified, such as PLCE1, LAP3, MED28, QDPR, LDB2 and SEL1L3 genes. CONCLUSION: The results identified important candidate genes for feed efficiency and growth traits in Wenchang chickens and provide a theoretical basis for the development of new molecular breeding technology.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Fenotipo , Alimentación Animal , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
10.
PLoS One ; 19(6): e0305903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913698

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) is a common interstitial pneumonia disease, also occurred in post-COVID-19 survivors. The mechanism underlying the anti-PF effect of Qing Fei Hua Xian Decotion (QFHXD), a traditional Chinese medicine formula applied for treating PF in COVID-19 survivors, is unclear. This study aimed to uncover the mechanisms related to the anti-PF effect of QFHXD through analysis of network pharmacology and experimental verification. METHODS: The candidate chemical compounds of QFHXD and its putative targets for treating PF were achieved from public databases, thereby we established the corresponding "herb-compound-target" network of QFHXD. The protein-protein interaction network of potential targets was also constructed to screen the core targets. Furthermore, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to predict targets, and pathways, then validated by in vivo experiments. RESULTS: A total of 188 active compounds in QFHXD and 50 target genes were identified from databases. The key therapeutic targets of QFHXD, such as PI3K/Akt, IL-6, TNF, IL-1ß, STAT3, MMP-9, and TGF-ß1 were identified by KEGG and GO analysis. Anti-PF effects of QFHXD (in a dose-dependent manner) and prednisone were confirmed by HE, Masson staining, and Sirius red staining as well as in vivo Micro-CT and immunohistochemical analysis in a rat model of bleomycin-induced PF. Besides, QFXHD remarkably inhibits the activity of PI3K/Akt/NF-κB and TGF-ß1/Smad2/3. CONCLUSIONS: QFXHD significantly attenuated bleomycin-induced PF via inhibiting inflammation and epithelial-mesenchymal transition. PI3K/Akt/NF-κB and TGF-ß1/Smad2/3 pathways might be the potential therapeutic effects of QFHXD for treating PF.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Mapas de Interacción de Proteínas , Fibrosis Pulmonar , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Ratas , Masculino , Mapas de Interacción de Proteínas/efectos de los fármacos , Bleomicina , Factor de Crecimiento Transformador beta1/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Humanos , COVID-19/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Medicina Tradicional China/métodos , Tratamiento Farmacológico de COVID-19
11.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189139, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897421

RESUMEN

The immune microenvironment plays a critical regulatory role in the pathogenesis of Helicobacter pylori (H. pylori). Understanding the mechanisms that drive the transition from chronic inflammation to cancer may provide new insights for early detection of gastric cancer. Although chronic inflammation is frequent in precancerous gastric conditions, the monitoring function of the inflammatory microenvironment in the progression from H. pylori-induced chronic inflammation to gastric cancer remains unclear. This literature review summarizes significant findings on how H. pylori triggers inflammatory responses and facilitates cancer development through the immune microenvironment. Furthermore, the implications for future research and clinical applications are also addressed. The review is divided into four main sections: inflammatory response and immune evasion mechanisms induced by H. pylori, immune dysregulation associated with gastric cancer, therapeutic implications, and future perspectives on H. pylori-induced gastric carcinogenesis with a focus on the immune microenvironment.


Asunto(s)
Transformación Celular Neoplásica , Infecciones por Helicobacter , Helicobacter pylori , Inflamación , Neoplasias Gástricas , Microambiente Tumoral , Helicobacter pylori/patogenicidad , Helicobacter pylori/inmunología , Humanos , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/patología , Infecciones por Helicobacter/microbiología , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/patología , Microambiente Tumoral/inmunología , Inflamación/inmunología , Inflamación/patología , Animales
12.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731487

RESUMEN

The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.


