Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 395
1.
Food Res Int ; 186: 114374, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729731

As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.


Chlorogenic Acid , Emulsifying Agents , Emulsions , Ergosterol , Particle Size , Water , Ergosterol/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry , Water/chemistry , Chlorogenic Acid/chemistry , Viscosity , Antioxidants/chemistry , Oils/chemistry , Hydrogen-Ion Concentration
2.
Sci Total Environ ; : 173096, 2024 May 08.
Article En | MEDLINE | ID: mdl-38729365

Bioaerosols released from municipal wastewater treatment plants (MWWTPs) contain pathogenic microorganisms, if dispersed into the atmosphere, which pose potential health risks to humans. In this study, the concentrations and size distribution of bioaerosol, factors on the bioaerosol emission, exposure risk, and microbial composition in different treatment units of a MWWTP were investigated. The results showed that bioaerosol was released to different degrees in each treatment unit, with the concentrations of bioaerosol varied widely, ranging from 978 to 3710 CFU/m3. FG and PST were primary bioaerosol emission sources in MWWTP. COD concentration, wind speed (WS) and relative humidity (RH) significantly influenced bioaerosol concentrations. The proportion of inhalable particles (< 4.7 µm) ranged from 51.35 % to 83.33 %, and bioaerosol emitted from WWTP caused a non-carcinogenic risk to children by the exposure risk assessment (HI > 1), which need to be paid more attention. Bacterial, fungal and actinomycete aerosols were detected in each treatment unit of MWWTP. Among these bioaerosols, bacterial aerosol was dominant. Importantly, several pathogenic bacteria including Sphingobium, Brevundimonas, Romboutsia, Arcobacter, Acinetobacter, and Mycobacterium were identified within the airborne bacteria population, most of which originated from wastewater or sludge, particularly in the ambient air of AeT. Pathogenic bacteria from MWWTP should be studied further to determine their long-term behavior and possible health risks.

3.
Chem Sci ; 15(17): 6410-6420, 2024 May 01.
Article En | MEDLINE | ID: mdl-38699269

The application of thermally activated delay fluorescence (TADF) emitters in the orange-red regime usually suffers from the fast non-radiative decay of emissive singlet states (kSNR), leading to low emitting efficiency in corresponding organic light-emitting diode (OLED) devices. Although kSNR has been quantitatively described by energy gap law, how ultrafast molecular motions are associated with the kSNR of TADF emitters remains largely unknown, which limits the development of new strategies for improving the emitting efficiency of corresponding OLED devices. In this work, we employed two commercial TADF emitters (TDBA-Ac and PzTDBA) as a model system and attempted to clarify the relationship between ultrafast excited-state structural relaxation (ES-SR) and kSNR. Spectroscopic and theoretical investigations indicated that S1/S0 ES-SR is directly associated with promoting vibrational modes, which are considerably involved in electronic-vibrational coupling through the Huang-Rhys factor, while kSNR is largely affected by the reorganization energy of the promoting modes. By restraining S1/S0 ES-SR in doping films, the kSNR of TADF emitters can be greatly reduced, resulting in high emitting efficiency. Therefore, by establishing the connection among S1/S0 ES-SR, promoting modes and kSNR of TADF emitters, our work clarified the key role of external structural restraint for achieving high emitting efficiency in TADF-based OLED devices.

