Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
iScience ; 27(6): 110098, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947527

RESUMEN

Females typically outlive males in animals, especially in species that provide long-term maternal care. However, life history theory predicts that investments in reproduction, such as lactation and offspring nursing, often shorten caretakers' longevity. Aiming to interpret this paradox, we selected the lactating jumping spider Toxeus magnus to investigate the effects of reproductive activities on longevity for two sexes. We found that: (1) although "milk" provisioning reduces female's longevity, mothers who cared for offspring (provisioned "milk" and nursing) lived the longest compared to virgins and those did not provide care; (2) copulation increased female's longevity but had no effects on males; and (3) the two sexes have comparable developmental duration, but the female adult's longevity was 2.1 times that of male's. This study suggests that the time requirement for offspring dispersal might act as a key selective force favoring females' adulthood extension, which ultimately generates the longer-lived females in maternal cared species.

2.
CNS Neurosci Ther ; 30(6): e14787, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38894559

RESUMEN

AIMS: The patient being minimally conscious state (MCS) may benefit from wake-up interventions aimed at improving quality of life and have a higher probability of recovering higher level of consciousness compared to patients with the unresponsive wakefulness syndrome (UWS). However, differentiation of the MCS and UWS poses challenge in clinical practice. This study aimed to explore glucose metabolic pattern (GMP) obtained from 18F-labeled-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) in distinguishing between UWS and MCS. METHODS: Fifty-seven patients with disorders of consciousness (21 cases of UWS and 36 cases of MCS) who had undergone repeated standardized Coma Recovery Scale-Revised (CRS-R) evaluations were enrolled in this prospective study. 18F-FDG-PET was carried out in all patients and healthy controls (HCs). Voxel-based scaled subprofile model/principal component analysis (SSM/PCA) was used to generate GMPs. The expression score of whole-brain GMP was obtained, and its diagnostic accuracy was compared with the standardized uptake value ratio (SUVR). The diagnostic efficiency was validated by one-year later clinical outcomes. RESULTS: UWS-MCS GMP exhibited hypometabolism in the frontal-parietal cortex, along with hypermetabolism in the unilateral lentiform nucleus, putamen, and anterior cingulate gyrus. The UWS-MCS-GMP expression score was significantly higher in UWS compared to MCS patients (0.90 ± 0.85 vs. 0 ± 0.93, p < 0.001). UWS-MCS-GMP expression score achieved an area under the curve (AUC) of 0.77 to distinguish MCS from UWS, surpassing that of SUVR based on the frontoparietal cortex (AUC = 0.623). UWS-MCS-GMP expression score was significantly correlated with the CRS-R score (r = -0.45, p = 0.004) and accurately predicted the one-year outcome in 73.7% of patients. CONCLUSION: UWS and MCS exhibit specific glucose metabolism patterns, the UWS-MCS-GMP expression score significantly distinguishes MCS from UWS, making SSM/PCA a potential diagnostic methods in clinical practice for individual patients.


Asunto(s)
Encéfalo , Fluorodesoxiglucosa F18 , Glucosa , Estado Vegetativo Persistente , Tomografía de Emisión de Positrones , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Glucosa/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Estado Vegetativo Persistente/metabolismo , Estado Vegetativo Persistente/diagnóstico por imagen , Anciano , Estudios Prospectivos , Adulto Joven
3.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892221

RESUMEN

Chronic kidney disease (CKD) presents a significant global health challenge, characterized by complex pathophysiology. This study utilized a multi-omic approach, integrating genomic data from the CKDGen consortium alongside transcriptomic, metabolomic, and proteomic data to elucidate the genetic underpinnings and identify therapeutic targets for CKD and kidney function. We employed a range of analytical methods including cross-tissue transcriptome-wide association studies (TWASs), Mendelian randomization (MR), summary-based MR (SMR), and molecular docking. These analyses collectively identified 146 cross-tissue genetic associations with CKD and kidney function. Key Golgi apparatus-related genes (GARGs) and 41 potential drug targets were highlighted, with MAP3K11 emerging as a significant gene from the TWAS and MR data, underscoring its potential as a therapeutic target. Capsaicin displayed promising drug-target interactions in molecular docking analyses. Additionally, metabolome- and proteome-wide MR (PWMR) analyses revealed 33 unique metabolites and critical inflammatory proteins such as FGF5 that are significantly linked to and colocalized with CKD and kidney function. These insights deepen our understanding of CKD pathogenesis and highlight novel targets for treatment and prevention.


