Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 602
1.
Sci Adv ; 10(20): eadl3511, 2024 May 17.
Article En | MEDLINE | ID: mdl-38748808

Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.


Carcinoma, Squamous Cell , Extracellular Matrix , Hydrogels , Organoids , Uterine Cervical Neoplasms , Humans , Female , Organoids/metabolism , Organoids/pathology , Organoids/drug effects , Extracellular Matrix/metabolism , Hydrogels/chemistry , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cervix Uteri/pathology , Cervix Uteri/metabolism , Tumor Microenvironment , Signal Transduction , Animals , Proteomics/methods , Mice
2.
Langmuir ; 40(20): 10759-10768, 2024 May 21.
Article En | MEDLINE | ID: mdl-38712734

Bouncing dynamics of a trailing drop off-center impacting a leading drop with varying time intervals and Weber numbers are investigated experimentally. Whether the trailing drop impacts during the spreading or receding process of the leading drop is determined by the time interval. For a short time interval of 0.15 ≤ Δt* ≤ 0.66, the trailing drop impacts during the spreading of the leading drop, and the drops completely coalesce and rebound; for a large time interval of 0.66 < Δt* ≤ 2.21, the trailing drop impacts during the receding process, and the drops partially coalesce and rebound. Whether the trailing drop directly impacts the surface or the liquid film of the leading drop is determined by the Weber number. The trailing drop impacts the surface directly at moderate Weber numbers of 16.22 ≤ We ≤ 45.42, while it impacts the liquid film at large Weber numbers of 45.42 < We ≤ 64.88. Intriguingly, when the trailing drop impacts the surface directly or the receding liquid film, the contact time increases linearly with the time interval but independent of the Weber number; when the trailing drop impacts the spreading liquid film, the contact time suddenly increases, showing that the force of the liquid film of the leading drop inhibits the receding of the trailing drop. Finally, a theoretical model of the contact time for the drops is established, which is suitable for different impact scenarios of the successive off-center impact. This study provides a quantitative relationship to calculate the contact time of drops successively impacting a superhydrophobic surface, facilitating the design of anti-icing surfaces.

3.
Cell Genom ; : 100559, 2024 May 12.
Article En | MEDLINE | ID: mdl-38740021

The gut microbiome displays genetic differences among populations, and characterization of the genomic landscape of the gut microbiome in China remains limited. Here, we present the Chinese Gut Microbial Reference (CGMR) set, comprising 101,060 high-quality metagenomic assembled genomes (MAGs) of 3,707 nonredundant species from 3,234 fecal samples across primarily rural Chinese locations, 1,376 live isolates mainly from lactic acid bacteria, and 987 novel species relative to worldwide databases. We observed region-specific coexisting MAGs and MAGs with probiotic and cardiometabolic functionalities. Preliminary mouse experiments suggest a probiotic effect of two Faecalibacillus intestinalis isolates in alleviating constipation, cardiometabolic influences of three Bacteroides fragilis_A isolates in obesity, and isolates from the genera Parabacteroides and Lactobacillus in host lipid metabolism. Our study expands the current microbial genomes with paired isolates and demonstrates potential host effects, contributing to the mechanistic understanding of host-microbe interactions.

4.
ACS Nano ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38771969

Hydrogen obtained from electrochemical water splitting is the most promising clean energy carrier, which is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Thus, the development of an efficient OER electrocatalyst using nonprecious 3d transition elements is desirable. Multielement synergistic effect and lattice oxygen oxidation are two well-known mechanisms to enhance the OER activity of catalysts. The latter is generally related to the high valence state of 3d transition elements leading to structural destabilization under the OER condition. We have found that Al doping in nanosheet Ni-Fe hydroxide exhibits 2-fold advantage: (1) a strong enhanced OER activity from 277 mV to 238 mV at 10 mA cm-2 as the Ni valence state increases from Ni3.58+ to Ni3.79+ observed from in situ X-ray absorption spectra. (2) Operational stability is strengthened, while weakness is expected since the increased NiIV content with 3d8L2 (L denotes O 2p hole) would lead to structural instability. This contradiction is attributed to a reduced lattice oxygen contribution to the OER upon Al doping, as verified through in situ Raman spectroscopy, while the enhanced OER activity is interpreted as an enormous gain in exchange energy of FeIV-NiIV, facilitated by their intersite hopping. This study reveals a mechanism of Fe-Ni synergy effect to enhance OER activity and simultaneously to strengthen operational stability by suppressing the contribution of lattice oxygen.