4.
Diabetes Metab Syndr Obes ; 17: 1911-1921, 2024.
Article En | MEDLINE | ID: mdl-38711675

Purpose: To assess the impact of maternal pre-pregnancy body mass index (BMI) on longitudinal fetal growth, and the potential mediation effect of the maternal fasting plasma glucose in first trimester. Methods: In this retrospective cohort study, we collected pre-pregnancy BMI data and ultrasound measurements during pregnancy of 3879 singleton pregnant women who underwent antenatal examinations and delivered at Peking Union Medical College Hospital. Generalized estimation equations, linear regression, and logistic regression were used to examine the association between pre-pregnancy BMI with fetal growth and adverse neonatal outcomes. Mediation analyses were also used to examine the mediating role of maternal fasting plasma glucose (FPG) in first trimester. Results: A per 1 Kg/m² increase in pre-pregnancy BMI was associated with increase fetal body length Z-score (ß 0.010, 95% CI 0.001, 0.019) and fetal body weight (ß 0.017, 95% CI 0.008, 0.027). In mid pregnancy, pre-pregnancy BMI also correlated with an increase Z-score of fetal abdominal circumference, femur length (FL). Pre-pregnancy BMI was associated with an increased risk of large for gestational age and macrosomia. Mediation analysis indicated that the associations between pre-pregnancy BMI and fetal weight in mid and late pregnancy, and at birth were partially mediated by maternal FPG in first trimester (mediation proportion: 5.0%, 8.3%, 1.6%, respectively). Conclusion: Maternal pre-pregnancy BMI was associated with the longitudinal fetal growth, and the association was partly driven by maternal FPG in first trimester. The study emphasized the importance of identifying and managing mothers with higher pre-pregnancy BMI to prevent fetal overgrowth.

5.
Sensors (Basel) ; 24(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38733044

Film bulk acoustic-wave resonators (FBARs) are widely utilized in the field of radio frequency (RF) filters due to their excellent performance, such as high operation frequency and high quality. In this paper, we present the design, fabrication, and characterization of an FBAR filter for the 3.0 GHz-3.2 GHz S-band. Using a scandium-doped aluminum nitride (Sc0.2Al0.8N) film, the filter is designed through a combined acoustic-electromagnetic simulation method, and the FBAR and filter are fabricated using an eight-step lithographic process. The measured FBAR presents an effective electromechanical coupling coefficient (keff2) value up to 13.3%, and the measured filter demonstrates a -3 dB bandwidth of 115 MHz (from 3.013 GHz to 3.128 GHz), a low insertion loss of -2.4 dB, and good out-of-band rejection of -30 dB. The measured 1 dB compression point of the fabricated filter is 30.5 dBm, and the first series resonator burns out first as the input power increases. This work paves the way for research on high-power RF filters in mobile communication.

6.
Heliyon ; 10(8): e28916, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38655362

Context: Shenyu Ningshen (SYNS) tablet is the first pure Chinese medicinal small compound preparation approved for clinical trials for the treatment of depression in China. Clinical experiments confirmed that the formulation had a significant Improvement effect against depression due to the deficiency of both qi and yin. It has been shown to exhibit noticeable anti-inflammatory effect in an animal model of depression. Our previous study showed that SYNS could effectively inhibit the inflammatory response in a depression model. Aim of the study: The purpose of this study was to investigate the protective effects of SYNS on neurons and explore whether the underlying mechanism was associated with A1s. Materials and methods: The depression model of solitary raising-chronic restraint stress (CRS) rats was established; body weight examination, sugar water preference test, open field test, and histological analysis were performed to preliminarily verify the efficacy of the formulation. Subsequently, neuronal nucleus (NeuN) and synaptic-associated proteins (MAP2 and PSD95) were labeled, and the protective effect of SYNS on hippocampal neurons was observed based on the fluorescence intensity of the above indicators. Western blotting, histological examination, and immunofluorescence were used to evaluate the inhibitory effects of SYNS on neuroinflammation and activation of A1s in CRS depression model. Results: SYNS improved behavioral indicators such as weight loss, pleasure loss, and reduced exercise volume in CRS rat model. SYNS restored the CRS-induced histopathological changes in the hippocampus. SYNS showed a certain degree of protective effect on synapses. Further, SYNS inhibited the activation of A1s by inhibiting neuroinflammatory factors in the hippocampus. Conclusion: Our results showed that SYNS had a certain degree of neuroprotective effect, which might be related to its inhibition of the inflammatory response and A1s.