Asunto(s)
Simulación del Acoplamiento Molecular , Insuficiencia Renal Crónica , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Humanos , Estudio de Asociación del Genoma Completo , Riñón/metabolismo , Riñón/patología , Transcriptoma , Proteómica/métodos , Análisis de la Aleatorización Mendeliana , Predisposición Genética a la Enfermedad , Metabolómica/métodos , Proteoma/metabolismo , Metaboloma , Multiómica
4.
Front Pharmacol ; 15: 1342515, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756374

RESUMEN

Objectives: Codeine, a prodrug used as an opioid agonist, is metabolized to the active product morphine by CYP2D6. This study aimed to establish physiologically based pharmacokinetic (PBPK) models of codeine and morphine and explore the influence of CYP2D6 genetic polymorphisms on the pharmacokinetics of codeine and morphine. Methods: An initial PBPK modeling of codeine in healthy adults was established using PK-Sim® software and subsequently extrapolated to CYP2D6 phenotype-related PBPK modeling based on the turnover frequency (Kcat) of CYP2D6 for different phenotype populations (UM, EM, IM, and PM). The mean fold error (MFE) and geometric mean fold error (GMFE) methods were used to compare the differences between the predicted and observed values of the pharmacokinetic parameters to evaluate the accuracy of PBPK modeling. The validated models were then used to support dose safety for different CYP2D6 phenotypes. Results: The developed and validated CYP2D6 phenotype-related PBPK model successfully predicted codeine and morphine dispositions in different CYP2D6 phenotypes. Compared with EMs, the predicted AUC0-∞ value of morphine was 98.6% lower in PMs, 60.84% lower in IMs, and 73.43% higher in UMs. Morphine plasma exposure in IMs administered 80 mg of codeine was roughly comparable to that in EMs administered 30 mg of codeine. CYP2D6 UMs may start dose titration to achieve an optimal individual regimen and avoid a single dose of over 20 mg. Codeine should not be used in PMs for pain relief, considering its insufficient efficacy. Conclusion: PBPK modeling can be applied to explore the dosing safety of codeine and can be helpful in predicting the effect of CYP2D6 genetic polymorphisms on drug-drug interactions (DDIs) with codeine in the future.

5.
Sci Adv ; 10(16): eadh3425, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630810

RESUMEN

Drosophila melanogaster is a widely used model organism for studying environmental adaptation. However, the genetic diversity of populations in Asia is poorly understood, leaving a notable gap in our knowledge of the global evolution and adaptation of this species. We sequenced genomes of 292 D. melanogaster strains from various ecological settings in China and analyzed them along with previously published genome sequences. We have identified six global genetic ancestry groups, despite the presence of widespread genetic admixture. The strains from China represent a unique ancestry group, although detectable differentiation exists among populations within China. We deciphered the global migration and demography of D. melanogaster, and identified widespread signals of adaptation, including genetic changes in response to insecticides. We validated the effects of insecticide resistance variants using population cage trials and deep sequencing. This work highlights the importance of population genomics in understanding the genetic underpinnings of adaptation, an effort that is particularly relevant given the deterioration of ecosystems.