5.
J Transl Med ; 22(1): 506, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802952

Cancer cachexia (CC) is a debilitating syndrome that affects 50-80% of cancer patients, varying in incidence by cancer type and significantly diminishing their quality of life. This multifactorial syndrome is characterized by muscle and fat loss, systemic inflammation, and metabolic imbalance. Extracellular vesicles (EVs), including exosomes and microvesicles, play a crucial role in the progression of CC. These vesicles, produced by cancer cells and others within the tumor environment, facilitate intercellular communication by transferring proteins, lipids, and nucleic acids. A comprehensive review of the literature from databases such as PubMed, Scopus, and Web of Science reveals insights into the formation, release, and uptake of EVs in CC, underscoring their potential as diagnostic and prognostic biomarkers. The review also explores therapeutic strategies targeting EVs, which include modifying their release and content, utilizing them for drug delivery, genetically altering their contents, and inhibiting key cachexia pathways. Understanding the role of EVs in CC opens new avenues for diagnostic and therapeutic approaches, potentially mitigating the syndrome's impact on patient survival and quality of life.


Cachexia , Extracellular Vesicles , Neoplasms , Humans , Cachexia/metabolism , Cachexia/etiology , Cachexia/therapy , Extracellular Vesicles/metabolism , Neoplasms/complications , Neoplasms/pathology , Neoplasms/metabolism , Animals
6.
J Agric Food Chem ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38743017

The critical role of oxidative stress in Alzheimer's disease (AD) has been recognized by researchers recently, and natural antioxidants have been demonstrated to have anti-AD activity in animal models, such as Ginkgo biloba extract, soy isoflavones, lycopene, and so on. This paper summarized these natural antioxidants and points out that natural antioxidants always have multiple advantages which are help to deal with AD, such as clearing free radicals, regulating signal transduction, protecting mitochondrial function, and synaptic plasticity. Based on the available data, we have created a relatively complete pathway map of reactive oxygen species (ROS) and AD-related targets and concluded that oxidative stress caused by ROS is the core of AD pathogenesis. In the prospect, we introduced the concept of a combined therapeutic strategy, termed "Antioxidant-Promoting Synaptic Remodeling," highlighting the integration of antioxidant interventions with synaptic remodeling approaches as a novel avenue for therapeutic exploration.

7.
Blood Purif ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38740012

BACKGROUND: Blood purification therapy for patients overloaded with metabolic toxins or drugs still needs improvement. Blood purification therapies, such as in hemodialysis or peritoneal dialysis can profit from a combined application with nanoparticles. SUMMARY: In this review, the published literature is analyzed with respect to nanomaterials that have been customized and functionalized as nano-adsorbents during blood purification therapy. Liposomes possess a distinct combined structure composed of a hydrophobic lipid bilayer and a hydrophilic core. The liposomes which have enzymes in their aqueous core or obtain specific surface modifications of the lipid bilayer can offer appreciated advantages. Preclinical and clinical experiments with such modified liposomes show that they are highly efficient and generally safe. They may serve as indirect and direct adsorption materials both in hemodialysis and peritoneal dialysis treatment for patients with renal or hepatic failure. Apart from dialysis, nanoparticles made of specially designed metal and activated carbon have also been utilized to enhance the removal of solutes during hemoadsorption. Results are a superior adsorption capacity and a good hemocompatibility shown during treatment of patients with toxication or end-stage renal disease. In summary, nanomaterials are promising tools for improving the treatment efficacy of organ failure or toxication. KEY MESSAGES The pH-transmembrane liposomes and enzyme-loaded liposomes are two representatives of liposomes with modified aqueous inner core which have been put into practice in dialysis. Unmodified or physiochemically modified liposomal bilayers are ideal binders for lipophilic protein-bound uremic toxins or cholestatic solutes, thus liposome-supported dialysis could become the next-generation hemodialysis treatment of artificial liver support system. Novel nano-based sorbents featuring large surface area, high adsorption capacity and decent biocompatibility have shown promise in treatment of uremia, hyperbilirubinemia, intoxication, and sepsis. A major challenge of production lies in avoiding changes in physical and chemical properties induced by manufacturing and sterilizing procedures.