7.
JDS Commun ; 5(3): 185-189, 2024 May.
Article En | MEDLINE | ID: mdl-38646569

The primary objective of this study was to determine the antimicrobial resistance (AMR) profile of common mastitis pathogens on large Chinese dairy farms. A total of 673 isolates, including Staphylococcus aureus (14.41%, 97/673), coagulase-negative staphylococci (CNS, 52.30%, 352/673), Streptococcus agalactiae (5.64%, 38/673), non-agalactiae streptococci (7.42%, 50/673), Acinetobacter spp. (7.72%, 52/673), Escherichia spp. (6.39%, 43/673), and Klebsiella spp. (6.09%, 41/673), were collected from 15 large Chinese dairy farms in 12 provinces. The AMR profiles were measured using a microdilution method. Our results showed that more than 75% of Staph. aureus (87/97) and CNS (291/352) were resistant to penicillin (PEN). More than 30% of Escherichia spp. (15/43) showed resistance to ampicillin (AMP). However, less than 10% CNS and non-agalactiae streptococci showed resistance to amoxicillin/clavulanate (AMC; 1/352; 0/50), cephalexin (LEX; 1/352; 0/50), ceftiofur (EFT; 10/352; 0/50), and rifaximin (RIX; 21/352; 2/50); less than 10% Staph. aureus showed resistance to AMC (1/97), oxacillin (OX; 3/97), LEX (1/97), EFT (2/97), and RIX (2/97); less than 10% Strep. agalactiae showed resistance to PEN (3/38), AMC (0/38), LEX (0/38), EFT (0/38), and RIX (0/38); and less than 10% Escherichia spp. showed resistance to AMC (1/43) and EFT (4/43). These results suggested that most mastitis pathogens were susceptible to most antimicrobials with exceptions of Staph. aureus tested against penicillin or ampicillin and CNS against penicillin or oxacillin. To control the AMR threat in Chinese dairy farms, a nationwide surveillance program for AMR of bovine mastitis pathogens is needed.

8.
Metabolites ; 14(4)2024 Mar 23.
Article En | MEDLINE | ID: mdl-38668309

In order to explore the regulating role and the physiological and biochemical mechanisms of trans-abscisic acid (hereinafter referred as S-ABA) in the process of rice growth and development under salt stress, we took Chaoyou 1000 and Yuxiangyouzhan as materials and set up three salt concentration treatments, CK0 (Control treatment), N1 (50 mmol L-1 NaCl), and N2 (100 mmol L-1 NaCl), in potted trials; we aimed to study the mechanism of rice's response to salt stress from the perspective of agricultural traits and physiological biochemicals and to improve rice's resistance to salt stress through exogenously applying the regulating technology of S-ABA. The following results were obtained: Under salt stress, the growth of rice was significantly suppressed compared to CK0, exhibiting notable increases in agricultural indicators, photosynthesis efficiency, and the NA+ content of leaves. However, we noted a significant decrease in the K+ content in the leaves, alongside a prominent increase in NA+/K+ and a big increase in MDA (malondialdehyde), H2O2 (hydrogen peroxide), and O2- (superoxide anion). This caused the cytomembrane permeability to deteriorate. By applying S-ABA under salt stress (in comparison with salt treatment), we promoted improvements in agronomic traits, enhanced photosynthesis, reduced the accumulation of NA+ in leaves, increased the K+ content and the activity of antioxidant enzymes, and reduced the active oxygen content, resulting in a sharp decrease in the impact of salt stress on rice's development. The application of S-ABA decreased the endogenous ABA (abscisic acid) content under salt stress treatment but increased the endogenous GA (gibberellin) and IAA (indole acetic acid) contents and maintained the hormonal homeostasis in rice plants. To summarize, salt stress causes damage to rice growth, and the exogenous application of S-ABA can activate the pouring system mechanism of rice, suppress the outbreak of active oxygen, and regulate NA+/K+ balance and hormone homeostasis in the blades, thus relieving the salt stress.