Asunto(s)
Drosophila melanogaster , Metagenómica , Animales , Drosophila melanogaster/genética , Variación Genética , Ecosistema , África del Sur del Sahara , China
6.
Nanomicro Lett ; 16(1): 183, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683261

RESUMEN

In perovskite solar cells (PSCs), the inherent defects of perovskite film and the random distribution of excess lead iodide (PbI2) prevent the improvement of efficiency and stability. Herein, natural cellulose is used as the raw material to design a series of cellulose derivatives for perovskite crystallization engineering. The cationic cellulose derivative C-Im-CN with cyano-imidazolium (Im-CN) cation and chloride anion prominently promotes the crystallization process, grain growth, and directional orientation of perovskite. Meanwhile, excess PbI2 is transferred to the surface of perovskite grains or formed plate-like crystallites in local domains. These effects result in suppressing defect formation, decreasing grain boundaries, enhancing carrier extraction, inhibiting non-radiative recombination, and dramatically prolonging carrier lifetimes. Thus, the PSCs exhibit a high power conversion efficiency of 24.71%. Moreover, C-Im-CN has multiple interaction sites and polymer skeleton, so the unencapsulated PSCs maintain above 91.3% of their initial efficiencies after 3000 h of continuous operation in a conventional air atmosphere and have good stability under high humidity conditions. The utilization of biopolymers with excellent structure-designability to manage the perovskite opens a state-of-the-art avenue for manufacturing and improving PSCs.

7.
Mitochondrion ; 76: 101881, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604460

RESUMEN

DEAD-box helicases are important players in mitochondrial gene expression, which is necessary for mitochondrial respiration. In this study, we characterized Schizosaccharomyces pombe Mss116 (spMss116), a member of the family of DEAD-box RNA helicases. Deletion of spmss116 in a mitochondrial intron-containing background significantly reduced the levels of mitochondrial DNA (mtDNA)-encoded cox1 and cob1 mRNAs and impaired mitochondrial translation, leading to a severe respiratory defect and a loss of cell viability during stationary phase. Deletion of mitochondrial introns restored the levels of cox1 and cob1 mRNAs to wide-type (WT) levels but could not restore mitochondrial translation and respiration in Δspmss116 cells. Furthermore, deletion of spmss116 in both mitochondrial intron-containing and intronless backgrounds impaired mitoribosome assembly and destabilization of mitoribosomal proteins. Our findings suggest that defective mitochondrial translation caused by deletion of spmss116 is most likely due to impaired mitoribosome assembly.


Asunto(s)
ARN Helicasas DEAD-box , Ribosomas Mitocondriales , Biosíntesis de Proteínas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Ribosomas Mitocondriales/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Eliminación de Gen , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
8.
Curr Drug Metab ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38571358

RESUMEN

AIM: The aim of this study was to investigate the metabolism of Gelsemium elegans in human, pig, goat and rat liver microsomes and to elucidate the metabolic pathways and cleavage patterns of the Gelsemium alkaloids among different species. METHODS: A human, goat, pig and rat liver microparticles were incubated in vitro. After incubating at 37°C for 1 hour and centrifuging, the processed samples were detected by HPLC/Qq-TOFMS was used to detect alcohol extract of Gelsemium elegans and its metabolites. RESULTS: Forty-six natural products were characterized from alcohol extract of Gelsemium elegans and 13 metabolites were identified. These 13 metabolites belong to the gelsemine, koumine, gelsedine, humantenine, yohimbane, and sarpagine classes of alkaloids. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. All 13 metabolites were detected in pig and rat microsomes, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human microsomes. CONCLUSION: In this study, Gelsemium elegans metabolic patterns in different species are clarified and the in vitro metabolism of Gelsemium elegans is investigated. It is of great significance for its clinical development and rational application.