Asunto(s)
Antifúngicos , Azoles , Fusarium , Ácido Gálico , Triticum , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Ácido Gálico/química , Ácido Gálico/farmacología , Antifúngicos/farmacología , Antifúngicos/química , Triticum/microbiología , Azoles/farmacología , Azoles/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pruebas de Sensibilidad Microbiana
13.
Genes (Basel) ; 15(2)2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38397210

RESUMEN

Utilizing salt-tolerant plants is a cost-effective strategy for agricultural production on salinized land. However, little is known about the mechanism of dandelion (Taraxacum mongolicum Hand.-Mazz.) in response to saline stress and caffeic acid biosynthesis. We investigated the morphological and physiological variations of two dandelions, namely, "BINPU2" (dandelion A) and "TANGHAI" (dandelion B) under gradient NaCl concentrations (0, 0.3%, 0.5%, 0.7%, and 0.9%), and analyzed potential mechanisms through a comparison analysis of transcriptomes in the two dandelions. Dandelion A had a high leaf weight; high ρ-coumaric acid, caffeic acid, ferulic acid, and caffeoyl shikimic acid contents; and high activities of POD and Pro. The maximum content of four kinds of phenolic acids mostly occurred in the 0.7% NaCl treatment. In this saline treatment, 2468 and 3238 differentially expressed genes (DEGs) in dandelion A and B were found, of which 1456 and 1369 DEGs in the two dandelions, respectively, showed up-regulation, indicating that more up-regulated DEGs in dandelion A may cause its high salt tolerance. Further, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that dandelion salt response and caffeic acid metabolism were mainly enriched in the phenylpropanoid biosynthesis pathway (ko00940) and response to ethylene (GO: 0009723). The caffeic acid biosynthesis pathway was reconstructed based on DEGs which were annotated to PAL, C4H, 4CL, HCT, C3'H, and CSE. Most of these genes showed a down-regulated mode, except for parts of DEGs of 4CL (TbA05G077650 and TbA07G073600), HCT (TbA03G009110, TbA03G009080, and novel.16880), and COMT (novel.13839). In addition, more up-regulated transcription factors (TFs) of ethylene TFs in dandelion A were found, but the TFs of ERF104, CEJ1, and ERF3 in the two dandelions under saline stress showed an opposite expression pattern. These up-regulated genes could enhance dandelion salt tolerance, and down-regulated DEGs in the caffeic acid biosynthesis pathway, especially CSE (TbA08G014310) and COMT (TbA04G07330), could be important candidate genes in the synthesis of caffeic acid under saline stress. The above findings revealed the potential mechanisms of salt response and caffeic acid metabolism in dandelion under saline stress, and provide references for salt-tolerant plant breeding and cultivation on saline-alkali land in the future.


Asunto(s)
Taraxacum , Taraxacum/genética , Cloruro de Sodio/farmacología , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Perfilación de la Expresión Génica , Etilenos
15.
Clin Cosmet Investig Dermatol ; 17: 191-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38283795

RESUMEN

Purpose: Porokeratosis (PK) is a chronic autosomal-dominant cutaneous keratinization disorder exhibiting clinical and genetic heterogeneity. Mevalonate decarboxylase (MVD), farnesyl diphosphate synthase (FDPS), phosphomevalonate kinase(PMVK), and mevalonate kinase genes(MVK), which encode the mevalonate pathway, are disease-causing genes in PK. Patients and Methods: Data and blood samples were collected from two Chinese families and five sporadic patients with porokeratosis. Whole-exome and Sanger sequencing were performed to detect pathogenic gene mutation in the patients. Results: Five heterozygous mutations were identified, including a novel FDPS stop-gain mutation c.438T>G (p.Tyr146Ter), a novel MVD missense mutation c.683G>C (p.R228P), and three previously reported MVD mutations: c.746T>C (p.F249S), c.875A>G (p.N292S), and c.1111_1113del (p.371_371del). The novel FDPS c.438T>G mutation was predicted as "disease-causing" (p = 1) by Mutation Taster. The other novel MVD c.683G>C was also predicted as "deleterious" (score = 0.00) by Sorting Intolerant From Tolerant (SIFT), "probably damaging" (score = 1) by PolyPhen2, and "disease-causing" (p = 0.999) by Mutation Taster. Conclusion: Our results extended the mutation spectrum of mevalonate pathway genes in porokeratosis and provided useful strategies for a more accurate diagnosis and genetic counseling.