9.
Opt Lett ; 49(8): 2105-2108, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38621087

In recent years, the visible light positioning field has experienced remarkable advancements. However, smartphones find it difficult to identify light-emitting diode (LED) and extract each LED's light signal intensity due to the low-frequency and uneven sampling of built-in ambient light sensors (ALS, which is a photodiode that measures ambient light in lux units). Thus, traditional visible light positioning systems cannot be directly applied to smartphones. In this Letter, we propose a single-light visible light positioning system using a non-modulated LED as an emitter, the built-in ALS as the receiver, and the inertial measurement unit of the smartphone to assist in measuring the smartphone's attitude. It only requires the user to turn the smartphone by a few angles in a stationary position to estimate its current three-dimensional (3D) spatial position. This method does not require modification of the existing lighting system and consumes less power than the camera-based visible light positioning (VLP) systems. We have built an experimental site measuring 5 m × 5 m × 2.2 m to evaluate the performance of the positioning system, and the preliminary results show that the proposed system achieves sub-meter-level positioning accuracy.

10.
Diabetologia ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38568252

AIMS/HYPOTHESIS: Continuous glucose monitoring (CGM) provides comprehensive information on the exposure to dysglycaemia. This study aimed to investigate the threshold of hyperglycaemia related to mortality risk in critically ill patients using CGM technology. METHODS: A total of 293 adult critically ill patients admitted to intensive care units of five medical centres were prospectively included between May 2020 and November 2021. Participants wore intermittently scanned CGM for a median of 12.0 days. The relationships between different predefined time above ranges (TARs), with the thresholds of hyperglycaemia ranging from 7.8 to 13.9 mmol/l (140-250 mg/dl), and in-hospital mortality risk were assessed by multivariate Cox proportional regression analysis. Time in ranges (TIRs) of 3.9 mmol/l (70 mg/dl) to the predefined hyperglycaemic thresholds were also assessed. RESULTS: Overall, 66 (22.5%) in-hospital deaths were identified. Only TARs with a threshold of 10.5 mmol/l (190 mg/dl) or above were significantly associated with the risk of in-hospital mortality, after adjustment for covariates. Furthermore, as the thresholds for TAR increased from 10.5 mmol/l to 13.9 mmol/l (190 mg/dl to 250 mg/dl), the hazards of in-hospital mortality increased incrementally with every 10% increase in TARs. Similar results were observed concerning the associations between TIRs with various upper thresholds and in-hospital mortality risk. For per absolute 10% decrease in TIR 3.9-10.5 mmol/l (70-190 mg/dl), the risk of in-hospital mortality was increased by 12.1% (HR 1.121 [95% CI 1.003, 1.253]). CONCLUSIONS/INTERPRETATION: A glucose level exceeding 10.5 mmol/l (190 mg/dl) was significantly associated with higher risk of in-hospital mortality in critically ill patients.

11.
PeerJ ; 12: e17312, 2024.
Article En | MEDLINE | ID: mdl-38685942

Salinity stress imposes severe constraints on plant growth and development. Here, we explored the impacts of prohexadione-calcium (Pro-Ca) on rapeseed growth under salt stress. We designed a randomized block design pot experiment using two rapeseed varieties, 'Huayouza 158R' and 'Huayouza 62'. We conducted six treatments, S0: non-primed + 0 mM NaCl, Pro-Ca+S0: Pro-Ca primed + 0 mM NaCl, S100: non-primed + 100 mM NaCl, Pro-Ca+S100: Pro-Ca primed + 100 mM NaCl, S150: non-primed + 150 mM NaCl, Pro-Ca+S150: Pro-Ca primed + 150 mM NaCl. The morphophysiological characteristics, and osmoregulatory and antioxidant activities were compared for primed and non-primed varieties. Our data analysis showed that salt stress induced morph-physiological traits and significantly reduced the antioxidant enzyme activities in both rapeseed varieties. The Pro-Ca primed treatment significantly improved seedlings, root, and shoot morphological traits and accumulated more dry matter biomass under salt stress. Compared to Huayouza 158R, Huayouza 62 performed better with the Pro-Ca primed treatment. The Pro-Ca primed treatment significantly enhanced chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and actual photochemical quantum efficiency (ФPSII). Furthermore, the Pro-Ca primed treatment also improved ascorbic acid (ASA) content, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity, and stimulated the accumulation of soluble proteins. These findings strongly suggested that the Pro-Ca primed treatment may effectively counteract the negative impacts of salinity stress by regulating the morph-physiological and antioxidant traits.


