Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.911
1.
J Nanobiotechnology ; 22(1): 226, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711066

Nanozyme, characterized by outstanding and inherent enzyme-mimicking properties, have emerged as highly promising alternatives to natural enzymes owning to their exceptional attributes such as regulation of oxidative stress, convenient storage, adjustable catalytic activities, remarkable stability, and effortless scalability for large-scale production. Given the potent regulatory function of nanozymes on oxidative stress and coupled with the fact that reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of metabolic diseases, nanozyme offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of metabolic diseases by directly scavenging excess ROS or regulating pathologically related molecules. The rational design strategies, nanozyme-enabled therapeutic mechanisms at the cellular level, and the therapies of nanozyme for several typical metabolic diseases and underlying mechanisms are discussed, mainly including obesity, diabetes, cardiovascular disease, diabetic wound healing, and others. Finally, the pharmacokinetics, safety analysis, challenges, and outlooks for the application of nanozyme are also presented. This review will provide some instructive perspectives on nanozyme and promote the development of enzyme-mimicking strategies in metabolic disease therapy.


Metabolic Diseases , Oxidative Stress , Reactive Oxygen Species , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Animals , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Nanostructures/chemistry , Nanostructures/therapeutic use , Nanoparticles/chemistry , Enzymes/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Obesity/metabolism , Obesity/drug therapy
2.
Rev Sci Instrum ; 95(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38727574

A pulsed power supply with a short rise time and high repetition frequency is favorable to driving diffusive plasma for strongly oxidizing radical (O3, OH) generation and increasing the system's energy efficiency. In this paper, a 10-stage solid-state linear transformer driver (LTD) with a nanosecond rise time is developed to drive plasma for wastewater treatment. To decrease the rise time, a control system with low jitter is developed to improve the synchronization of pulses using an optocoupler isolation chip. A 10-stage LTD with a rise time of 6.2 ns is realized in the case that the rise time of the single-stage LTD is 5.4 ns. The results show that the LTD can generate pulses on a 300 Ω resistive load with a repetition frequency of 10 kHz, an amplitude of 8.80 kV, an overshoot less than 3.97%, and a reverse overshoot less than 4.82%. The rise time (6.2-33.0 ns), the pulse width (35.9-200.0 ns), and the fall time (10.5-27.6 ns) can be adjusted flexibly and independently by controlling the drive signals of metal oxide semiconductor field effect transistors. The pulsed generator is utilized to drive plasma in the needle-water electrode system. The preliminary experimental results show that the plasma includes abundant oxygen atoms and hydroxyl radicals with high activity, and it is suitable for wastewater treatment.

3.
Front Plant Sci ; 15: 1370440, 2024.
Article En | MEDLINE | ID: mdl-38708392

Apple replant disease (ARD), caused by Fusarium pathogens, is a formidable threat to the renewal of apple varieties in China, necessitating the development of effective and sustainable control strategies. In this study, the bacterial strain BA-4 was isolated from the rhizosphere soil of healthy apple trees in a replanted orchard, demonstrating a broad-spectrum antifungal activity against five crucial apple fungal pathogens. Based on its morphology, physiological and biochemical traits, utilization of carbon sources, and Gram stain, strain BA-4 was tentatively identified as Bacillus amyloliquefaciens. Phylogenetic analysis using 16S rDNA and gyrB genes conclusively identified BA-4 as B. amyloliquefaciens. In-depth investigations into B. amyloliquefaciens BA-4 revealed that the strain possesses the capacity to could secrete cell wall degrading enzymes (protease and cellulase), produce molecules analogous to indole-3-acetic acid (IAA) and siderophores, and solubilize phosphorus and potassium. The diverse attributes observed in B. amyloliquefaciens BA-4 underscore its potential as a versatile microorganism with multifaceted benefits for both plant well-being and soil fertility. The extracellular metabolites produced by BA-4 displayed a robust inhibitory effect on Fusarium hyphal growth and spore germination, inducing irregular swelling, atrophy, and abnormal branching of fungal hyphae. In greenhouse experiments, BA-4 markedly reduced the disease index of Fusarium-related ARD, exhibiting protective and therapeutic efficiencies exceeding 80% and 50%, respectively. Moreover, BA-4 demonstrated plant-promoting abilities on both bean and Malus robusta Rehd. (MR) seedlings, leading to increased plant height and primary root length. Field experiments further validated the biocontrol effectiveness of BA-4, demonstrating its ability to mitigate ARD symptoms in MR seedlings with a notable 33.34% reduction in mortality rate and improved biomass. Additionally, BA-4 demonstrates robust and stable colonization capabilities in apple rhizosphere soil, particularly within the 10-20 cm soil layer, which indicates that it has long-term effectiveness potential in field conditions. Overall, B. amyloliquefaciens BA-4 emerges as a promising biocontrol agent with broad-spectrum antagonistic capabilities, positive effects on plant growth, and strong colonization abilities for the sustainable management of ARD in apple cultivation.

4.
J Liposome Res ; : 1-13, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712581

Liposomes are small spherical vesicles composed of phospholipid bilayers capable of encapsulating a variety of ingredients, including water- and oil-soluble compound, which are one of the most commonly used piggybacking and delivery techniques for many active ingredients and different compounds in biology, medicine and cosmetics. With the increasing number of active cosmetic ingredients, the concomitant challenge is to effectively protect, transport, and utilize these substances in a judicious manner. Many cosmetic ingredients are ineffective both topically and systemically when applied to the skin, thus changing the method of delivery and interaction with the skin of the active ingredients is a crucial step toward improving their effectiveness. Liposomes can improve the delivery of active ingredients to the skin, enhance their stability, and ultimately, improve the efficacy of cosmetics and and pharmaceuticals. In this review, we summarized the basic properties of liposomes and their recent advances of functionalities in cosmetics and and pharmaceuticals. Also, the current state of the art in the field is discussed and the prospects for future research areas are highlighted. We hope that this review will provide ideas and inspiration on the application and development of cosmetics and pharmaceuticals.

5.
Animal Model Exp Med ; 7(2): 106-113, 2024 Apr.
Article En | MEDLINE | ID: mdl-38720238

BACKGROUND: Androgenic alopecia (AGA) is the most common type of hair loss in men, and there are many studies on the treatment of hair loss by platelet-rich plasma (PRP). The human scalp contains a huge microbiome, but its role in the process of hair loss remains unclear, and the relationship between PRP and the microbiome needs further study. Therefore, the purpose of this study was to investigate the effect of PRP treatment on scalp microbiota composition. METHODS: We performed PRP treatment on 14 patients with AGA, observed their clinical efficacy, and collected scalp swab samples before and after treatment. The scalp microflora of AGA patients before and after treatment was characterized by amplifying the V3-V4 region of the 16 s RNA gene and sequencing for bacterial identification. RESULTS: The results showed that PRP was effective in the treatment of AGA patients, and the hair growth increased significantly. The results of relative abundance analysis of microbiota showed that after treatment, g_Cutibacterium increased and g_Staphylococcus decreased, which played a stable role in scalp microbiota. In addition, g_Lawsonella decreased, indicating that the scalp oil production decreased after treatment. CONCLUSIONS: The findings suggest that PRP may play a role in treating AGA through scalp microbiome rebalancing.


Alopecia , Microbiota , Platelet-Rich Plasma , Scalp , Humans , Alopecia/therapy , Alopecia/microbiology , Male , Adult , Scalp/microbiology , Middle Aged , Young Adult
6.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714634

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Crystallization , Griseofulvin , Polymers , Transition Temperature , Griseofulvin/chemistry , Crystallization/methods , Polymers/chemistry , Drug Stability , Hydrogen Bonding , Polyvinyls/chemistry , Polyethylene Glycols/chemistry , Povidone/chemistry , Glass/chemistry
7.
Int J Neurosci ; : 1-8, 2024 May 07.
Article En | MEDLINE | ID: mdl-38695689

OBJECTIVE: In order to provide a more accurate and effective basis for clinical diagnosis and treatment, patients with cognitive dysfunction after acute ischemic stroke (AIS) were evaluated and their influencing factors were analyzed. METHODS: A rigorous and systematic logistic regression analysis was conducted to comprehensively investigate the various influencing factors that contribute to cognitive dysfunction. RESULTS: Among them, the sex granulocyte/lymphocyte ratio (NLR), low-density lipoprotein cholesterol (LDL-C) level, and C-reactive protein (CRP) were also higher than those in the control group (p < 0.05). The scores of memory, orientation, visual and spatial function, abstract thinking and language in the control group were higher than those in the experimental group (p < 0.05). The results of multivariate logistic regression analysis showed that history of diabetes mellitus, high NLR, high LDL-C, high CRP, smoking and temporal lobe infarction were risk factors for cognitive dysfunction after AIS, while elevated BMI and love of exercise were protective factors for cognitive dysfunction after AIS. CONCLUSION: Patients with cognitive dysfunction had the highest incidence of temporal lobe infarction, and they scored lower than the control group on memory, orientation, visual and spatial function, abstract thinking, and language function. Multivariate logistic regression analysis showed that a history of diabetes mellitus, high NLR, high LDL-C, high CRP, smoking, and temporal lobe infarction were independent risk factors for cognitive dysfunction after acute ischemic stroke, while elevated BMI and a love of exercise were protective factors for cognitive dysfunction after acute ischemic stroke.

8.
Article En | MEDLINE | ID: mdl-38697933

Malus toringoides (Rehd.) Hughes leave, called "Eseye (Ese)", is a traditional medicinal plant from the Tibet province of China that has efficiency of anti-inflammatory, antioxidant and anti-apoptosis to treat cardiac conditions. We herein explored the underlying protective mechanisms of Ese decoction in isoproterenol (ISO)-induced cardiac fibrosis (CF). And treatment with an Ese decoction attenuated tissue injury and decreased the release of IL-1ß, IL-18, TNF-α, and caspase-3 and elevated the Bax/Bcl-2 ratio in CF mice. Damage to the mitochondrial ultrastructure of myocardium was alleviated, and the level of ROS was markedly diminished with Ese treatment. Ese inhibited the expression of proteins associated with pyroptosis by the HK1/NLRP3-signaling pathway, and also improved CF. Based on anti-inflammatory, antioxidative and anti-apoptosis activities effects of Ese decoction, we found that Ese protected against ISO-induced CF, which attributed to its inhibition of inflammation and pyroptosis as mediated by the HK1/NLRP3-signaling pathway.

9.
Exp Eye Res ; : 109929, 2024 May 13.
Article En | MEDLINE | ID: mdl-38750783

Optic nerve injuries are severely disrupt the structural and functional integrity of the retina, often leading to visual impairment or blindness. Despite the profound impact of these injuries, the molecular mechanisms involved remain poorly understood. In this study, we performed a comprehensive whole-transcriptome analysis of mouse retina samples after optic nerve crush (ONC) to elucidate changes in gene expression and regulatory networks. Transcriptome analysis revealed a variety of molecular alterations, including 256 mRNAs, 530 lncRNAs, and 37 miRNAs, associated with metabolic, inflammatory, signaling, and biosynthetic pathways in the injured retina. The integrated analysis of co-expression and protein-protein interactions identified an active interconnected module comprising 5 co-expressed proteins (Fga, Serpina1a, Hpd, Slc38a4, and Ahsg) associated with the complement and coagulation cascades. Finally, 2 mRNAs (Slc38a4 and Fga), 2 miRNAs (miR-671-5p and miR-3057-5p), and 6 lncRNAs (MSTRG.1830.1, Gm10814, A530013C23Rik, Gm40634, MSTRG.9514.1, A330023F24Rik) were identified by qPCR in 661W and HEK293T cells, and some of them were validated as critical components of a ceRNA network active in the injured retina through dual-luciferase reporter assays. In conclusion, our study provides comprehensive insight into the complex and dynamic biological mechanisms involved in retinal injury responses and highlights promising potential targets to enhance neuroprotection and restore vision.

10.
Int J Biol Macromol ; : 132371, 2024 May 13.
Article En | MEDLINE | ID: mdl-38750861

Aflatoxin B1 (AFB1) is one of the most widespread contaminants in agricultural commodities. Pleurotus eryngii (PE) is widely used as a feed additive for its anti-inflammatory properties, and its major active substance is believed to be polysaccharides. This study aims to explore the underlying mechanism of dietary PE polysaccharides alleviating AFB1-induced toxicity in ducks. The major monosaccharide components of PE polysaccharides were identified as glucose, mannose, galactose, glucuronic acid, and fucose. The results showed that dietary PE polysaccharides could alleviate liver inflammation, alleviate intestinal barrier dysfunction, and change the imbalanced gut microbiota induced by AFB1 in ducks. However, PE polysaccharides failed to exert protective roles on the liver and intestine injury induced by AFB1 in antibiotic-treated ducks. The PE + AFB1-originated microbiota showed a positive effect on intestinal barrier and inflammation, the SCFAs transport via the gut-liver axis, and liver inflammation compared with the AFB1-originated microbiota in ducks. These findings provided a possible mechanism that PE polysaccharides alleviated AFB1-induced liver inflammation in ducks by remodeling gut microbiota, regulating microbiota-derived SCFAs transport via the gut-liver axis, and inhibiting inflammatory gene expressions in the liver, which may provide new insight for therapeutic methods against AFB1 exposure in animals.

11.
Small ; : e2400771, 2024 May 15.
Article En | MEDLINE | ID: mdl-38751055

Periodontitis is the leading cause of adult tooth missing. Thorny bacterial biofilm and high reactive oxygen species (ROS) levels in tissue are key elements for the periodontitis process. It is meaningful to develop an advanced therapeutic system with sequential antibacterial/ antioxidant ability to meet the overall goals of periodontitis therapy. Herein, a dual-polymer functionalized melanin-AgNPs (P/D-MNP-Ag) with biofilm penetration, hydroxyapatite binding, and sequentially treatment ability are fabricated. Polymer enriched with 2-(Dimethylamino)ethyl methacrylate (D), can be protonated in an acid environment with enhanced positive charge, promoting penetration in biofilm. The other polymer is rich in phosphate group (P) and can chelate Ca2+, promoting the polymer to adhere to the hydroxyapatite surface. Melanin has good ROS scavenging and photothermal abilities, after in situ reduction Ag, melanin-AgNPs composite has sequentially transitioned between antibacterial and antioxidative ability due to heat and acid accelerated Ag+ release. The released Ag+ and heat have synergistic antibacterial effects for bacterial killing. With Ag+ consumption, the antioxidant ability of MNP recovers to scavenge ROS in the inflammatory area. When applied in the periodontitis model, P/D-MNP-Ag has good therapeutical effects to ablate biofilm, relieve inflammation state, and reduce alveolar bone loss. P/D-MNP-Ag with sequential treatment ability provides a reference for developing advanced oral biofilm eradication systems.

12.
Materials (Basel) ; 17(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38730931

This paper provides insights into the four key behaviors and mechanisms of the aging to failure of batteries in micro-overcharge cycles at different temperatures, as well as the changes in thermal stability. The test results from a scanning electron microscope (SEM) and an energy-dispersive spectrometer (EDS) indicate that battery failure is primarily associated with the rupture of cathode materials, the fracturing and pulverization of electrode materials on the anode current collector, and the formation of lithium dendrites. Additionally, battery safety is influenced by environmental temperatures and the battery's state of health (SOH), with failed batteries exhibiting the poorest stability and the highest mass loss rates. Under isothermal conditions, micro-overcharge leads to battery failure without thermal runaway. Thus, temperature stands out as the most influential factor in battery safety. These insights hold significant theoretical and practical value for the development of more precise and secure battery management systems.

13.
J Am Chem Soc ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38717282

In this study, we investigated the role of aluminum cations in facilitating hydride transfer during the hydrogenation of imines within the context of Noyori-type metal-ligand cooperative catalysis. We propose a novel model involving aluminum cations directly coordinated with imines to induce activation from the lone pair electron site, a phenomenon termed σ-induced activation. The aluminum metal-hydride amidate complex ("HMn-NAl") exhibits a higher ability of hydride transfer in the hydrogenation of imines compared to its lithium counterpart ("HMn-NLi"). Density functional theory (DFT) calculations uncover that the aluminum cation efficiently polarizes unsaturated bonds through σ-electron-induced activation in the transition state of hydride transfer, thereby enhancing substrate electrophilicity more efficiently. Additionally, upon substrate coordination, aluminum's coordination saturation improves the hydride nucleophilicity of the HMn-NAl complex via the breakage of the Al-H coordination bond.

14.
Vet Parasitol ; 329: 110212, 2024 May 17.
Article En | MEDLINE | ID: mdl-38781831

Tick infestations transmit various infectious agents and result in significant socioeconomic consequences. Currently, the primary focus of tick control efforts is identifying potential targets for immune intervention. In a previous study, we identified a highly conserved protein abundant in tick haemolymph extracellular vesicles (EVs) known as translationally controlled tumour protein (TCTP). We have found that native TCTP is present in various tissues of the Rhipicephalus haemaphysaloides tick, including salivary glands, midgut, ovary, and fat body. Notably, TCTP is particularly abundant in the tick ovary and its levels increase progressively from the blood-feeding stage to engorgement. When the TCTP gene was knocked down by RNAi, there was a noticeable delay in ovarian development, and the reproductive performance, in terms of egg quantity and survival, was also hindered. Our investigations have revealed that the observed effects in ovary and eggs in dsRNA-treated ticks are not attributable to cell death mechanisms like apoptosis and autophagy but rather to the reduction in the expression of vitellogenin (Vg1, Vg2, and Vg3) and ferritin (ferritin 1 and ferritin 2) proteins crucial for ovarian development and embryo survival in ticks. Additionally, phylogenetic analysis and structural comparisons of RhTCTP and its orthologues across various tick species, vertebrate hosts, and humans have shown that TCTP is conserved in ticks but differs significantly between ticks and their hosts, particularly in the TCTP_1 and TCTP_2 domains. Overall, TCTP plays a vital role in tick reproductive development and presents itself as a potential target for tick control in both humans and animals.

15.
Article En | MEDLINE | ID: mdl-38769261

In response to China's policies on pollution control and carbon emission (CE) reductions, more stringent regulations have been implemented to evaluate CE in wastewater treatment facilities. In this study, we have analyzed CE from China's wastewater treatment plants (WWTPs) and influencing factor. Emission factor (EF) and operational data integrated methods (ODIM) were utilized to measure emissions, using data collected from 247 WWTPs over a 1-year period across seven regions in China. The average CE intensity was 0.45 kgCO2-eq/m3, affected by region, season, influent water quality, treatment processes, effluent discharge standards, and facilities. The scale effect was obvious only in the range of 2 × 105 m3/day. Underground WWTPs exhibited significantly higher CE compared to aboveground WWTPs. In summary, the assessment of CE in 247 actual WWTPs not only identifies emission reduction potential but also provides a scientific basis for formulating targeted emission reduction measures.

16.
EMBO J ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38769438

Energy stress, characterized by the reduction of intracellular ATP, has been implicated in various diseases, including cancer. Here, we show that energy stress promotes the formation of P-bodies in a ubiquitin-dependent manner. Upon ATP depletion, the E3 ubiquitin ligase TRIM23 catalyzes lysine-63 (K63)-linked polyubiquitination of HCLS1-associated protein X-1 (HAX1). HAX1 ubiquitination triggers its liquid‒liquid phase separation (LLPS) and contributes to P-bodies assembly induced by energy stress. Ubiquitinated HAX1 also interacts with the essential P-body proteins, DDX6 and LSM14A, promoting their condensation. Moreover, we find that this TRIM23/HAX1 pathway is critical for the inhibition of global protein synthesis under energy stress conditions. Furthermore, high HAX1 ubiquitination, and increased cytoplasmic localization of TRIM23 along with elevated HAX1 levels, promotes colorectal cancer (CRC)-cell proliferation and correlates with poor prognosis in CRC patients. Our data not only elucidate a ubiquitination-dependent LLPS mechanism in RNP granules induced by energy stress but also propose a promising target for CRC therapy.

17.
Front Oncol ; 14: 1360956, 2024.
Article En | MEDLINE | ID: mdl-38737900

Advanced prostate cancer (PCa) is usually treated initially with androgen deprivation therapy (ADT). Although they experience a period of disease regression, most patients progress to metastatic castration-resistant prostate cancer (mCRPC). Patients with mCRPC now have an unprecedented number of approved treatment options, including chemotherapies, hormone therapies, targeted therapies, etc. However, the improvement of overall survival (OS) in patients with mCRPC and its special subtype neuroendocrine prostate cancer (NEPC) is limited. In recent years, with the use of immune checkpoint inhibitors (ICIs), such as PD1/PDL1 and CTLA4 inhibitors, immunotherapy has once again become a promising treatment choice to stimulate antitumor immunity. However, the efficacy of NEPC receiving ICI has not been reported. Here, we describe a patient with mCRPC who developed primary resistance to current endocrine and chemotherapy regimens and progressed to mCRPC with NEPC as the main component, showing a significant and lasting response to PD1 monoclonal antibody combined with radiotherapy.

18.
iScience ; 27(6): 109830, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38770137

The liver X receptor (LXR) is considered a therapeutic target for atherosclerosis treatment, but synthetic LXR agonists generally also cause hepatic steatosis and hypertriglyceridemia. Desmosterol, a final intermediate in cholesterol biosynthesis, has been identified as a selective LXR ligand that suppresses inflammation without inducing lipogenesis. Δ24-Dehydrocholesterol reductase (DHCR24) converts desmosterol into cholesterol, and we previously showed that the DHCR24 inhibitor SH42 increases desmosterol to activate LXR and attenuate experimental peritonitis and metabolic dysfunction-associated steatotic liver disease. Here, we aimed to evaluate the effect of SH42 on atherosclerosis development in APOE∗3-Leiden.CETP mice and low-density lipoproteins (LDL) receptor knockout mice, models for lipid- and inflammation-driven atherosclerosis, respectively. In both models, SH42 increased desmosterol without affecting plasma lipids. While reducing liver lipids in APOE∗3-Leiden.CETP mice, and regulating populations of circulating monocytes in LDL receptor knockout mice, SH42 did not attenuate atherosclerosis in either model.

19.
J Transl Med ; 22(1): 448, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741137

PURPOSE: The duration of type 2 diabetes mellitus (T2DM) and blood glucose levels have a significant impact on the development of T2DM complications. However, currently known risk factors are not good predictors of the onset or progression of diabetic retinopathy (DR). Therefore, we aimed to investigate the differences in the serum lipid composition in patients with T2DM, without and with DR, and search for potential serological indicators associated with the development of DR. METHODS: A total of 622 patients with T2DM hospitalized in the Department of Endocrinology of the First Affiliated Hospital of Xi'an JiaoTong University were selected as the discovery set. One-to-one case-control matching was performed according to the traditional risk factors for DR (i.e., age, duration of diabetes, HbA1c level, and hypertension). All cases with comorbid chronic kidney disease were excluded to eliminate confounding factors. A total of 42 pairs were successfully matched. T2DM patients with DR (DR group) were the case group, and T2DM patients without DR (NDR group) served as control subjects. Ultra-performance liquid chromatography-mass spectrometry (LC-MS/MS) was used for untargeted lipidomics analysis on serum, and a partial least squares discriminant analysis (PLS-DA) model was established to screen differential lipid molecules based on variable importance in the projection (VIP) > 1. An additional 531 T2DM patients were selected as the validation set. Next, 1:1 propensity score matching (PSM) was performed for the traditional risk factors for DR, and a combined 95 pairings in the NDR and DR groups were successfully matched. The screened differential lipid molecules were validated by multiple reaction monitoring (MRM) quantification based on mass spectrometry. RESULTS: The discovery set showed no differences in traditional risk factors associated with the development of DR (i.e., age, disease duration, HbA1c, blood pressure, and glomerular filtration rate). In the DR group compared with the NDR group, the levels of three ceramides (Cer) and seven sphingomyelins (SM) were significantly lower, and one phosphatidylcholine (PC), two lysophosphatidylcholines (LPC), and two SMs were significantly higher. Furthermore, evaluation of these 15 differential lipid molecules in the validation sample set showed that three Cer and SM(d18:1/24:1) molecules were substantially lower in the DR group. After excluding other confounding factors (e.g., sex, BMI, lipid-lowering drug therapy, and lipid levels), multifactorial logistic regression analysis revealed that a lower abundance of two ceramides, i.e., Cer(d18:0/22:0) and Cer(d18:0/24:0), was an independent risk factor for the occurrence of DR in T2DM patients. CONCLUSION: Disturbances in lipid metabolism are closely associated with the occurrence of DR in patients with T2DM, especially in ceramides. Our study revealed for the first time that Cer(d18:0/22:0) and Cer(d18:0/24:0) might be potential serological markers for the diagnosis of DR occurrence in T2DM patients, providing new ideas for the early diagnosis of DR.


Biomarkers , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Lipidomics , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Male , Diabetic Retinopathy/blood , Diabetic Retinopathy/diagnosis , Female , Middle Aged , Biomarkers/blood , Case-Control Studies , Lipids/blood , Aged , Discriminant Analysis , Risk Factors , Least-Squares Analysis
20.
Cerebrovasc Dis ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38749409

BACKGROUND AND PURPOSE: We aimed to determine predictors of early (END) and delayed neurological deterioration (DND) and their association with functional outcome in patients with acute ischemic stroke (AIS) who participated in the international Enhanced Control of Hypertension and Thrombolysis Stroke Study (ENCHANTED). METHODS: END and DND were defined as scores of a ≥2 point increase on the National Institutes of Health Stroke Scale (NIHSS) or ≥1 point decrease on Glasgow coma scale, or death, from baseline to 24 hours and 24 hours to 72 hours, respectively. Multivariable logistic regression models were used to determine independent predictors of END and DND and their association with 90-day outcomes (dichotomous scores on the modified Rankin scale [mRS] of 2-6 vs 0-1 and 3-6 vs 0-2, and death). RESULTS: Of 4496 patients, 871 (19.4%) and 302 (8.4%) patients experienced END and DND, respectively. Higher baseline NIHSS score, older age, large artery occlusion due to significant atheroma, cardioembolic stroke subtype, hemorrhagic infarction and parenchymatous hematoma within 24 hours, were all independent predictors for both END (all P ≤0.01) and DND (all P ≤0.024). Moreover, higher baseline systolic blood pressure (BP) (odds ratio [OR] 1.07, 95% confidence interval [CI] 1.02-1.12), higher diastolic BP variability within 24 hours (OR 1.07, 95% CI 1.04-1.09), patients from Asia (OR 1.25, 95% CI 1.03-1.52) were the only independent predictors for END. However, Asian ethnicity was negatively associated with DND (OR 0.64, 95% CI 0.47-0.86). Hemorrhagic infarction and parenchymatous hematoma within 24 hours were the key predictor of END across all stroke subtypes. END and DND were all associated with a poor functional outcome at 90 days (all P<0.001). CONCLUSIONS: We identified overlapping and unique demographic and clinical predictors of END and DND after thrombolysis for acute ischemic stroke. Both END and DND predict unfavorable outcomes at 90 days.

...