Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 12(19): 4673-4685, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647236

RESUMEN

During the process of wound healing, the stimulation of inflammatory factors often leads to abnormal proliferation of blood vessels and collagen, ultimately resulting in scar formation. To address this challenge, we fabricate a novel dermal extracellular matrix (DECM) hydrogel scaffold loaded with ginsenoside Rg3 (Rg3) using 3D printing technology. Mesoporous silica nanoparticles (MSNs) are introduced into the system to encase the Rg3 to control its release rate and enhance its bioavailability. We systematically evaluate the biological, physicochemical, and wound healing properties of this scaffold. In vitro studies demonstrate that the hydrogel exhibits excellent biocompatibility and solid-like rheological properties, ensuring its successful printing. In vivo studies reveal that the composite hydrogel scaffolds effectively accelerate wound healing and achieve scar-free wound healing within three weeks. Histological and immunohistochemical (IHC) analyses show that the composite hydrogel scaffolds reduce the inflammatory response and inhibit excessive collagen accumulation. These combined effects underscore the potential of our approach in effectively inhibiting scar formation.


Asunto(s)
Colágeno , Ginsenósidos , Hidrogeles , Impresión Tridimensional , Andamios del Tejido , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Colágeno/química , Animales , Ginsenósidos/química , Ginsenósidos/farmacología , Andamios del Tejido/química , Cicatriz/tratamiento farmacológico , Dióxido de Silicio/química , Ratones , Antiinflamatorios/química , Antiinflamatorios/farmacología , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
2.
Int J Biol Macromol ; 220: 1501-1511, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122774

RESUMEN

The development of novel wound dressings with highly effective antibacterial and accelerating wound healing properties has become the focus of current research. In this study, a novel and injectable lactoferrin (LF)/lithium magnesium silicate hydrogel (LMSH) was first synthesized through a simple electrostatic interaction method. The physical and biological properties are systematically characterized. The results show that the synthesized LF/LMSH has good antibacterial properties and biocompatibility. More importantly, it can effectively promote wound healing in the rat full-thickness skin wound model after 14 days post-operation, and the healing rate can reach 99.1 %, which is much higher than that of other groups. Meanwhile, histochemical and immunofluorescent staining confirm that the prepared injectable LF/LMSH has good pro-collagen deposition, pro-angiogenic and anti-inflammatory properties. The healed wounds present a consistently thickened epidermis with more follicular and glandular structures, indicating the great potential of the prepared material for wound management.


Asunto(s)
Hidrogeles , Litio , Animales , Antibacterianos/química , Antibacterianos/farmacología , Colágeno/farmacología , Hidrogeles/química , Lactoferrina/farmacología , Magnesio/farmacología , Silicatos de Magnesio , Ratas , Cicatrización de Heridas
3.
ACS Appl Bio Mater ; 4(12): 8509-8521, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35005937

RESUMEN

The exacerbating water pollution and water resource shortage pose a great danger to human health and make it imperative to recycle and treat the sewage. In this study, a direct-writing three-dimensional (3D) printing technology was adopted to prepare a 3D sodium alginate (SA)/graphene oxide (GO)/Ag nanoparticle (AgNP) aerogel (SGA), aiming to turn the complex sewage containing oil, silt, and bacteria into clean water depending only on gravity separation. The physicochemical properties and surface structure of the synthesized SGA were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The swelling rate, mechanical properties, antibacterial properties, oil and water separation effect, and durable stability of the filter membrane were also investigated to verify the versatility of the SGA filter. The results showed that GO helped improve the mechanical properties of the printed filter to withstand water impact during the filtration process. The printed filter had a well-designed and multiscale gradient pore structure, which can effectively intercept particles with different sizes to separate the silt from water, and the turbidity of the filtered water can be reduced from 60 to 1 nephelometric turbidity unit (NTU). The presence of SA endowed the printed filter with hydrophilic and oleophobic behaviors, which can effectively separate various kinds of oils from water. The uniform distribution of AgNPs in the filter produced via a facile and green reduction of SA facilitated the efficient bactericidal ability of the printed filter during the filtration process; meanwhile, the lower release concentration of Ag ions ensured drinking safety. What is more, the filter can be easily produced on a large scale and used for different sewage treatment situations with a durable stability of over 30 days. Taken together, the printed SGA filter has a broad application prospect in complex sewage treatment, providing a special solution for sewage treatment in poverty areas.


Asunto(s)
Nanopartículas del Metal , Aguas del Alcantarillado , Alginatos/química , Antibacterianos/química , Bacterias , Humanos , Aceites/química , Impresión Tridimensional , Plata
4.
Mater Sci Eng C Mater Biol Appl ; 118: 111434, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33255028

RESUMEN

Rheumatoid arthritis (RA) is the most common chronic autoimmune disorder associated with high-cost, side effects, and low therapeutic effects. To improve the treatment of RA, we originally developed a novel anti-RA Au@polydopamine nanoparticles (PDANPs)/TCZ composite using PDANPs as the binding sites of gold nanoparticles (AuNPs) and the drug carries of tocilizumab (TCZ) through a facile and environmentally-friend method, aiming to effectively scavenge oxygen free radicals (OFR) and inhibit the formation of related inflammatory factors. Characterizations showed that AuNPs with the size of 11.4 ± 2.9 nm randomly distributed onto the surface of PDANPs (145.8 ± 31.9 nm), meanwhile TCZ was chemically cross-linked to PDANPs through Schiff base linkage. The synthesized composite had good biocompatibility that can promote the proliferation and growth of chondrocytes and fibroblasts. More importantly, Au@PDANPs/TCZ composite showed more excellent abilities to scavenge OFR and inhibit the related inflammatory factors in vitro and in vivo than that of AuNPs and PDANPs owing to the synergistic scavenging effect, ensuring its best therapeutic effect in RA therapy. This new composite will have application potential in the treatment of RA related disease.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Nanopartículas del Metal , Anticuerpos Monoclonales Humanizados , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Radicales Libres , Oro/uso terapéutico , Indoles , Oxígeno , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...