Brassica napus , Calcium , Salt Stress , Seedlings , Brassica napus/drug effects , Salt Stress/drug effects , Seedlings/drug effects , Seedlings/growth & development , Calcium/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Chlorophyll/metabolism
12.
Int J Surg ; 110(4): 2300-2312, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38668662

BACKGROUND: Although cataract surgery has been proposed as a potentially modifiable protective factor for enhancing emotional well-being in cataract patients, studies examining the relationship between anxiety or depression and cataract surgery have yielded inconsistent findings. This review summarizes existing evidence to establish whether cataract surgery is associated with depression and anxiety in older adults. METHODS: A literature search was conducted across PubMed, Medline, Web of Science, and Embase databases. An initial screening by abstracts and titles was performed, followed by a review and assessment of the methodological quality of the relevant full papers, and final inclusion of 44 studies were deemed eligible for inclusion in this review. RESULTS: Among 44 included studies, 36 studies (81.8%) were observational studies concerning the association of cataract surgery or cataracts with anxiety or depression, four studies (9.1%) were interventional studies, and four studies (9.1%) were reviews. Cataract surgery notably enhances the mental health of individuals with impaired vision. However, the multifaceted nature of psychological well-being, influenced by various factors, suggests that cataract surgery may not address all aspects comprehensively. Additionally, preoperative anxiety and depression significantly impact cataract surgery outcomes. CONCLUSION: Vision impairment in older adults is closely associated with increased symptoms of depression and anxiety. While surgical intervention for cataracts improves these symptoms, it might be less effective for mental disorders with multifactorial causes. Notably, anxiety or depression poses challenges to successful preoperative and intraoperative cataract surgeries.


Anxiety , Cataract Extraction , Mental Health , Humans , Anxiety/etiology , Anxiety/epidemiology , Cataract/psychology , Cataract/complications , Depression/etiology
13.
J Interpers Violence ; : 8862605241244473, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38587277

As a global issue, peer victimization is closely associated with adolescent mental health. Although previous research has explored the relationship between peer victimization and mental health in some contexts, the school context, particularly within the Chinese cultural context, has not received sufficient attention. Based on the Healthy Context Paradox, this study aimed to explore the moderating role of school-level victimization in the relationship between individual-level peer victimization and mental health. This study tested two hypotheses by using a multilevel design: higher individual-level and school-level peer victimization are associated with higher depressive symptoms and lower life satisfaction (Hypothesis 1); school-level victimization moderates the association between individual-level peer victimization and mental health (Hypothesis 2). Participants were 39,720 adolescents (50.41% females; Mage = 13.68, SD = 2.39) across 292 Chinese schools. They completed a set of questionnaires, including the Center for Epidemiologic Studies Depression Scale, the single-item Life Satisfaction Questionnaire, the Peer Victimization Scale, and demographics. The multilevel model indicated that both individual-level and school-level peer victimization were positively correlated with depressive symptoms and negatively correlated with life satisfaction. In schools with lower levels of victimization, there was a stronger association between individual peer victimization and adolescent mental health. A potential explanation for these results might be the victimization visibility and perceived severity in different contexts. These findings extended the discussion of the Healthy Context Paradox within the Chinese school context and provided valuable insights for developing school support strategies for victimized adolescents. School management might play a significant role in affecting the mental health of victimized adolescents.