16.
Neurol Res ; 46(1): 89-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37703903

RESUMEN

OBJECTIVE: One of the important causes of death in cancer patients is malignant metastasis, invasion, and metastasis of tumor cells. Metastasis is also the most basic physiological characteristics and pathogenesis of various tumors. Previously published studies have suggested that autocrine motor factor receptor (AMFR) is the key regulator of tumor cell migration and invasion. Meanwhile, AMFR is highly expressed in esophageal tumors, gastrointestinal tumors, and bladder cancer, and it is also involved in its pathogenesis. However, the role of AMFR in glioblastoma has not been reported. METHODS: In order to study the role of AMFR in the cell migration and invasion of glioblastoma, AMFR was silenced using siRNA and overexpressed using cDNA. Immunoblotting analysis and real-time quantitative polymerase chain reaction (PCR) were employed to assess the expression of AMFR. We conducted wound healing assay, cell migration assay, and tumorsphere formation assay to detect the invasion and metastatic ability of glioblastoma. RESULTS: This study found that the level of AMFR expression was significantly correlated with the malignant degree of glioma tissue in clinic samples. AMFR silencing decreased cell migration and invasion of LN229. Overexpression of AMFR significantly increased cell migration and invasion of U251. CONCLUSION: This study suggests that AMFR could be used as a therapeutic strategy for the clinical treatment of glioblastoma.


Asunto(s)
Glioblastoma , Humanos , Receptores del Factor Autocrino de Motilidad/genética , Receptores del Factor Autocrino de Motilidad/metabolismo , Glioblastoma/genética , Glioblastoma/patología , ARN Interferente Pequeño/genética , Movimiento Celular , Proliferación Celular , Línea Celular Tumoral , Invasividad Neoplásica
17.
Front Microbiol ; 14: 1287802, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149271

RESUMEN

Due to its traditional fermentation, there are obvious limits on the quality improvements in black tea. However, microbial fermentation can provide an abundance of metabolites and improve the flavor of tea. The "golden flower" fungi are widely used in the microbial fermentation of tea and has unique uses in healthcare. To further explore the improvements in black tea quality achieved via microbial fermentation, we used widely targeted metabolomics and metagenomics analyses to investigate the changes in and effects of metabolites and other microorganisms during the interaction between the "golden flower" fungi and black tea. Five key flavor metabolites were detected, the levels of catechin, epigallocatechin gallate, (-)-epicatechin gallate were decreased by different degrees after the inoculation of the "golden flower" fungus, whereas the levels of caffeine and (+)-gallocatechin increased. Botryosphaeriaceae, Botryosphaeriales, Dothideomycetes, Aspergillaceae, Trichocomaceae, and Lecanoromycetes play a positive role in the black tea fermentation process after inoculation with the "golden flower" fungi. D-Ribose can prevent hypoxia-induced apoptosis in cardiac cells, and it shows a strong correlation with Botryosphaeriaceae and Botryosphaeriales. The interaction between microorganisms and metabolites is manifested in tryptophan metabolism, starch and sucrose metabolism, and amino sugar and nucleotide sugar metabolism. In conclusion, the changes in metabolites observed during the fermentation of black tea by "golden flower" fungi are beneficial to human health. This conclusion extends the knowledge of the interaction between the "golden flower" fungi and black tea, and it provides important information for improving the quality of black tea.

18.
Ecotoxicol Environ Saf ; 267: 115655, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37924802

RESUMEN

Anthocyanins belong to flavonoid secondary metabolites that act as plant pigments to give flowers and fruits different colors and as "scavengers" of reactive oxygen species (ROS) to protect plants from abiotic and biotic stresses. Few studies linked anthocyanins to alkaline resistance so far. In this study, anthocyanin synthesis-related gene leucoanthocyanidin dioxygenase (LDOX) was screened as a candidate gene to explore its relationship with alkali stress. The results found that pYL156: GhLDOX3 lines treated with 50 mM Na2CO3 (pH 11.11) for 24 h showed a significant increase in peroxidase (POD) activity, a decrease in total anthocyanin content and an increase in cyanidin content and a decrease in ROS accumulation compared to pYL156. The overexpressed (OE) lines, ldox mutant and wild-type (WT) lines in Arabidopsis were treated with 50 mM Na2CO3, 100 mM Na2CO3 and 150 mM Na2CO3 for 8 d, respectively. The wilted degree of the OE lines was more severe than WT lines, and less severe in the mutant lines in the 150 mM Na2CO3 treatment. After treatment, the expression levels of AtCAT and AtGSH genes related to antioxidant system in OE lines were significantly lower than in WT, and the expression levels of AtCAT and AtGSH in mutant lines were significantly higher than in WT. In conclusion, the above results suggest GhLDOX3 played a negative regulatory role in the mechanism of resisting Na2CO3 stress. Therefore, it can be considered in cotton breeding to improve the alkali tolerance of cotton by regulating the expression of related genes.


