Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 557
1.
Lancet Infect Dis ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38710190

BACKGROUND: Studies have established the short-term efficacy of nirmatrelvir-ritonavir in managing COVID-19, yet its effect on post-COVID-19 condition, especially in patients admitted to hospital, remains understudied. This study aimed to examine the effect of nirmatrelvir-ritonavir on post-COVID-19 condition among patients admitted to hospital in Hong Kong. METHODS: This retrospective cohort study used real-world, territory-wide inpatient records, vaccination records, and confirmed COVID-19 case data from the Hong Kong Hospital Authority and Department of Health, The Government of the Hong Kong Special Administrative Region. Patients aged 18 years and older who tested positive for SARS-CoV-2 between March 11, 2022, and Oct 10, 2023, and who were admitted to hospital with COVID-19 were included. The treatment group included patients prescribed nirmatrelvir-ritonavir within 5 days of symptom onset, excluding those prescribed molnupiravir within 21 days, and the control group had no exposure to either nirmatrelvir-ritonavir or molnupiravir. The outcomes were post-acute inpatient death and 13 sequelae (congestive heart failure, atrial fibrillation, coronary artery disease, deep vein thrombosis, chronic pulmonary disease, acute respiratory distress syndrome, interstitial lung disease, seizure, anxiety, post-traumatic stress disorder, end-stage renal disease, acute kidney injury, and pancreatitis). These outcomes were evaluated starting at 21 days after the positive RT-PCR date in each respective cohort constructed for the outcome. Standardised mortality ratio weights were applied to balance covariates, and Cox proportional hazards regression was used to investigate the relationship between nirmatrelvir-ritonavir and outcomes. FINDINGS: 136 973 patients were screened for inclusion, among whom 50 055 were eligible and included in the analysis (24 873 [49·7%] were female and 25 182 [50·3%] were male). 15 242 patients were prescribed nirmatrelvir-ritonavir during acute COVID-19 and 23 756 patients were included in the control group; 11 057 patients did not meet our definition for the exposed and unexposed groups. Patients were followed up for a median of 393 days (IQR 317-489). In the nirmatrelvir-ritonavir group compared with the control group, there was a significantly lower hazard of post-acute inpatient death (hazard ratio 0·62 [95% CI 0·57-0·68]; p<0·0001), congestive heart failure (0·70 [0·58-0·85]; p=0·0002), atrial fibrillation (0·63 [0·52-0·76]; p<0·0001), coronary artery disease (0·71 [0·59-0·85]; p=0·0002), chronic pulmonary disease (0·68 [0·54-0·86]; p=0·0011), acute respiratory distress syndrome (0·71 [0·58-0·86]; p=0·0007), interstitial lung disease (0·17 [0·04-0·75]; p=0·020), and end-stage renal disease (0·37 [0·18-0·74]; p=0·0049). There was no evidence indicating difference between the groups in deep vein thrombosis, seizure, anxiety, post-traumatic stress disorder, acute kidney injury, and pancreatitis. INTERPRETATION: This study showed extended benefits of nirmatrelvir-ritonavir for reducing the risk of post-acute inpatient death as well as cardiovascular and respiratory complications among patients admitted to hospital with COVID-19. Further research is essential to uncover the underlying mechanisms responsible for these observed negative associations and to devise effective strategies for preventing the onset of post-acute sequelae. FUNDING: Health and Medical Research Fund, Research Grants Council theme-based research schemes, and Research Grants Council Collaborative Research Fund.