14.
Bioresour Technol ; 400: 130649, 2024 May.
Article En | MEDLINE | ID: mdl-38570098

Microplastics in wastewater have been investigated globally, but less research on the migration and transformation of microplastics throughout wastewater and sludge treatment. This study investigated the fate of microplastics in a reclaimed wastewater treatment plant and a centralized sludge treatment center with thermal hydrolysis and anaerobic digestion. The results exhibited that the effluent microplastics of this reclaimed wastewater treatment plant were 0.75 ± 0.26 items/L. Approximately 98 % of microplastics were adsorbed and precipitated into sludge. After thermal hydrolysis, anaerobic digestion and plate and frame dewatering, the removal rate of microplastics was 41 %. Thermal hydrolysis was the most effective method for removing microplastics. Polypropylene, polyamide and polyethylene were widely detected in wastewater and sludge. 30 million microplastics were released into the downstream river and 51.80 billion microplastics entered soil through sludge cake daily. Therefore, substantial microplastics still entered the natural environment despite the high microplastics removal rate of reclaimed wastewater and sludge treatment.


Microplastics , Sewage , Wastewater , Water Pollutants, Chemical , Sewage/chemistry , Anaerobiosis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Hydrolysis , Water Purification/methods , Waste Disposal, Fluid/methods , Biodegradation, Environmental
15.
Chemistry ; : e202400046, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38619364

Förster resonance energy transfer (FRET) has been widely applied in fluorescence imaging, sensing and so on, while developing useful strategy of boosting FRET efficiency becomes a key issue that limits the application. Except optimizing spectral properties, promoting orientation factor (κ2) has been well discussed but rarely utilized for boosting FRET. Herein, we constructed binary nano-assembling of two thermally activated delayed fluorescence (TADF) emitters (2CzPN and DMAC-DPS) with J-type aggregate of cyanine dye (C8S4) as doping films by taking advantage of their electrostatic interactions. Time-resolved spectroscopic measurements indicated that 2CzPN/Cy-J films exhibit an order of magnitude higher kFRET than DMAC-DPS/Cy-J films. Further quantitative analysing on kFRET and kDET indicated higher orientation factor (κ2) in 2CzPN/Cy-J films play a key role for achieving fast kFRET, which was subsequently confirmed by anisotropic measurements. Corresponding DFT/TDDFT calculation revealed strong "two-point" electrostatic anchoring in 2CzPN/Cy-J films that is responsible for highly orientated transitions. We provide a new strategy for boosting FRET in nano-assemblies, which might be inspired for designing FRET-based devices of sensing, imaging and information encryption.

16.
Metabolites ; 14(3)2024 Feb 27.
Article En | MEDLINE | ID: mdl-38535302

A large number of dead seedlings can occur in saline soils, which seriously affects the large-scale cultivation of rice. This study investigated the effects of plant growth regulators (PGRs) and nitrogen application on seedling growth and salt tolerance (Oryza sativa L.), which is of great significance for agricultural production practices. A conventional rice variety, "Huang Huazhan", was selected for this study. Non-salt stress treatments included 0% NaCl (CK treatment), CK + 0.05 g N/pot (N treatment), CK + 40 mg·L-1 5-aminolevulinic acid (5-ALA) (A treatment), and CK + 30 mg·L-1 diethylaminoethyl acetate (DTA-6) (D treatment). Salt stress treatments included 0.3% NaCl (S treatment), N + 0.3% NaCl (NS treatment), A + 0.3% NaCl (AS treatment), and D + 0.3% NaCl (DS treatment). When 3 leaves and 1 heart emerged from the soil, plants were sprayed with DTA-6 and 5-ALA, followed by the application of 0.3% NaCl (w/w) to the soil after 24 h. Seedling morphology and photosynthetic indices, as well as carbohydrate metabolism and key enzyme activities, were determined for each treatment. Our results showed that N, A, and D treatments promoted seedling growth, photosynthesis, carbohydrate levels, and the activities of key enzymes involved in carbon metabolism when compared to the CK treatment. The A treatment had the most significant effect, with increases in aboveground dry weight and net photosynthetic rates (Pn) ranging from 17.74% to 41.02% and 3.61% to 32.60%, respectively. Stomatal limiting values (Ls) significantly decreased from 19.17% to 43.02%. Salt stress significantly inhibited seedling growth. NS, AS, and DS treatments alleviated the morphological and physiological damage of salt stress on seedlings when compared to the S treatment. The AS treatment was the most effective in improving seedling morphology, promoting photosynthesis, increasing carbohydrate levels, and key enzyme activities. After AS treatment, increases in aboveground dry weight, net photosynthetic rate, soluble sugar content, total sucrose synthase, and amylase activities were 17.50% to 50.79%, 11.39% to 98.10%, 20.20% to 80.85%, 21.21% to 33.53%, and 22.17% to 34.19%, respectively, when compared to the S treatment. In summary, foliar sprays of 5-ALA, DTA-6, and additional nitrogen fertilizer enhanced rice seedling growth, increased photosynthesis, lowered Ls values, and improved seedling salt tolerance. Spraying two regulators, 5-ALA and DTA-6, quantitatively increased the effect of nitrogen fertilizer, with comparable effects on NaCl stress regulation. This study provides the basis for efficient agricultural production.