8.
Heliyon ; 10(8): e29529, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38699755

Background: Reliable predictors for rehabilitation outcomes in patients with congenital sensorineural hearing loss (CSNHL) after cochlear implantation (CI) are lacking. The purchase of this study was to develop a nomogram based on clinical characteristics and neuroimaging features to predict the outcome in children with CSNHL after CI. Methods: Children with CSNHL prior to CI surgery and children with normal hearing were enrolled into the study. Clinical data, high resolution computed tomography (HRCT) for ototemporal bone, conventional brain MRI for structural analysis and brain resting-state fMRI (rs-fMRI) for the power spectrum assessment were assessed. A nomogram combining both clinical and imaging data was constructed using multivariate logistic regression analysis. Model performance was evaluated and validated using bootstrap resampling. Results: The final cohort consisted of 72 children with CSNHL (41 children with poor outcome and 31 children with good outcome) and 32 healthy controls. The white matter lesion from structural assessment and six power spectrum parameters from rs-fMRI, including Power4, Power13, Power14, Power19, Power23 and Power25 were used to build the nomogram. The area under the receiver operating characteristic (ROC) curve of the nomogram obtained using the bootstrapping method was 0.812 (95 % CI = 0.772-0.836). The calibration curve showed no statistical difference between the predicted value and the actual value, indicating a robust performance of the nomogram. The clinical decision analysis curve showed a high clinical value of this model. Conclusions: The nomogram constructed with clinical data, and neuroimaging features encompassing ototemporal bone measurements, white matter lesion values from structural brain MRI and power spectrum data from rs-fMRI showed a robust performance in predicting outcome of hearing rehabilitation in children with CSNHL after CI.

9.
Chin Med J (Engl) ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38711358

BACKGROUND: Molecular subtyping is an essential complementarity after pathological analyses for targeted therapy. This study aimed to investigate the consistency of next-generation sequencing (NGS) results between circulating tumor DNA (ctDNA)-based and tissue-based in non-small cell lung cancer (NSCLC) and identify the patient characteristics that favor ctDNA testing. METHODS: Patients who diagnosed with NSCLC and received both ctDNA- and cancer tissue-based NGS before surgery or systemic treatment in Lung Cancer Center, Sichuan University West China Hospital between December 2017 and August 2022 were enrolled. A 425-cancer panel with a HiSeq 4000 NGS platform was used for NGS. The unweighted Cohen's kappa coefficient was employed to discriminate the high-concordance group from the low-concordance group with a cutoff value of 0.6. Six machine learning models were used to identify patient characteristics that relate to high concordance between ctDNA-based and tissue-based NGS. RESULTS: A total of 85 patients were enrolled, of which 22.4% (19/85) had stage III disease and 56.5% had stage IV disease. Forty-four patients (51.8%) showed consistent gene mutation types between ctDNA-based and tissue-based NGS, while one patient (1.2%) tested negative in both approaches. Advanced diseases and metastases to other organs would be fit for the ctDNA-based NGS, and the generalized linear model showed that T stage, M stage, and tumor mutation burden were the critical discriminators to predict the consistency of results between ctDNA-based and tissue-based NGS. CONCLUSION: ctDNA-based NGS showed comparable detection performance in the targeted gene mutations compared with tissue-based NGS, and it could be considered in advanced or metastatic NSCLC.