2.
Anal Chim Acta ; 1307: 342642, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38719399

BACKGROUND: Similar to hypochlorous acid (HClO), hypobromous acid (HBrO) is one of the most notable reactive oxygen species (ROS). Overexpression of HBrO is linked to various diseases causing organ and tissue loss. Due to HBrO's role in the oxidation of micropollutants, real-time monitoring of HBrO in water-based systems is essential. Tetraphenylethylene (TPE)-based organic aggregation-induced emission luminophores (AIEgens) are an emerging category of fluorescent probe materials that have attracted considerable attentions. However, AIE probes are rarely applied to detect HBrO. Developing faster, more precise, and more sensitive AIE probes is thus crucial for detecting biological and environmental HBrO. RESULTS: A small molecule fluorescent probe 4-(1,2,2-triphenylvinyl)benzamidoxime (SWJT-21) was synthesized for the sensitive and selective detection of hypobromous acid (HBrO) based on aggregation-induced emission (AIE). The amidoxime unit of SWJT-21 would undergo an oxidation reaction with HBrO, leading to a structure differentiation between the probe and the product, and therefore the turn-on fluorescence by the AIE effect. The probe could recognize hypobromous acid rapidly (less than 3 s) in high aqueous phase (99 % water) with a turn-on fluorescence response. It was determined that the limit of detection for HBrO was 5.47 nM. Moreover, SWJT-21 demonstrates potential as a test strip for the detection of HBrO. SWJT-21 was also successfully used for the monitoring of HBrO in water samples and for the detection of endogenous/exogenous HBrO in living cells and zebrafish. SIGNIFICANCE: A special AIE fluorescence turn-on probe SWJT-21 based on tetraphenylethylene was designed for detecting HBrO in the environmental and biological systems. This probe has an extremely low detection limit of 5.47 nM and is able to detect HBrO in 99 % aqueous phase in less than 3 s.


Bromates , Fluorescent Dyes , Stilbenes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Bromates/analysis , Bromates/chemistry , Stilbenes/chemistry , Animals , Humans , Zebrafish , Spectrometry, Fluorescence , Limit of Detection , Molecular Structure
3.
Environ Int ; 188: 108762, 2024 May 19.
Article En | MEDLINE | ID: mdl-38776652

BACKGROUND: While many investigations examined the association between environmental covariates and COVID-19 incidence, none have examined their relationship with superspreading, a characteristic describing very few individuals disproportionally infecting a large number of people. METHODS: Contact tracing data of all the laboratory-confirmed COVID-19 cases in Hong Kong from February 16, 2020 to April 30, 2021 were used to form the infection clusters for estimating the time-varying dispersion parameter (kt), a measure of superspreading potential. Generalized additive models with identity link function were used to examine the association between negative-log kt (larger means higher superspreading potential) and the environmental covariates, adjusted with mobility metrics that account for the effect of social distancing measures. RESULTS: A total of 6,645 clusters covering 11,717 cases were reported over the study period. After centering at the median temperature, a lower ambient temperature at 10th percentile (18.2 °C) was significantly associated with a lower estimate of negative-log kt (adjusted expected change: -0.239 [95 % CI: -0.431 to -0.048]). While a U-shaped relationship between relative humidity and negative-log kt was observed, an inverted U-shaped relationship with actual vapour pressure was found. A higher total rainfall was significantly associated with lower estimates of negative-log kt. CONCLUSIONS: This study demonstrated a link between meteorological factors and the superspreading potential of COVID-19. We speculated that cold weather and rainy days reduced the social activities of individuals minimizing the interaction with others and the risk of spreading the diseases in high-risk facilities or large clusters, while the extremities of relative humidity may favor the stability and survival of the SARS-CoV-2 virus.

4.
Cancer Cell Int ; 24(1): 164, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730293

Kidney Clear Cell Carcinoma (KIRC), the predominant form of kidney cancer, exhibits a diverse therapeutic response to Immune Checkpoint Inhibitors (ICIs), highlighting the need for predictive models of ICI efficacy. Our study has constructed a prognostic model based on 13 types of Programmed Cell Death (PCD), which are intertwined with tumor progression and the immune microenvironment. Validated by analyses of comprehensive datasets, this model identifies seven key PCD genes that delineate two subtypes with distinct immune profiles and sensitivities to anti-PD-1 therapy. The high-PCD group demonstrates a more immune-suppressive environment, while the low-PCD group shows better responses to PD-1 treatment. In particular, TOP2A emerged as crucial, with its inhibition markedly reducing KIRC cell growth and mobility. These findings underscore the relevance of PCDs in predicting KIRC outcomes and immunotherapy response, with implications for enhancing clinical decision-making.

5.
Prev Med ; : 107999, 2024 May 10.
Article En | MEDLINE | ID: mdl-38735587

BACKGROUND: Limited research explores the impact of body mass index (BMI) change on osteoporosis, regarding the role of lipid metabolism. We aimed to cross-sectionally investigate these relationships in 820 Chinese participants aged 55-65 from the Taizhou Imaging Study. METHODS: We used the baseline data collected between 2013 and 2018. T-score was calculated by standardizing bone mineral density and was used for osteoporosis and osteopenia diagnosis. Multinomial logistic regression was used to examine the effect of BMI change on bone health status. Multivariable linear regression was employed to identify the metabolites corrected with BMI change and T-score. Exploratory factor analysis (EFA) and mediation analysis were conducted to ascertain the involvement of the metabolites. RESULTS: BMI increase served as a protective factor against osteoporosis (OR = 0.79[0.71-0.88], P-value<0.001) and osteopenia (OR = 0.88[0.82-0.95], P-value<0.001). Eighteen serum metabolites were associated with both BMI change and T-score. Specifically, high-density lipoprotein (HDL) substructures demonstrated negative correlations (ß = -0.08 to -0.06 and - 0.12 to -0.08, respectively), while very low-density lipoprotein (VLDL) substructions showed positive correlations (ß = 0.09 to 0.10 and 0.10 to 0.11, respectively). The two lipid factors (HDL and VLDL) extracted by EFA acted as mediators between BMI change and T-score (Prop. Mediated = 8.16% and 10.51%, all P-value<0.01). CONCLUSION: BMI gain among Chinese aged 55-65 is beneficial for reducing the risk of osteoporosis. The metabolism of HDL and VLDL partially mediates the effect of BMI change on bone loss. Our research offers novel insights into the prevention of osteoporosis, approached from the perspective of weight management and lipid metabolomics.

6.
Acad Radiol ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38777719

RATIONALE AND OBJECTIVES: Diagnosing subcentimeter solid pulmonary nodules (SSPNs) remains challenging in clinical practice. Deep learning may perform better than conventional methods in differentiating benign and malignant pulmonary nodules. This study aimed to develop and validate a model for differentiating malignant and benign SSPNs using CT images. MATERIALS AND METHODS: This retrospective study included consecutive patients with SSPNs detected between January 2015 and October 2021 as an internal dataset. Malignancy was confirmed pathologically; benignity was confirmed pathologically or via follow-up evaluations. The SSPNs were segmented manually. A self-supervision pre-training-based fine-grained network was developed for predicting SSPN malignancy. The pre-trained model was established using data from the National Lung Screening Trial, Lung Nodule Analysis 2016, and a database of 5478 pulmonary nodules from the previous study, with subsequent fine-tuning using the internal dataset. The model's efficacy was investigated using an external cohort from another center, and its accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were determined. RESULTS: Overall, 1276 patients (mean age, 56 ± 10 years; 497 males) with 1389 SSPNs (mean diameter, 7.5 ± 2.0 mm; 625 benign) were enrolled. The internal dataset was specifically enriched for malignancy. The model's performance in the internal testing set (316 SSPNs) was: AUC, 0.964 (95% confidence interval (95%CI): 0.942-0.986); accuracy, 0.934; sensitivity, 0.965; and specificity, 0.908. The model's performance in the external test set (202 SSPNs) was: AUC, 0.945 (95% CI: 0.910-0.979); accuracy, 0.911; sensitivity, 0.977; and specificity, 0.860. CONCLUSION: This deep learning model was robust and exhibited good performance in predicting the malignancy of SSPNs, which could help optimize patient management.

7.
Phys Chem Chem Phys ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38766741

The electrochemical NH3 synthesis on TiNO is proposed to follow the Mars-van Krevelen (MvK) mechanism, offering more favorable N2 adsorption and activation on the N vacancy (Nv) site, compared to the conventional associative mechanism. The regeneration cycle of Nv represents the rate-determining step in this process. This study investigates a series of TM (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt)-TiNO to explore the *H migration (from TM to TiNO)-promoted Nv cycle. The screening results indicate that Ni-TiNO exhibits strong H2O decomposition for *H production with 0.242 eV and low *H migration resistance with 0.913 eV. Notably, *H migration from Ni to TiNO significantly reduces the Nv formation energy to 0.811 eV, compared to 1.387 eV on pure TiNO. Meanwhile, in the presence of *H, Nv formation takes precedence over Tiv and Ov. Lastly, electronic performance calculations reveal that the collaborative function provided by Ni and Nv enables highly stable and efficient NH3 synthesis. The *H migration-assisted MvK mechanism demonstrates effective catalytic cycle performance in electrochemical N2 fixation and may have potential applicability to other hydrogenation reactions utilizing water as a proton source.

8.
PLoS Negl Trop Dis ; 18(4): e0012158, 2024 Apr.
Article En | MEDLINE | ID: mdl-38683870

Vector-borne infectious disease such as dengue fever (DF) has spread rapidly due to more suitable living environments. Considering the limited studies investigating the disease spread under climate change in South and Southeast Asia, this study aimed to project the DF transmission potential in 30 locations across four South and Southeast Asian countries. In this study, weekly DF incidence data, daily mean temperature, and rainfall data in 30 locations in Singapore, Sri Lanka, Malaysia, and Thailand from 2012 to 2020 were collected. The effects of temperature and rainfall on the time-varying reproduction number (Rt) of DF transmission were examined using generalized additive models. Projections of location-specific Rt from 2030s to 2090s were determined using projected temperature and rainfall under three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585), and the peak DF transmissibility and epidemic duration in the future were estimated. According to the results, the projected changes in the peak Rt and epidemic duration varied across locations, and the most significant change was observed under middle-to-high greenhouse gas emission scenarios. Under SSP585, the country-specific peak Rt was projected to decrease from 1.63 (95% confidence interval: 1.39-1.91), 2.60 (1.89-3.57), and 1.41 (1.22-1.64) in 2030s to 1.22 (0.98-1.51), 2.09 (1.26-3.47), and 1.37 (0.83-2.27) in 2090s in Singapore, Thailand, and Malaysia, respectively. Yet, the peak Rt in Sri Lanka changed slightly from 2030s to 2090s under SSP585. The epidemic duration in Singapore and Malaysia was projected to decline under SSP585. In conclusion, the change of peak DF transmission potential and disease outbreak duration would vary across locations, particularly under middle-to-high greenhouse gas emission scenarios. Interventions should be considered to slow down global warming as well as the potential increase in DF transmissibility in some locations of South and Southeast Asia.


Climate Change , Dengue , Dengue/transmission , Dengue/epidemiology , Humans , Asia, Southeastern/epidemiology , Temperature , Sri Lanka/epidemiology , Rain , Singapore/epidemiology , Thailand/epidemiology , Incidence , Malaysia/epidemiology , Aedes/virology , Aedes/physiology , Aedes/growth & development , Animals , Southeast Asian People
9.
Comput Methods Programs Biomed ; 250: 108162, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631129

BACKGROUND AND OBJECTIVES: Sensor-based wearable devices help to obtain a wide range of quantitative gait parameters, which provides sufficient data to investigate disease-specific gait patterns. Although cerebral small vessel disease (CSVD) plays a significant role in gait impairment, the specific gait pattern associated with a high burden of CSVD remains to be explored. METHODS: We analyzed the gait pattern related to high CSVD burden from 720 participants (aged 55-65 years, 42.5 % male) free of neurological disease in the Taizhou Imaging Study. All participants underwent detailed quantitative gait assessments (obtained from an insole-like wearable gait tracking device) and brain magnetic resonance imaging examinations. Thirty-three gait parameters were summarized into five gait domains. Sparse sliced inverse regression was developed to extract the gait pattern related to high CSVD burden. RESULTS: The specific gait pattern derived from several gait domains (i.e., angles, phases, variability, and spatio-temporal) was significantly associated with the CSVD burden (OR=1.250, 95 % CI: 1.011-1.546). The gait pattern indicates that people with a high CSVD burden were prone to have smaller gait angles, more stance time, more double support time, larger gait variability, and slower gait velocity. Furthermore, people with this gait pattern had a 25 % higher risk of a high CSVD burden. CONCLUSIONS: We established a more stable and disease-specific quantitative gait pattern related to high CSVD burden, which is prone to facilitate the identification of individuals with high CSVD burden among the community residents or the general population.


Cerebral Small Vessel Diseases , Gait , Wearable Electronic Devices , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/physiopathology , Male , Middle Aged , Female , Aged , Magnetic Resonance Imaging , Gait Analysis/methods
10.
Vet Microbiol ; 293: 110087, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663176

Porcine epidemic diarrhea virus (PEDV) is a devastating pathogen of acute- gastrointestinal infectious diseases, which can cause vomiting, diarrhea, dehydration and high morbidity and mortality among neonatal piglets. Humoral immunity plays a vital role in the host anti-PEDV infection process, but the mechanism of PEDV-induced B-cell immune response remains unknown. In this study, the effects of PEDV infection on CD21+ B cell activation were systematically analyzed through animal experiments. Enzyme-linked immunosorbent assays (ELISA) revealed that low levels of serum-specific IgA, IgM, or IgG were detected in piglets after PEDV infection, respectively. Serum interleukin (IL)-6 levels increased significantly at 4 d after infection, and the levels of IL-4, B-cell activating factor (BAFF), interferon (IFN)-γ, transforming growth factor (TGF)-ß and IL-10 decreased at 7 d after infection. Fluorescence-activated cell sorting (FACS) showed that expression levels of CD21, MHC Ⅱ, CD40, and CD38 on B cell surfaces were significantly higher. In contrast, the proportions of CD21+IgM+ B cells were decreased in peripheral blood mononuclear cells (PBMCs) from the infected piglets. No differences were found in the percentage of CD21+CD80+ and CD21+CD27+ B cells in PBMCs from the infected piglets. In addition, the number of CD21+B cells in PBMCs stimulated with PEDV in vitro was significantly lower. No significant change in the mRNA expression of BCR molecules was found while the expression levels of paired immunoglobulin-like receptor B (PIR-B), B cell adaptor molecule of 32 kDa (Bam32) and BAFF were decreased. In conclusion, our research demonstrates that virulent strains of PEDV profoundly impact B cell activation, leading to alterations in phenotypic expression and BCR signaling molecules. Furthermore, this dysregulation results in compromised specific antibody secretion and perturbed cytokine production, highlighting the intricate immunological dysfunctions induced by PEDV infection.


B-Lymphocytes , Coronavirus Infections , Lymphocyte Activation , Porcine epidemic diarrhea virus , Receptors, Complement 3d , Swine Diseases , Animals , Porcine epidemic diarrhea virus/immunology , Swine , B-Lymphocytes/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Receptors, Complement 3d/immunology , Receptors, Complement 3d/metabolism , Swine Diseases/virology , Swine Diseases/immunology , Cytokines/immunology , Cytokines/genetics , Cytokines/metabolism , Antibodies, Viral/blood , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology
11.
Br J Haematol ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671576

The management and comprehension of relapsed or refractory multiple myeloma (RRMM) continues to pose a significant challenge. By integrating single-cell RNA sequencing (scRNA-seq) data of 15 patients with plasma cell disorders (PCDs) and proteomic data obtained from mass spectrometry-based analysis of CD138+ plasma cells (PCs) from 144 PCDs patients, we identified a state of malignant PCs characterized by high stemness score and increased proliferation originating from RRMM. This state has been designated as proliferating stem-like plasma cells (PSPCs). NUCKS1 was identified as the gene marker representing the stemness of PSPCs. Comparison of differentially expressed genes among various PC states revealed a significant elevation in LGALS1 expression in PSPCs. Survival analysis on the MMRF CoMMpass dataset and GSE24080 dataset established LGALS1 as a gene associated with unfavourable prognostic implications for multiple myeloma. Ultimately, we discovered three specific ligand-receptor pairs within the midkine (MDK) signalling pathway network that play distinct roles in facilitating efficient cellular communication between PSPCs and the surrounding microenvironment cells. These insights have the potential to contribute to the understanding of molecular mechanism and the development of therapeutic strategies involving the application of stem-like cells in RRMM treatment.

12.
Vaccine ; 42(11): 2848-2857, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38514351

Porcine circovirus type 2 (PCV2) is an important pathogen harmful to global pig production, which causes immunosuppression and serious economic losses. PCV2 capsid (Cap) protein expressed by E. coli or baculovirus-insect cells are often used in preparation of PCV2 subunit vaccines, but the latter is expensive to produce. It is therefore crucial to comparison of the immune effects of Cap protein expressed by the above two expression systems for reducing the production cost and guaranteeing PCV2 vaccine quality. In this study, the PCV2d-Cap protein lacking nuclear localization signal (NLS), designated as E. coli-Cap and Bac-Cap, was expressed by E. coli and baculovirus-Spodoptera frugiperda Sf9 (Bac-Sf9) cells, respectively. The expressed Cap proteins could self-assemble into virus-like particles (VLPs), but the Bac-Cap-assembled VLPs were more regular. The two system-expressed Cap proteins induced similar specific IgG responses in mice, but the neutralizing antibody levels of Bac-Cap-immunized mice was higher than those of E. coli-Cap. After PCV2 challenge, IL-10 in Bac-Cap immunized mice decreased significantly than that in E. coli-Cap. The lesions and PCV2 antigen positive cells in tissues of mice immunized with E. coli-Cap and Bac-Cap were significantly reduced, and Bac-Cap appeared mild lesions and fewer PCV2 antigen-positive cells compared with E. coli-Cap immunized mice. The study indicated that Cap proteins expressed by E. coli and Bac-Sf9 cells could induce specific protective immunity, but the latter induced more effective immunity, which provides valuable information for the research and development of PCV2 vaccine.


Circoviridae Infections , Circovirus , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Swine , Mice , Capsid Proteins/genetics , Antibodies, Viral , Circovirus/genetics , Escherichia coli/metabolism , Baculoviridae/genetics , Circoviridae Infections/prevention & control , Circoviridae Infections/veterinary
13.
Talanta ; 273: 125937, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38503124

The excessive residue of neonicotinoid pesticides in the environment and food poses a severe threat to human health, necessitating the urgent development of a sensitive and efficient method for detecting trace amounts of these pesticides. Electrochemical sensors, characterized by their simplicity of operation, rapid response, low cost, strong selectivity, and high feasibility, have garnered significant attention for their immense potential in swiftly detecting trace target molecules. The detection capability of electrochemical sensors primarily relies on the catalytic activity of electrode materials towards the target analyte, efficient loading of biomolecular functionalities, and the effective conversion of interactions between the target analyte and its receptor into electrical signals. Electrode materials with superior performance play a crucial role in enhancing the detection capability of electrochemical sensors. With the continuous advancement of nanotechnology, particularly the widespread application of novel functional materials, there is paramount significance in broadening the applicability and expanding the detection range of pesticide sensors. This comprehensive review encapsulates the electrochemical detection mechanisms of neonicotinoid pesticides, providing detailed insights into the outstanding roles, advantages, and limitations of functional materials such as carbon-based materials, metal-organic framework materials, supramolecular materials, metal-based nanomaterials, as well as molecular imprinted materials, antibodies/antigens, and aptamers as molecular recognition elements in the construction of electrochemical sensors for neonicotinoid pesticides. Furthermore, prospects and challenges facing various electrochemical sensors based on functional materials for neonicotinoid pesticides are discussed, providing valuable insights for the future development and application of biosensors for simplified on-site detection of agricultural residues.


Biosensing Techniques , Nanostructures , Pesticides , Humans , Pesticides/analysis , Nanostructures/chemistry , Nanotechnology/methods , Carbon , Biosensing Techniques/methods
14.
Lasers Surg Med ; 56(4): 346-354, 2024 Apr.
Article En | MEDLINE | ID: mdl-38462706

OBJECTIVES: Public's interest in noninvasive skin rejuvenation treatments continues to grow. The advantage of combination therapy lies in that it can target different aspects of skin rejuvenation. This study aimed to assess the efficacy and safety of microfocused ultrasound (MFU) combined with delicate pulsed light (DPL) for facial rejuvenation. METHODS: Twenty-one patients with facial relaxation were enrolled. All patients received whole-face MFU treatment, and one side of the face was randomly assigned to receive DPL. MFU treatment was performed at Months 0 and 3, while DPL treatment was performed at Months 1, 2, 4, and 5. The length and angle of the nasolabial fold and perioral wrinkles, melanin index (MI), erythema index (EI), transepidermal water loss (TEWL), and follow-up time were recorded at Months 0, 3, and 6. Side effects were recorded during treatment and each follow-up visit. RESULTS: Twenty patients successfully completed the study. At the sixth month, the average length of perioral wrinkles and nasolabial folds on the combined side decreased by 11.5% (pwithin < 0.001) and 6.5% (pwithin = 0.011), while 8.3% (pwithin = 0.012) and 3.8% (pwithin = 0.02) on the MFU side. Compared with MFU treatment alone, the combined treatment also showed significant improvements in nasolabial fold angle (from 28.8 ± 3.4° to 32.7 ± 5.0°) and perioral wrinkle angle (from 39.3 ± 5.0° to 43.7 ± 5.1°). In addition, the combined side had greater benefits than the MFU side in improving MI, EI, TEWL, and skin elasticity (pbetween < 0.05). Except for one patient who withdrew due to increased skin sensitivity after MFU treatment, other subjects did not experience permanent or serious side effects. CONCLUSIONS: The combination of MFU and DPL for facial rejuvenation treatment is safe and effective. The combined treatment has better efficacy in skin firmness, and improving skin tone.


Cosmetic Techniques , Skin Aging , Humans , Rejuvenation , Prospective Studies , Skin , Ultrasonography , Erythema , Treatment Outcome , Patient Satisfaction
15.
Sci Rep ; 14(1): 6130, 2024 03 13.
Article En | MEDLINE | ID: mdl-38480822

Cell bionic culture requires the construction of cell growth microenvironments. In this paper, mechanical force and electrical stimulations are applied to the cells cultured on the surface of the piezoelectric laminated micro-beam driven by an excitation voltage. Based on the extended dielectric theory, the electromechanical microenvironment regulating model of the current piezoelectric laminated micro-beam is established. The variational principle is used to obtain the governing equations and boundary conditions. The differential quadrature method and the iterative method are used to solve two boundary value problems for cantilever beams and simply supported beams. In two cases, the mechanical force and electrical stimulations applied to the cells are analyzed in detail and the microscale effect is investigated. This study is meaningful for improving the quality of cell culture and promoting the cross-integration of mechanics and biomedicine.


Bionics , Micro-Electrical-Mechanical Systems , Cell Culture Techniques
16.
Postgrad Med ; : 1-10, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38511546

OBJECTIVE: To investigate the correlation between serum ferritin (SF) and bone turnover markers in type 2 diabetes mellitus (T2DM) patients with non-alcoholic fatty liver disease (NAFLD). METHODS: Seven hundred and forty-two people with T2DM were selected. Serum bone turnover markers: osteocalcin (OC), type I procollagen N-terminal peptide (PINP), ß-I type collagen carboxy-terminal peptide (ß-CTx), and 25-hydroxyvitamin D3 (25-[OH]-D) levels were detected. High SF (HF) was defined as the indicated SF levels above 400 ng/mL in males and more than 150 ng/mL in females. Patients were divided into four groups: T2DM+normal SF (non-HF); T2DM+high SF (HF); T2DM+NAFLD+non-HF; andT2DM+NAFLD+HF. Relationships between SF and bone turnover markers were analyzed. RESULTS: Compared with the T2DM+non-HF group, ß-CTx levels were higher in the T2DM+HFgroup. Compared with the T2DM+NAFLD+non-HF group, ß-CTx levels were increased and 25-(OH)-D levels decreased in the T2DM+NAFLD+HF group (all p < 0.05). SF was positively correlated with ß-CTx [ß = 0.074; 95% CI (0.003, 0.205)] and negatively correlated with 25-(OH)-D [ß=-0.108; 95%CI (-0.006, -0.001)]. Compared with the T2DM+non-HF group, an independent positive correlation was found between ß-CTx and SF in the T2DM+NAFLD+HF group [OR = 1.002; 95% CI (1.001, 1.004)]. Among males, SF was positively correlatedwith ß-CTx [ß = 0.114; 95% CI (0.031, 0.266)]. SF was negatively correlated with 25-(OH)-D levels in both male and female patients [ß=-0.124; 95% CI (0.007,0.001) and ß=-0.168; 95% CI (-0.012, -0.002)]. Among those >50 years of age and postmenopausal females, SF was negatively correlated with 25-(OH)-D levels [ß=-0.117; 95% CI (-0.007, -0.001) and ß=-0.003; 95% CI (-0.013, -0.003)]. CONCLUSION: SF level was positively correlated with ß-CTx in T2DM patients with NAFLD, which may promote bone resorption and increase the risk of bone loss.

17.
J Colloid Interface Sci ; 664: 198-209, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38460384

The floatable photocatalyst at N2-water interface allows the adequate supply of N2 reactant and the utilization of photothermal energy for photocatalytic N2 fixation, however, the presence of non-volatile NO3- product poses a challenge to the stability as it easily covers the catalytic active sites. Herein, a floatable TiO2/Bi/CC (Carbon cloth) photocatalyst was designed, in which the non-volatile NO3- can be transformed to the volatile NH3 via the newly synergistic relay photocatalysis pathway (N2 â†’ NO3- â†’ NH3) between TiO2 (N2 â†’ NO3-) and Bi (NO3- â†’ NH3). Attractively, the spontaneous NO3- â†’ NO2- step occurs on Bi component to promote the relay pathway performing. Therefore, TiO2/Bi/CC system displays better long-term stability than TiO2/CC, and moreover, it achieves a higher NH3 yield of 8.28 mmol L-1 h-1 g-1 (i.e. 4.14 mmol h-1 m-2) than that 1.46 mmol L-1 h-1 g-1 for TiO2/Bi powder. Importantly, the N2 fixation products by TiO2/Bi/CC effectively promote lettuce growth and enhance lettuce nutrient contents, which further validates the feasibility of this system in large-scale application of crop cultivation.

18.
Nanoscale ; 16(13): 6522-6530, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38477150

Extensive studies have been carried out on silver nanowires (AgNWs) in view of their impressive conductivity and highly flexible one-dimensional structure. They are seen as a promising choice for producing deformable transparent conductors. Nonetheless, the widespread adoption of AgNW-based transparent conductors is hindered by critical challenges represented by the significant contact resistance at the nanowire junctions and inadequate interfacial adhesion between the nanowires and the substrate. This study presents a novel solution to tackle the aforementioned challenges by capitalizing on liquid metal microcapsules (LMMs). Upon exposure to acid vapor, the encapsulated LMMs rupture, releasing the fluid LM which then forms a metallic overlay and hybridizes with the underlying Ag network. As a result, a transparent conductive film with greatly enhanced electrical and mechanical properties was obtained. The transparent conductor displays negligible resistance variation even after undergoing chemical stability, adhesion, and bending tests, and ultrasonic treatment. This indicates its outstanding adhesion strength to the substrate and mechanical flexibility. The exceptional electrical properties and robust mechanical stability of the transparent conductor position it as an ideal choice for direct integration into flexible touch panels and wearable strain sensors, as evidenced in this study. By resolving the critical challenges in this field, the proposed strategy establishes a compelling roadmap to navigate the development of high-performance AgNW-based transparent conductors, setting a solid foundation for further advancement in the field of deformable electronics.

19.
Photodiagnosis Photodyn Ther ; 46: 104032, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38431025

Two cases of acquired port-wine stain (APWS) at lower extremity were treated with hematoporphyrin monomethyl ether (HMME) and 532 nm LED green light-mediated photodynamic therapy (HMME-PDT). No serious adverse reactions were observed during or post-treatment period. Five-month follow-up showed significant reduction of red patches after a single HMME-PDT treatment in both cases.

20.
Cancer Lett ; 587: 216702, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38336288

Resistance to trastuzumab and the poor efficacy of subsequent chemotherapy have become major challenges for HER2-positive gastric cancer (GC). As resistance evolves, tumor cells may acquire a new drug susceptibility profile, profoundly impacting the subsequent treatment selection and patient survival. However, the interplay between trastuzumab and other types of drugs in HER2-positive GC remains elusive. In our study, we utilized resistant cell lines and tissue specimens to map the drug susceptibility profile of trastuzumab-resistant GC, discovering that resistance to trastuzumab induces collateral resistance to commonly used chemotherapeutic agents. Additionally, patients with collateral resistance distinguished by a 13-gene scoring model in HER2-positive GC cohorts are predicted to have a poor prognosis and may be sensitive to cholesterol-lowering drugs. Mechanistically, endosomal cholesterol transport is further confirmed to enrich cholesterol in the plasma membrane, contributing to collateral resistance through the Hedgehog-ABCB1 axis. As a driver for cholesterol, Cdc42 is activated by the formation of the NPC1-TßRI-Cdc42 complex to facilitate endosomal cholesterol transport. We demonstrated that inhibiting Cdc42 activation with ZCL278 reduces cholesterol levels in the plasma membrane and reverses collateral resistance between trastuzumab and chemotherapy in vitro and in vivo. Collectively, our findings verify the phenomena and mechanism of collateral resistance between trastuzumab and chemotherapy, and propose a potential therapeutic target and strategy in the second-line treatment for trastuzumab-resistant HER2-positive GC.


Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology , Drug Resistance, Neoplasm , Cell Line, Tumor
...