Asunto(s)
Antocianinas , Arabidopsis , Especies Reactivas de Oxígeno , Fitomejoramiento , Gossypium/genética , Álcalis , Antioxidantes
19.
Artículo en Inglés | MEDLINE | ID: mdl-37807415

RESUMEN

BACKGROUND: Portulaca grandiflora is a tiny, upright herb that contains a variety of chemical components, including alkaloids, glycosides, mucilage, proteins, tannins, flavonoids, saponins, polysaccharides, and triterpenoids possessing properties that may help with atherosclerosis. The reported pharmacological properties of Portulaca grandiflora are antioxidant, antidiabetic, antiasthmatic, antibacterial, antiulcer and anti-inflammatory properties. OBJECTIVES: The yield of methanol extract is higher than that of ethanol and acetone, and its phytoconstituents, like flavonoids and polyphenols, and has potent antioxidant properties. In order to determine the effectiveness ofPortulaca grandiflora methanol extract fraction against high-fat diet (HFD)-induced hyperlipidemia, hemodynamic change, antioxidant levels, and vascular dysfunction in rats, a study was carried out on a flavonoid-rich methanol extract fraction of the aerial part of Portulaca grandiflora Hook. METHODS: This method involves a study of 30 days involving male Wistar rats (240-250 g) (n=5) that were fed with an Ath diet. Study groups were divided into (i) The Control Group, (ii) the Diseases Control Group, (iii) Disease + Standard drug (Atorvastatin 20mg/kg, orally, (iv) Disease + Test Extract dose 1 (Portulaca grandiflora 200mg/kg orally), and (v) Disease + Test Extract dose 2 (Portulaca grandiflora 400mg/kg orally). Both the test drug Portulaca grandiflora and the standard drug Atorvastatin were given orally for 30 days. RESULTS: At the end of the study, blood samples were taken to measure the serum lipid profile, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and levels of oxidative tissue stress. Hemodynamic parameters and aortic staining were performed. Portulaca grandiflora treatment improved the lipid profile and considerably reduced oxidative stress levels. Aortic staining examination revealed a marked reduction in atherosclerotic lesions. CONCLUSION: These results revealed that Portulaca grandiflora is an effective treatment approach in preventing atherosclerotic lesion progression, which is attributed to its protection against oxidative stress and various enzymatic activities in the Atherogenic model.

20.
Molecules ; 28(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836834

RESUMEN

Shigella dysenteriae is a highly pathogenic microorganism that can cause human bacillary dysentery by contaminating food and drinking water. This study investigated the antibacterial activity of chestnut bur polyphenol extract (CBPE) on S. dysenteriae and the underlying mechanism. The results showed that the minimum inhibitory concentration (MIC) of CBPE for S. dysenteriae was 0.4 mg/mL, and the minimum bactericidal concentration (MBC) was 1.6 mg/mL. CBPE treatment irreversibly disrupted cell morphology, decreased cell activity, and increased cell membrane permeability, cell membrane depolarization, and cell content leakage of S. dysenteriae, indicating that CBPE has obvious destructive effects on the cell membrane and cell wall of S. dysenteriae. Combined transcriptomic and metabolomics analysis revealed that CBPE inhibits S. dysenteriae by interfering with ABC protein transport, sulfur metabolism, purine metabolism, amino acid metabolism, glycerophospholipid metabolism, and some other pathways. These findings provide a theoretical basis for the prevention and treatment of S. dysenteriae infection with extract from chestnut burs.


Asunto(s)
Disentería Bacilar , Shigella dysenteriae , Humanos , Polifenoles/farmacología , Antibacterianos/farmacología , Disentería Bacilar/microbiología , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA