Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 356
1.
EClinicalMedicine ; 72: 102626, 2024 Jun.
Article En | MEDLINE | ID: mdl-38756107

Background: Previous trials of renal denervation (RDN) have been designed to investigate reduction of blood pressure (BP) as the primary efficacy endpoint using non-selective RDN without intraoperatively verified RDN success. It is an unmet clinical need to map renal nerves, selectively denervate renal sympathetic nerves, provide readouts for the interventionalists and avoid futile RDN. We aimed to examine the safety and efficacy of renal nerve mapping/selective renal denervation (msRDN) in patients with uncontrolled hypertension (HTN) and determine whether antihypertensive drug burden is reduced while office systolic BP (OSBP) is controlled to target level (<140 mmHg). Methods: We conducted a randomized, prospective, multicenter, single-blinded, sham-controlled trial. The study combined two efficacy endpoints at 6 months as primary outcomes: The control rate of patients with OSBP <140 mmHg (non-inferior outcome) and change in the composite index of antihypertensive drugs (Drug Index) in the treatment versus Sham group (superior outcome). This design avoids confounding from excess drug-taking in the Sham group. Antihypertensive drug burden was assessed by a composite index constructed as: Class N (number of classes of antihypertensive drugs) × (sum of doses). 15 hospitals in China participated in the study and 220 patients were enrolled in a 1:1 ratio (msRDN vs Sham). The key inclusion criteria included: age (18-65 years old), history of essential HTN (at least 6 months), heart rate (≥70 bpm), OSBP (≥150 mmHg and ≤180 mmHg), ambulatory BP monitoring (ABPM, 24-h SBP ≥130 mmHg or daytime SBP ≥135 mmHg or nighttime SBP ≥120 mmHg), renal artery stenosis (<50%) and renal function (eGFR >45 mL/min/1.73 m2). The catheter with both stimulation and ablation functions was inserted in the distal renal main artery. The RDN site (hot spot) was selected if SBP increased (≥5 mmHg) by intra-renal artery (RA) electrical stimulation; an adequate RDN was confirmed by repeated electronic stimulation if no increase in BP otherwise, a 2nd ablation was performed at the same site. At sites where there was decreased SBP (≥5 mmHg, cold spot) or no BP response (neutral spot) to stimulation, no ablation was performed. The mapping, ablation and confirmation procedure was repeated until the entire renal main artery had been tested then either treated or avoided. After msRDN, patients had to follow a predefined, vigorous drug titration regimen in order to achieve target OSBP (<140 mmHg). Drug adherence was monitored by liquid chromatography-tandem mass spectrometry analysis using urine. This study is registered with ClinicalTrials.gov (NCT02761811) and 5-year follow-up is ongoing. Findings: Between July 8, 2016 and February 23, 2022, 611 patients were consented, 220 patients were enrolled in the study who received standardized antihypertensive drug treatments (at least two drugs) for at least 28 days, presented OSBP ≥150 mmHg and ≤180 mmHg and met all inclusion and exclusion criteria. In left RA and right RA, mapped sites were 8.2 (3.0) and 8.0 (2.7), hot/ablated sites were 3.7 (1.4) and 4.0 (1.6), cold spots were 2.4 (2.6) and 2.0 (2.2), neutral spots were 2.0 (2.1) and 2.0 (2.1), respectively. Hot, cold and neutral spots was 48.0%, 27.5% and 24.4% of total mapped sites, respectively. At 6 M, the Control Rate of OSBP was comparable between msRDN and Sham group (95.4% vs 92.8%, p = 0.429), achieved non-inferiority margin -10% (2.69%; 95% CI -4.11%, 9.83%, p < 0.001 for non-inferiority); the change in Drug Index was significantly lower in msRDN group compared to Sham group (4.37 (6.65) vs 7.61 (10.31), p = 0.010) and superior to Sham group (-3.25; 95% CI -5.56, -0.94, p = 0.003), indicating msRDN patients need significantly fewer drugs to control OSBP <140 mmHg. 24-hour ambulatory SBP decreased from 146.8 (13.9) mmHg by 10.8 (14.1) mmHg, and from 149.8 (12.8) mmHg by 10.0 (14.0) mmHg in msRDN and Sham groups, respectively (p < 0.001 from Baseline; p > 0.05 between groups). Safety profiles were comparable between msRDN and Sham groups, demonstrating the safety and efficacy of renal mapping/selective RDN to treat uncontrolled HTN. Interpretation: The msRDN therapy achieved the goals of reducing the drug burden of HTN patients and controlling OSBP <140 mmHg, with only approximately four targeted ablations per renal main artery, much lower than in previous trials. Funding: SyMap Medical (Suzhou), LTD, Suzhou, China.

2.
J Sci Food Agric ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747177

BACKGROUND: To improve phytol bioavailability, a novel method of magnetic stirring and high-pressure homogenization (HPH) combination was used to prepare zein/fucoidan-coated phytol nanoliposomes (P-NL-ZF). The characterization, the simulated in vitro digestion, and the antioxidant activity of these phytol nanoliposomes from the different processes have been studied. RESULTS: Based on the results of dynamic light scattering (DLS) and gas chromatography-mass spectrometer (GC-MS) analysis, P-NL-ZF prepared through the combination of magnetic stirring and HPH exhibited superior encapsulation efficiency at 76.19% and demonstrated exceptional physicochemical stability under a series of conditions, including storage, pH, and ionic in comparison to single method. It was further confirmed that P-NL-ZF by magnetic stirring and HPH displayed a uniform distribution and regular shape through transmission electron microscopy (TEM). Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analysis showed that electrostatic interactions and hydrogen bonding were the primary driving forces for the formation of composite nanoliposomes. Additionally, an in vitro digestion study revealed that multilayer composite nanoliposomes displayed significant and favorable slow-release properties (58.21%) under gastrointestinal conditions compared with traditional nanoliposomes (82.36%) and free phytol (89.73%). The assessments of chemical and cell-based antioxidant activities demonstrated that the coating of zein/fucoidan on phytol nanoliposomes resulted in enhanced effectiveness in scavenging activity of ABTS free radical and hydroxyl radical and mitigating oxidative damage to HepG2 cells. CONCLUSION: Based on our studies, the promising delivery carrier of zein/fucoidan-coated nanoliposomes is contributed to the encapsulation of hydrophobic natural products and enhancement of their biological activity. © 2024 Society of Chemical Industry.

3.
Protein J ; 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38581543

To solve the large size faultiness of Oryza sativa recombinant human serum albumin nanoparticle (OsrHSA NP), the structural discrepancies between OsrHSA and plasma-derived human serum albumin (pdHSA) were analyzed deeply in this research. It demonstrated that there were some subtle structural discrepancies located in subdomain IA and IIA between OsrHSA and pdHSA, which included peptide backbone, disulphide bridge and some amino acids. Firstly, the structural discrepancies were investigated through literature comparison, it inferred that the structural discrepancies resulted from the fatty acid (FA) binding to OsrHSA at site 2 of subdomain IA and IIA. To form a cavity for accommodation of FA molecule in OsrHSA, the peptide backbone structure of subdomain IA and IIA would change, accompanied by the conformational transition of disulphide bridges and side chain structure change of some amino acids in subdomain IA and IIA. These alterations induced the exposure of tryptophan (Trp) and tyrosine (Tyr) residues in subdomain IA and IIA and the decrease of net negative charges of molecular surface. The former would promote more OsrHSA molecules aggregate, and the latter would weaken the electrostatic repulsion. As a result, the size of OsrHSA NP was more extensive than that of pdHSA NP (175.84 ± 15.63 nm vs. 31.67 ± 1.31 nm) when the concentration of Dimethyl Sulphoxide (DMSO) was 30% (v/v). In this study, the experimental scheme of OsrHSA NP preparation was improved. There were two changes in the enhanced preparation scheme: pH 8.2 PBS buffer and 63% DMSO. It indicated that the improved OsrHSA NP carrier was comparable to the pdHSA NP carrier. The size and drug loading of paclitaxel-loaded improved OsrHSA NP were 53.57 ± 3.63 nm and 7.25 ± 0.46% (w/w), and those of docetaxel-loaded improved OsrHSA NP were 44.75 ± 2.26 nm and 8.43 ± 0.74% (w/w). Moreover, both NPs exhibited good stability for 168 h at 7.4 pH values. It is established that the improved OsrHSA NP is comparable to the pdHSA NP as a taxane delivery system.

4.
Langmuir ; 40(17): 9265-9279, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38636094

Heterogeneous catalytic systems with water as the solvent often have the disadvantage of cross-contamination, while concerns about the purification and workup of the aqueous phase after reactions are rare in the lab or industry. In this context, designing and developing the functional selective solid adsorbent and revealing the adsorption mechanism can provide a new strategy and guidelines for constructing supported heterogeneous catalysts to address these issues. Herein, we report the stable composite adsorbent (Fe/ATP@PPy: magnetic Fe3O4/attapulgite with the polypyrrole shell) that features an integrated multifunctional surface, which can effectively tune the selective adsorption processes for Cu2+, Co2+, and Ni2+ ions and nitrobenzene via the cooperative chemisorption/physisorption in an aqueous system. The adsorption experiments showed that Fe/ATP@PPy displayed significantly higher adsorption selectivity for Ni2+ than Cu2+ and Co2+ ions, especially which exhibited an approximate 100.00% removal for both Ni2+ ions and nitrobenzene in the mixture system with a low concentration. Furthermore, combined tracking adsorption of Ni2+ ions and X-ray photoelectron spectroscopy characterization confirmed that the effective adsorption occurs via ion transfer coordination; the pathway was further validated at the molecular level through theoretical modeling. In addition, the selective adsorption mechanism was proposed based on the adsorption experiment, characterization, and the corresponding density functional theory calculation.

5.
Tissue Cell ; 88: 102341, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38479189

Cigarette smoke extract (CSE) is known as a significant contributor to chronic obstructive pulmonary disease (COPD). Propofol, an anesthetic agent, has been studied for its potential protective effects against lung damage. This study aimed to elucidate the protective mechanisms of propofol against CSE-induced damage in human bronchial epithelial 16HBE cells. In CSE-induced 16HBE cells treated by propofol with or without transfection of nuclear factor erythroid 2-related factor 2 (Nrf2) interference plasmids, CCK-8 assay and lactate dehydrogenase (LDH) assay evaluated cytotoxicity. TUNEL assay and Western blot appraised cell apoptosis. ELISA and relevant assay kits severally measured inflammatory and oxidative stress levels. DCFH-DA fluorescent probe detected intracellular reactive oxygen species (ROS) activity. Immunofluorescence staining and Western blot estimated pyroptosis. Also, Western blot analyzed the expression of Nrf2/NLR family pyrin domain containing 3 (NLRP3) signaling-related proteins. Propofol was found to enhance the viability, reduce LDH release, and alleviate the apoptosis, inflammatory response, oxidative stress and pyroptosis in CSE-induced 16HBE cells in a concentration-dependent manner. Meanwhile, propofol decreased NLRP3 expression while raised Nrf2 expression. Further, after Nrf2 was silenced, the impacts of propofol on Nrf2/NLRP3 signaling, LDH release, apoptosis, inflammatory response, oxidative stress and pyroptosis in CSE-exposed 16HBE cells were eliminated. Conclusively, propofol may exert protective effects against CSE-induced damage in 16HBE cells, partly through the modulation of the Nrf2/NLRP3 signaling pathway, suggesting a potential therapeutic role for propofol in CSE-induced bronchial epithelial cell damage.

6.
Mol Plant ; 17(4): 614-630, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38454602

The infection of host plants by many different viruses causes reactive oxygen species (ROS) accumulation and yellowing symptoms, but the mechanisms through which plant viruses counteract ROS-mediated immunity to facilitate infection and symptom development have not been fully elucidated. Most plant viruses are transmitted by insect vectors in the field, but the molecular mechanisms underlying virus‒host-insect interactions are unclear. In this study, we investigated the interactions among wheat, barley yellow dwarf virus (BYDV), and its aphid vector and found that the BYDV movement protein (MP) interacts with both wheat catalases (CATs) and the 26S proteasome ubiquitin receptor non-ATPase regulatory subunit 2 homolog (PSMD2) to facilitate the 26S proteasome-mediated degradation of CATs, promoting viral infection, disease symptom development, and aphid transmission. Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs, which leading to increased accumulation of ROS and thereby enhanced viral infection. Interestingly, transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids. Consistent with this observation, silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids. In contrast, transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV. Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner. Collectively, our study reveals a molecular mechanism by which a plant virus manipulates the ROS production system of host plants to facilitate viral infection and transmission, shedding new light on the sophisticated interactions among viruses, host plants, and insect vectors.


Aphids , Luteovirus , Proteasome Endopeptidase Complex , Virus Diseases , Animals , Triticum , Aphids/genetics , Catalase , Viral Proteins , Reactive Oxygen Species , Luteovirus/genetics , Plants, Genetically Modified , Plant Diseases
7.
Nature ; 626(8000): 779-784, 2024 Feb.
Article En | MEDLINE | ID: mdl-38383626

Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.

8.
Molecules ; 29(3)2024 Jan 24.
Article En | MEDLINE | ID: mdl-38338318

Theoretical and experimental investigations have shown that biochar, following KOH activation, enhances the efficiency of NO removal. Similarly, NaOH activation also improves NO removal efficiency, although the underlying mechanism remains unclear. In this study, zigzag configurations were employed as biochar models. Density functional theory (DFT) was utilized to examine how Li and Na single adsorption and OH co-adsorption affect the reaction pathways of NO reduction on the biochar surface. The rate constants for all reaction-determining steps (RDSs) within a temperature range of 200 to 1000 K were calculated using conventional transition state theory (TST). The results indicate a decrease in the activation energy for NO reduction reactions on biochar when activated by Li and Na adsorption, thus highlighting their beneficial role in NO reduction. Compared to the case with Na activation, Li-activated biochar exhibited superior performance in terms of the NO elimination rate. Furthermore, upon the adsorption of the OH functional group onto the Li-decorated and Na-decorated biochar models (LiOH-decorated and NaOH-decorated chars), the RDS energy barriers were higher than those of Li and Na single adsorption but easily overcome, suggesting effective NO reduction. In conclusion, Li-decorated biochar showed the highest reactivity due to its low RDS barrier and exothermic reaction on the surface.

9.
Nanomaterials (Basel) ; 14(3)2024 Feb 04.
Article En | MEDLINE | ID: mdl-38334587

Hybrid nanofluids have many real-world applications. Research has shown that mixed nanofluids facilitate heat transfer better than nanofluids with one type of nanoparticle. New applications for this type of material include microfluidics, dynamic sealing, and heat dissipation. In this study, we began by placing copper into H2O to prepare a Cu-H2O nanofluid. Next, Cu-H2O was combined with Al2O3 to create a Cu-Al2O3-H2O hybrid nanofluid. In this article, we present an analytical study of the estimated flows and heat transfer of incompressible three-dimensional magnetohydrodynamic hybrid nanofluids in the boundary layer. The application of similarity transformations converts the interconnected governing partial differential equations of the problem into a set of ordinary differential equations. Utilizing the homotopy analysis method (HAM), a uniformly effective series solution was obtained for the entire spatial region of 0 < η < ∞. The errors in the HAM calculation are smaller than 1 × 10-9 when compared to the results from the references. The volume fractions of the hybrid nanofluid and magnetic fields have significant impacts on the velocity and temperature profiles. The appearance of magnetic fields can alter the properties of hybrid nanofluids, thereby altering the local reduced friction coefficient and Nusselt numbers. As the volume fractions of nanoparticles increase, the effective viscosity of the hybrid nanofluid typically increases, resulting in an increase in the local skin friction coefficient. The increased interaction between the nanoparticles in the hybrid nanofluid leads to a decrease in the Nusselt number distribution.

10.
Clin Neurol Neurosurg ; 237: 108154, 2024 Feb.
Article En | MEDLINE | ID: mdl-38330803

OBJECTIVE: To determine whether adiponectin levels and the risk of trigeminal neuralgia (TN) were causally related, a two-sample Mendelian Randomization (MR) study design was used. METHODS: We obtained data regarding adiponectin from the UK Biobank genome wide association studies (GWAS) (n = 39,883) as the exposure and TN, using GWAS summary statistics generated from FinnGen, (total n = 195 847 159; case = 800, control = 195 047) as the outcome. We conducted a two-sample Mendelian randomization analysis employing inverse variance-weighted (IVW), MR-Egger regression, weighted median, and weighted mode analyses. RESULTS: We selected 14 single nucleotide polymorphisms (SNPs) with genome-wide significance from the GWAS on adiponectin as instrumental variables. Based on the IVW method, a causal association between adiponectin levels and TN was evidenced (OR= 0.577, 95 %CI: 0.393-0.847). MR-Egger regression revealed that directional pleiotropy was unlikely to be biasing the result (intercept = -0.01; P = 0.663), but it showed no causal association between adiponectin and TN (OR=0.627, 95 %CI: 0.369-1.067). However, the weighted median (OR=0.569, 95 %CI: 0.353-0.917) and Weighted mode (OR= 0.586, 95 %CI: 0.376-0.916) approach yielded evidence of a causal association between adiponectin and TN. Cochran's Q-statistics and funnel plots indicated no evidence of heterogeneity or asymmetry, indicating no directional pleiotropy. CONCLUSION: The results of the MR analysis suggested that adiponectin may be causally associated with an increased TN risk.


Adiponectin , Trigeminal Neuralgia , Humans , Adiponectin/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Trigeminal Neuralgia/genetics , Causality
11.
Biochem Genet ; 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38233694

The aim of this study was to examine the expression changes of H2S, IGF-1, and GH in traumatic brain injury (TBI) patients and to detect their neuroprotective functions after TBI. In this study, we first collected cerebrospinal fluid (CSF) and plasma from TBI patients at different times after injury and evaluated the concentrations of H2S, IGF-1, and GH. In vitro studies were using the scratch-induced injury model and cell-cell interaction model (HT22 hippocampal neurons co-cultured with LPS-induced BV2 microglia cells). In vivo studies were using the controlled cortical impact (CCI) model in mice. Cell viability was assessed by CCK-8 assay. Pro-inflammatory cytokines expression was determined by qRT-PCR, ELISA, and nitric oxide production. Western blot was performed to assess the expression of CBS, CSE, IGF-1, and GHRH. Moreover, the recovery of TBI mice was evaluated for behavioral function by applying the modified Neurological Severity Score (mNSS), the Rotarod test, and the Morris water maze. We discovered that serum H2S, CSF H2S, and serum IGF-1 concentrations were all adversely associated with the severity of the TBI, while the concentrations of IGF-1 and GH in CSF and GH in the serum were all positively related to TBI severity. Experiments in vitro and in vivo indicated that treatment with NaHS (H2S donor), IGF-1, and MR-409 (GHRH agonist) showed protective effects after TBI. This study gives novel information on the functions of H2S, IGF-1, and GH in TBI.

12.
RSC Adv ; 14(6): 3757-3760, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38268541

An efficient method has been developed for reacting dialkyl H-phosphonates or diarylphosphine oxides with alcohols for constructing C-P bonds. This reaction was catalyzed by Lewis acid and involved nucleophilic substitution. A series of diphenylphosphonates and diphenylphosphine oxides were obtained, from the phosphorylation of alcohols, with good-to-excellent yields.

13.
J Hazard Mater ; 465: 133365, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38163407

The molecular mechanisms underlying high and low cadmium (Cd) accumulation in hot pepper cultivars remain unclear. In this study, comparative transcriptome analysis of root between high-Cd (J) and low-Cd (Z) cultivars was conducted under hydroponic cultivation with 0 and 0.4 mg/L Cd, respectively. The results showed that J enhanced the root uptake of Cd by elevating the expression of Nramp5 and counteracting Cd toxicity by increasing the expression of genes, such as NIR1, GLN1, and IAA9. Z reduced Cd accumulation by enhancing the cell wall lignin synthesis genes PAL, COMT, 4CL, LAC, and POD and the Cd transporters ABC, MTP1, and DTX1. Elevated expression of genes related to sulfur metabolism was observed in Z, potentially contributing to its ability to detoxify Cd. To investigate the function of CaCOMT1, an Arabidopsis thaliana overexpression line (OE-CaCOMT1) was constructed. The results revealed that OE-CaCOMT1 drastically increased the lignin content by 38-42% and reduced the translocation of Cd to the aboveground parts by 32%. This study provides comprehensive insights into the mechanisms underlying Cd accumulation in hot pepper cultivars using transcriptome analysis. Moreover, this study elucidates the critical function of CaCOMT1, providing a theoretical foundation for the production of low-Cd vegetables for food safety.


Arabidopsis Proteins , Arabidopsis , Capsicum , Soil Pollutants , Cadmium/metabolism , Capsicum/genetics , Capsicum/metabolism , Arabidopsis/metabolism , Lignin/metabolism , Plant Roots/metabolism , Gene Expression Profiling , Soil Pollutants/metabolism , Nitrite Reductases/metabolism , Arabidopsis Proteins/genetics
14.
Nature ; 626(7997): 79-85, 2024 Feb.
Article En | MEDLINE | ID: mdl-38172640

Grain boundaries (GBs), with their diversity in both structure and structural transitions, play an essential role in tailoring the properties of polycrystalline materials1-5. As a unique GB subset, {112} incoherent twin boundaries (ITBs) are ubiquitous in nanotwinned, face-centred cubic materials6-9. Although multiple ITB configurations and transitions have been reported7,10, their transition mechanisms and impacts on mechanical properties remain largely unexplored, especially in regard to covalent materials. Here we report atomic observations of six ITB configurations and structural transitions in diamond at room temperature, showing a dislocation-mediated mechanism different from metallic systems11,12. The dominant ITBs are asymmetric and less mobile, contributing strongly to continuous hardening in nanotwinned diamond13. The potential driving forces of ITB activities are discussed. Our findings shed new light on GB behaviour in diamond and covalent materials, pointing to a new strategy for development of high-performance, nanotwinned materials.

15.
Brief Bioinform ; 25(2)2024 Jan 22.
Article En | MEDLINE | ID: mdl-38271483

The advent of single-cell sequencing technologies has revolutionized cell biology studies. However, integrative analyses of diverse single-cell data face serious challenges, including technological noise, sample heterogeneity, and different modalities and species. To address these problems, we propose scCorrector, a variational autoencoder-based model that can integrate single-cell data from different studies and map them into a common space. Specifically, we designed a Study Specific Adaptive Normalization for each study in decoder to implement these features. scCorrector substantially achieves competitive and robust performance compared with state-of-the-art methods and brings novel insights under various circumstances (e.g. various batches, multi-omics, cross-species, and development stages). In addition, the integration of single-cell data and spatial data makes it possible to transfer information between different studies, which greatly expand the narrow range of genes covered by MERFISH technology. In summary, scCorrector can efficiently integrate multi-study single-cell datasets, thereby providing broad opportunities to tackle challenges emerging from noisy resources.

16.
Nanotechnology ; 35(13)2024 Jan 10.
Article En | MEDLINE | ID: mdl-38035400

In recent years, notable headway has been made in augmenting supercapacitor functioning through employment of pioneering components, exceptional nanostructures and additional investigation of electrolytes. Nonetheless, achieving superior performance with straightforward techniques remains a significant hurdle. In order to surmount this, an experimental three-dimensional nanospherical pore structure (TPB-20@Ni(OH)2) was designed and prepared. TPB-1 was obtained through carbonisation and activation. TPB-20@Ni(OH)2nanoparticles were synthesized using TPB-1 as the carbon source and nickel chloride hexahydrate as the nickel source. Furthermore, the TPB-20@Ni(OH)2//AC supercapacitor displayed an impressive energy density of 22.1 Wh kg-1. The TPB-20@Ni(OH)2composites exhibited a specific capacity of 978 F-1, which is noteworthy. The exceptional output exhibited by the TPB-20@Ni(OH)2composite derives from its innovative structure, presenting an extensive specific surface area of 237.4 m2g-1and porosity of roughly 4.0 nm. Following 20 000 cycles (at a current density of 1 A g-1), asymmetric supercapacitors assembled from TPB-20@Ni(OH)2//AC retained 80.0% of its initial specific electrostatic capacity, indicating superior electrochemical stability and high electrochemical reversibility.

17.
Mol Biotechnol ; 66(3): 454-466, 2024 Mar.
Article En | MEDLINE | ID: mdl-37202649

Clear cell renal cell carcinoma (ccRCC) is the most representative subtype of renal cancer, with a highly aggressive phenotype and extremely poor prognosis. Immune escape is one of the main reasons for ccRCC growth and metastasis, in which circular RNAs (circRNAs) play critical roles. Therefore, this research studied circAGAP1-associated mechanisms in immune escape and distant metastasis in ccRCC. circAGAP1/miR-216a-3p/MKNK2 was overexpressed or down-regulated by cell transfection. EdU assay, colony formation assay, scratch assay, Transwell assay, immunoblotting, and flow cytometry were used to evaluate cell proliferation, migration, invasion, EMT, and immune escape, respectively. Dual-luciferase reporting assay and RIP assay were used to evaluate the targeting relationship between circAGAP1/miR-216a-3p/MKNK2. Xenotransplantation in nude mice was used to evaluate the growth of ccRCC tumors in vivo. Here, circAGAP1 high expression was positively correlated with higher histological grade and distant metastasis and was a prognostic indicator for ccRCC. Depleting circAGAP1 effectively hampered the proliferative, invasive, and migratory capacities, EMT, and immune escape of ccRCC cells. Correspondingly, silencing circAGAP1 delayed tumor growth, distant metastasis, and immune escape in vivo. Mechanistically, circAGAP1 sponged the tumor suppressor miR-216a-3p, thereby preventing miR-216a-3p from inhibiting MAPK2. Collectively, our findings demonstrate that circAGAP1 exerts a tumor suppressor function through miR-216a-3p/MKNK2 during the immune escape and distant metastasis in ccRCC, and suggest that circAGAP1 may be a novel prognostic marker and therapeutic target for ccRCC.


Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , Animals , Mice , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , RNA, Circular/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Mice, Nude , Cell Line, Tumor , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
18.
Am J Infect Control ; 52(5): 588-594, 2024 May.
Article En | MEDLINE | ID: mdl-38142776

BACKGROUND: To develop an investigation form for postoperative infection outbreak (PIO), and to identify sources of the outbreak in the early stage. METHODS: After an exhaustive literature review, we used the Delphi method to determine the indicators and relative risk scores of the assessment tools through 2 rounds of specialist consultation and overall consideration of the opinions and suggestions of 20 specialists. RESULTS: A total of 203 studies of PIO were eligible for inclusion. The mean authority coefficient (Cr) was 0.87. Kendall's W coefficient of the specialist consultation was 0.704 after 2 rounds of consultation (P < .005), suggesting that the specialists had similar opinions. Based on 4 primary items and 19 secondary items of the source of PIO, and tripartite distribution characteristics of infected patients, we constructed the PIO investigation form. CONCLUSIONS: The PIO investigation form can be used in the investigation of the early-stage cluster of cases, it's a prerequisite for taking effective control measures, avoiding PIO occurrence. However, the effect of the investigation form needs to be further evaluated.

19.
BMC Bioinformatics ; 24(1): 481, 2023 Dec 16.
Article En | MEDLINE | ID: mdl-38104057

BACKGROUND: The rapid emergence of single-cell RNA-seq (scRNA-seq) data presents remarkable opportunities for broad investigations through integration analyses. However, most integration models are black boxes that lack interpretability or are hard to train. RESULTS: To address the above issues, we propose scInterpreter, a deep learning-based interpretable model. scInterpreter substantially outperforms other state-of-the-art (SOTA) models in multiple benchmark datasets. In addition, scInterpreter is extensible and can integrate and annotate atlas scRNA-seq data. We evaluated the robustness of scInterpreter in a variety of situations. Through comparison experiments, we found that with a knowledge prior, the training process can be significantly accelerated. Finally, we conducted interpretability analysis for each dimension (pathway) of cell representation in the embedding space. CONCLUSIONS: The results showed that the cell representations obtained by scInterpreter are full of biological significance. Through weight sorting, we found several new genes related to pathways in PBMC dataset. In general, scInterpreter is an effective and interpretable integration tool. It is expected that scInterpreter will bring great convenience to the study of single-cell transcriptomics.


Leukocytes, Mononuclear , Single-Cell Gene Expression Analysis , Sequence Analysis, RNA/methods , Leukocytes, Mononuclear/metabolism , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Cluster Analysis
20.
Open Life Sci ; 18(1): 20220745, 2023.
Article En | MEDLINE | ID: mdl-37941787

Meningiomas are extra-axial neoplasms that originate from the arachnoid cap cells located on the inner surface of the meninges. Approximately 36% of central nervous system tumors are meningiomas. Based on earlier findings to be benign in most cases, they are categorized as slow-growing tumors that form gradually over time. Meningiomas are usually asymptomatic and discovered inadvertently. They rarely present with immediate clinical symptoms or abrupt hemorrhagic strokes. However, tumor hemorrhage can be fatal in high-grade meningiomas, particularly those with vascularization. We describe a 58-year-old man who was hospitalized after experiencing an unexpectedly acute headache. The right cerebellar hemisphere and vermis cerebellar hemorrhage were detected on computed tomography (CT), and the cerebellar hemorrhage was explained by a diagnosis of hypertension. When additional analysis of the patient's chest CT indicated lung mass lesions, we assumed that the lung cancer had spread to the brain. However, the pathological outcomes of a guided definite pulmonary aspiration biopsy, in conjunction with resection of the cerebellar tumor, suggested a subtentorial meningioma with ruptured hemorrhage and pulmonary meningioma metastasis. The patient was transferred to a hospital closer to home for ongoing follow-up and, after 2 months, he had recovered well.

...