17.
ACS Appl Mater Interfaces ; 16(12): 14912-14921, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38489228

The loose and randomly oriented byproduct (i.e., Zn4(OH)6SO4·xH2O, ZHS) in situ formed on the zinc (Zn) surface is recognized to be the primary cause for dendritic Zn growth and side reactions. Switching the detrimental passivation film into a dense and kinetically favorable solid electrolyte interphase (SEI) is a straightforward strategy to tackle these issues faced by Zn metal anodes but remains largely unexplored. Herein, a new polymer film directly grown on Zn metal through room-temperature plasma-enhanced chemical vapor deposition is proposed to induce the lateral growth of ZHS nanosheets and decrease the Zn2+ desolvation barrier, thereby forming a beneficial composite SEI for suppressing Zn dendrite growth and surface corrosion. As a result of the joint effect, we realize an impressively stable cycling behavior in symmetric cell over 3400 h at 2 mA cm-2. Moreover, full cells also demonstrate prolonged lifespans. This work opens a new avenue for stabilizing Zn metal batteries by turning detrimental ZHS into a favorable interlayer.

18.
Environ Pollut ; 348: 123843, 2024 May 01.
Article En | MEDLINE | ID: mdl-38552770

Micro/nano-plastics (MPs/NPs) represent an emerging contaminant, posing a significant threat to oceanic halobios. While the adverse effects of joint pollutants on marine organisms are well-documented, the potential biological impacts on the food chain transmission resulting from combinations of MPs/NPs and heavy metals (HMs) remain largely unexplored. This study exposed the microbial loop to combined contaminants (MPs/NPs + HMs) for 48h, bacteria and contaminants are washed away before feeding to the traditional food chain, employing microscopic observation, biochemical detection, and transcriptome analysis to elucidate the toxicological mechanisms of the top predator. The findings revealed that MPs/NPs combined with Cd2+ could traverse both the microbial loop and classical food chain. Acute exposure significantly affected the carbon biomass of the top predator Tigriopus japonicus (75.8% lower). Elevated antioxidant enzyme activity led to lipid peroxidation, manifesting in increased malondialdehyde levels. Transcriptome sequencing showed substantial differential gene expression levels in T. japonicus under various treatments. The upregulation of genes associated with apoptosis and inflammatory responses, highlighting the impact of co-exposure on oxidative damage and necroptosis within cells. Notably, NPs-Cd exhibited stronger toxicity than MPs-Cd. NPs-Cd led to a greater decrease in the biomass of top predators, accompanied by lower activities of GSH, SOD, CAT, and GSH-PX, resulting in increased production of lipid peroxidation product MDA and higher oxidative stress levels. This investigation provides novel insights into the potential threats of MPs/NPs combined with Cd2+ on the microbial loop across traditional food chain, contributing to a more comprehensive assessment of the ecological risks associated with micro/nano-plastics and heavy metals.