10.
Front Neurorobot ; 18: 1396979, 2024.
Article En | MEDLINE | ID: mdl-38716348

With the fast development of large-scale Photovoltaic (PV) plants, the automatic PV fault identification and positioning have become an important task for the PV intelligent systems, aiming to guarantee the safety, reliability, and productivity of large-scale PV plants. In this paper, we propose a residual learning-based robotic (UAV) image analysis model for low-voltage distributed PV fault identification and positioning. In our target scenario, the unmanned aerial vehicles (UAVs) are deployed to acquire moving images of low-voltage distributed PV power plants. To get desired robustness and accuracy of PV image detection, we integrate residual learning with attention mechanism into the UAV image analysis model based on you only look once v4 (YOLOv4) network. Then, we design the sophisticated multi-scale spatial pyramid fusion and use it to optimize the YOLOv4 network for the nuanced task of fault localization within PV arrays, where the Complete-IOU loss is incorporated in the predictive modeling phase, significantly enhancing the accuracy and efficiency of fault detection. A series of experimental comparisons in terms of the accuracy of fault positioning are conducted, and the experimental results verify the feasibility and effectiveness of the proposed model in dealing with the safety and reliability maintenance of low-voltage distributed PV systems.

11.
Chem Commun (Camb) ; 60(32): 4275-4289, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38566567

Organoboron compounds demonstrate diverse applications in the fields of organic synthesis, materials science, and medicinal chemistry. Compared to the conventional hydroboration reaction, radical hydroboration serves as an alternative approach for the synthesis of organoborons via different mechanisms. In radical hydroboration, a boryl radical is initially generated from homolytic cleavage of a B-H or a B-B bond, which is then added to an unsaturated double bond to deliver a carbon radical. Subsequent hydrogen atom transfer or reduction of the carbon radical to form a carbanion followed by protonation gave the final product. Over the past few years, numerous efforts have been made for efficient synthesis of boryl radicals and the expansion of substrate scope of the radical hydroboration reaction. Here, we discuss the recent advancement of radical hydroboration and its associated mechanisms. Numerous radical hydroboration strategies employing N-heterocyclic carbene borane, bis(pinacolato)diboron and pinacolborane as the boron source were illustrated. Thermochemical, photochemical and electrochemical strategies for the generation of boryl radicals were also discussed in detail.

12.
Plants (Basel) ; 13(6)2024 Mar 08.
Article En | MEDLINE | ID: mdl-38592774

Grain yield in rice is a complex trait and it is controlled by a number of quantitative trait loci (QTL). To dissect the genetic basis of rice yield, QTL analysis for nine yield traits was performed using an F2 population containing 190 plants, which was developed from a cross between Youyidao (YYD) and Sanfenhe (SFH), and each plant in the population evaluated with respect to nine yield traits. In this study, the correlations among the nine yield traits were analyzed. The grain yield per plant positively correlated with six yield traits, except for grain length and grain width, and showed the highest correlation coefficient of 0.98 with the number of filled grains per plant. A genetic map containing 133 DNA markers was constructed and it spanned 1831.7 cM throughout 12 chromosomes. A total of 36 QTLs for the yield traits were detected on nine chromosomes, except for the remaining chromosomes 5, 8, and 9. The phenotypic variation was explained by a single QTL that ranged from 6.19% to 36.01%. Furthermore, a major QTL for grain width and weight, qGW2-1, was confirmed to be newly identified and was narrowed down to a relatively smaller interval of about ~2.94-Mb. Collectively, we detected a total of 36 QTLs for yield traits and a major QTL, qGW2-1, was confirmed to control grain weight and width, which laid the foundation for further map-based cloning and molecular design breeding in rice.

13.
Asian J Surg ; 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38609822

INTRODUCTION: Pulmonary metastasectomy has been clarified in improving long-term survival in most primary malignancies with pulmonary metastasis, while the role of additional lymph node dissection remained controversial. We aimed to investigate the prognosis of lymph node involvement and identify the role of lymph node dissection during pulmonary metastasectomy in a real-world cohort. METHODS: We identified patients diagnosed with pulmonary metastases with ≤3 cm in size and received pulmonary metastasectomy between 2004 and 2017 in the Surveillance, Epidemiology, and End Results database. We compared the survival via Kaplan-Meier analysis and propensity score matching method, and the multivariable analysis was conducted by cox regression analysis. RESULTS: A total of 3452 patients were included, of which 2268(65.7%) received lymph node dissection, and the incidence of node-positive was 11.3%(256/2268). In total, the median overall survival was 62.8 months(interquartile range, 28.6-118.9 months), and the lymph node involvement was referred to an impaired survival compared to node-negative diseases(5-year overall survival rate, 58.0% versus 38.6%), with comparable survival between N1 and N2 diseases(P = 0.774). Lymph node dissection was associated with improved survival(HR = 0.80; 95%CI, 0.71-0.90; P < 0.001), and the survival benefits remained regardless of age, sex, the number of metastases, and surgical procedures, even in those with node-negative diseases. At least eight LNDs might lead to a significant improvement in survival, and additional survival benefits might be limited with additional dissected lymph nodes. CONCLUSIONS: Lymph node involvement was associated with impaired survival, and lymph node dissection during pulmonary metastasectomy could improve long-term survival and more accurate staging.

14.
Food Funct ; 15(8): 4603-4613, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38590241

Higher intakes of individual antioxidants such as vitamins A, C, and E have been linked to mortality in the general population, but the association of overall antioxidant intake with mortality especially in depressed adults remains unclear. We aimed to investigate whether the dietary overall antioxidant intake is associated with all-cause and cause-specific mortality among depressed adults. This study included 3051 US adults with depression, who participated in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. Patient Health Questionnaire-9 (PHQ-9) was used to define depression and evaluate depression severity. The dietary antioxidant quality score (DAQS) and dietary antioxidant index (DAI) were calculated based on the intakes of vitamins A, C, and E, zinc, selenium, and magnesium. A higher DAQS and DAI were significantly associated with lower depression scores (PHQ-9) (all P-trend < 0.05). For individual antioxidants, significant negative associations of vitamins A and E with all-cause mortality were observed. For overall antioxidant intake, the DAQS and DAI were inversely associated with all-cause and cancer mortality. Compared with participants in the lowest categories of DAQS and DAI, the corresponding HRs (95% CIs) in the highest categories were 0.63 (0.42-0.93) and 0.70 (0.49-0.98) for all-cause mortality and 0.39 (0.17-0.87) and 0.43 (0.21-0.88) for cancer mortality, respectively. The overall dietary antioxidant intake was beneficially associated with all-cause and cancer mortality in depressed adults. These findings suggest that comprehensive dietary antioxidant intake may improve depressive symptoms and lower mortality risk among adults with depression.


Antioxidants , Depression , Diet , Nutrition Surveys , Humans , Male , Female , Antioxidants/administration & dosage , Middle Aged , Adult , Depression/epidemiology , Aged , United States/epidemiology
15.
World J Gastrointest Oncol ; 16(4): 1154-1165, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38660633

Minimally invasive surgery is a kind of surgical operation, which is performed by using professional surgical instruments and equipment to inactivate, resect, repair or reconstruct the pathological changes, deformities and wounds in human body through micro-trauma or micro-approach, in order to achieve the goal of treatment, its surgical effect is equivalent to the traditional open surgery, while avoiding the morbidity of conventional surgical wounds. In addition, it also has the advantages of less trauma, less blood loss during operation, less psychological burden and quick recovery on patients, and these minimally invasive techniques provide unique value for the examination and treatment of gastric cancer patients. Surgical minimally invasive surgical techniques have developed rapidly and offer numerous options for the treatment of early gastric cancer (EGC): endoscopic mucosal resection (EMR), underwater EMR (UEMR), endoscopic submucosal dissection (ESD), endoscopic full-thickness resection (EFTR), endoscopic submucosal excavation (ESE), submucosal tunnel endoscopic resection), laparoscopic and endoscopic cooperative surgery (LECS); Among them, EMR, EFTR and LECS technologies have a wide range of applications and different modifications have been derived from their respective surgical operations, such as band-assisted EMR (BA-EMR), conventional EMR (CEMR), over-the-scope clip-assisted EFTR, no-touch EFTR, the inverted LECS, closed LECS, and so on. These new and improved minimally invasive surgeries are more precise, specific and effective in treating different types of EGC.

16.
Angew Chem Int Ed Engl ; : e202405863, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589298

Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a ß-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.

17.
Plants (Basel) ; 13(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674540

Anther length is the critical floral trait determining hybrid rice seed production and is controlled by many quantitative trait loci (QTL). However, the cloning of genes specifically controlling anther size has yet to be reported. Here, we report the fine mapping of qAL5.2 for anther size using backcross inbred lines (BILs) in the genetic background of Oryza sativa indica Huazhan (HZ). Gene chip analysis on the BC4F2 and BC5F1 population identified effective loci on Chr1, Chr5, and Chr8 and two genomic regions on Chr5, named qAL5.1 and qAL5.2. qAL5.2 was identified in both populations with LOD values of 17.54 and 10.19, which explained 35.73% and 25.1% of the phenotypic variances, respectively. Ultimately qAL5.2 was localized to a 73 kb region between HK139 and HK140 on chromosome 5. And we constructed two near-isogenic lines (NILs) for RNA-seq analysis, named NIL-qAL5.2HZ and NIL-qAL5.2KLY, respectively. The result of the GO enrichment analysis revealed that differential genes were significantly enriched in the carbohydrate metabolic process, extracellular region, and nucleic acid binding transcription, and KEGG enrichment analysis revealed that alpha-linolenic acid metabolism was significantly enriched. Meanwhile, candidate genes of qAL5.2 were analyzed in RNA-seq, and it was found that ORF8 is differentially expressed between NIL-qAL5.2HZ and NIL-qAL5.2KLY. The fine mapping of qAL5.2 conferring anther length will promote the breed improvement of the restorer line and understanding of the mechanisms driving crop mating patterns.

18.
Nano Lett ; 24(14): 4241-4247, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38546270

Electrochemistry that empowers innovative nanoscopic analysis has long been pursued. Here, the concept of aggregation-enabled electrochemistry (AEE) in a confined nanopore is proposed and devised by reactive oxygen species (ROS)-responsive aggregation of CdS quantum dots (QDs) within a functional nanopipette. Complementary Faradaic and non-Faradaic operations of the CdS QDs aggregate could be conducted to simultaneously induce the signal-on of the photocurrents and the signal-off of the ionic signals. Such a rationale permits the cross-checking of the mutually corroborated signals and thus delivers more reliable results for single-cell ROS analysis. Combined with the rich biomatter-light interplay, the concept of AEE can be extended to other stimuli-responsive aggregations for electrochemical innovations.

20.
MycoKeys ; 102: 201-224, 2024.
Article En | MEDLINE | ID: mdl-38449923

Chinese yew, Taxuschinensisvar.mairei is an endangered shrub native to south-eastern China and is widely known for its medicinal value. The increased cultivation of Chinese yew has increased the incidence of various fungal diseases. In this study, Pestalotioid fungi associated with needle spot of Chinese yew were isolated from Guangxi Province. Based on morphological examinations and multi-locus (ITS, tub2, tef-1α) phylogenies, these isolates were identified to five species, including two new species, Pestalotiopsistaxicola and P.multicolor, two potential novel Neopestalotiopsis species, Neopestalotiopsis sp. 3 and Neopestalotiopsis sp. 4, with a known Pestalotiopsis species (Pestalotiopsistrachycarpicola), firstly recorded from Chinese yew. These two new Pestalotiopsis species were morphologically and phylogenetically distinct from the extant Pestalotioid species in Chinese yew. Pathogenicity and culture characteristic tests of these five Pestalotioid species were also performed in this study. The pathogenicity test results revealed that Neopestalotiopsis sp. 3 can cause diseases in Chinese yew needles. These results have indicated that the diversity of Pestalotioid species associated with Chinese yew was greater than previously determined and provided helpful information for Chinese yew disease diagnosis and management.

...