Transcriptome , Water Pollutants, Chemical , Cadmium/toxicity , Polystyrenes , Food Chain , Microplastics , Gene Expression Profiling , Seawater , Plastics , Antioxidants , Water Pollutants, Chemical/toxicity
19.
Adv Sci (Weinh) ; : e2400275, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38504472

Energy loss in perovskite grain boundaries (GBs) is a primary limitation toward high-efficiency perovskite solar cells (PSCs). Two critical strategies to address this issue are high-quality crystallization and passivation of GBs. However, the established methods are generally carried out discretely due to the complicated mechanisms of grain growth and defect formation. In this study, a combined method is proposed by introducing 3,4,5-Trifluoroaniline iodide (TFAI) into the perovskite precursor. The TFAI triggers the union of nano-sized colloids into microclusters and facilitates the complete phase transition of α-FAPbI3 at room temperature. The controlled chemical reactivity and strong steric hindrance effect enable the fixed location of TFAI and suppress defects at GBs. This combination of well-crystallized perovskite grains and effectively passivated GBs leads to an improvement in the open circuit voltage (Voc ) of PSCs from 1.08 V to 1.17 V, which is one of the highest recorded Voc without interface modification. The TFAI-incorporated device achieved a champion PCE of 24.81%. The device maintained a steady power output near its maximum power output point, showing almost no decay over 280 h testing without pre-processing.

20.
PeerJ ; 12: e17068, 2024.
Article En | MEDLINE | ID: mdl-38495756

The aim of this experiment was to investigate the effects of exogenous sprays of 5-aminolevulinic acid (5-ALA) and 2-Diethylaminoethyl hexanoate (DTA-6) on the growth and salt tolerance of rice (Oryza sativa L.) seedlings. This study was conducted in a solar greenhouse at Guangdong Ocean University, where 'Huanghuazhan' was selected as the test material, and 40 mg/L 5-ALA and 30 mg/L DTA-6 were applied as foliar sprays at the three-leaf-one-heart stage of rice, followed by treatment with 0.3% NaCl (W/W) 24 h later. A total of six treatments were set up as follows: (1) CK: control, (2) A: 40 mg⋅ L-1 5-ALA, (3) D: 30 mg⋅ L-1 DTA-6, (4) S: 0.3% NaCl, (5) AS: 40 mg⋅ L-1 5-ALA + 0.3% NaCl, and (6) DS: 30 mg⋅ L-1 DTA-6+0.3% NaCl. Samples were taken at 1, 4, 7, 10, and 13 d after NaCl treatment to determine the morphology and physiological and biochemical indices of rice roots. The results showed that NaCl stress significantly inhibited rice growth; disrupted the antioxidant system; increased the rates of malondialdehyde, hydrogen peroxide, and superoxide anion production; and affected the content of related hormones. Malondialdehyde content, hydrogen peroxide content, and superoxide anion production rate significantly increased from 12.57% to 21.82%, 18.12% to 63.10%, and 7.17% to 56.20%, respectively, in the S treatment group compared to the CK group. Under salt stress, foliar sprays of both 5-ALA and DTA-6 increased antioxidant enzyme activities and osmoregulatory substance content; expanded non-enzymatic antioxidant AsA and GSH content; reduced reactive oxygen species (ROS) accumulation; lowered malondialdehyde content; increased endogenous hormones GA3, JA, IAA, SA, and ZR content; and lowered ABA content in the rice root system. The MDA, H2O2, and O2- contents were reduced from 35.64% to 56.92%, 22.30% to 53.47%, and 7.06% to 20.01%, respectively, in the AS treatment group compared with the S treatment group. In the DS treatment group, the MDA, H2O2, and O2- contents were reduced from 24.60% to 51.09%, 12.14% to 59.05%, and 12.70% to 45.20%. In summary, NaCl stress exerted an inhibitory effect on the rice root system, both foliar sprays of 5-ALA and DTA-6 alleviated damage from NaCl stress on the rice root system, and the effect of 5-ALA was better than that of DTA-6.


Antioxidants , Oryza , Humans , Antioxidants/metabolism , Seedlings , Plant Growth Regulators/pharmacology , Hydrogen Peroxide/pharmacology , Sodium Chloride/pharmacology , Superoxides/pharmacology , Oxidative Stress , Oxygen/pharmacology , Hormones/pharmacology , Malondialdehyde/pharmacology
...