9.
Brain Res Bull ; 211: 110936, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554980

RESUMEN

BACKGROUND: Chronic subdural hematoma (CSDH) is a prevalent form of intracranial haemorrhage encountered in neurosurgical practice, and its incidence has notably risen in recent years. Currently, there is a lack of studies that have comprehensively classified the cells present in hematomas removed during surgery, and their correlation with CSDH recurrence remains elusive. This study aims to analyse the subcellular populations and occupancy levels within peripheral blood. METHODS: This study analyses the subcellular populations and occupancy levels within peripheral blood and postoperatively removed hematomas by single-cell sequencing and attempts to analyse the effect of different cell occupancies within peripheral blood and intraoperatively removed hematomas on CSDH. RESULTS: The single-cell sequencing results showed that the cells were classified into 25 clusters by differential gene and UMAP dimensionality reduction clustering analyses and further classified into 17 significant cell populations by cell markers: pDCs, CD8 T cells, CD4 T cells, MigDCs, cDC2s, cDC1s, plasma cells, neutrophils, naive B cells, NK cells, memory B cells, M2 macrophages, CD8 Teffs, CD8 MAIT cells, CD4 Tregs, CD19 B cells, and monocytes. Further research showed that the presence of more cDC2 and M2 macrophages recruited at the focal site in patients with CSDH and the upregulation of the level of T-cell occupancy may be a red flag for further brain damage. ROS, a marker of oxidative stress, was significantly upregulated in cDC2 cells and may mediate the functioning of transcription proteins of inflammatory factors, such as NFκB, which induced T cells' activation. Moreover, cDC2 may regulate M2 macrophage immune infiltration and anti-inflammatory activity by secreting IL1ß and binding to M2 macrophage IL1R protein. CONCLUSION: The detailed classification of cells in the peripheral blood and hematoma site of CSDH patients helps us to understand the mechanism of CSDH generation and the reduction in the probability of recurrence by regulating the ratio of cell subpopulations.


Asunto(s)
Hematoma Subdural Crónico , Análisis de la Célula Individual , Humanos , Hematoma Subdural Crónico/metabolismo , Análisis de la Célula Individual/métodos , Masculino , Anciano , Femenino , Persona de Mediana Edad , Macrófagos/metabolismo , Anciano de 80 o más Años
10.
J Biol Chem ; 300(4): 107176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499152

RESUMEN

Mitochondrial translation depends on mRNA-specific activators. In Schizosaccharomyces pombe, DEAD-box protein Mrh5, pentatricopeptide repeat (PPR) protein Ppr4, Mtf2, and Sls1 form a stable complex (designated Mrh5C) required for translation of mitochondrial DNA (mtDNA)-encoded cox1 mRNA, the largest subunit of the cytochrome c oxidase complex. However, how Mrh5C is formed and what role Mrh5C plays in cox1 mRNA translation have not been reported. To address these questions, we investigated the role of individual Mrh5C subunits in the assembly and function of Mrh5C. Our results revealed that Mtf2 and Sls1 form a subcomplex that serves as a scaffold to bring Mrh5 and Ppr4 together. Mrh5C binds to the small subunit of the mitoribosome (mtSSU), but each subunit could not bind to the mtSSU independently. Importantly, Mrh5C is required for the association of cox1 mRNA with the mtSSU. Finally, we investigated the importance of the signature DEAD-box in Mrh5. We found that the DEAD-box of Mrh5 is required for the association of Mrh5C and cox1 mRNA with the mtSSU. Unexpectedly, this motif is also required for the interaction of Mrh5 with other Mrh5C subunits. Altogether, our results suggest that Mrh5 and Ppr4 cooperate in activating the translation of cox1 mRNA. Our results also suggest that Mrh5C activates the translation of cox1 mRNA by promoting the recruitment of cox1 mRNA to the mtSSU.


Asunto(s)
Complejo IV de Transporte de Electrones , Proteínas de la Membrana , Proteínas Mitocondriales , Biosíntesis de Proteínas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de la Membrana/metabolismo
11.
Bioorg Chem ; 145: 107252, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437763

RESUMEN

Isoquinoline alkaloids are an important class of natural products that are abundant in the plant kingdom and exhibit a wide range of structural diversity and biological activities. With the deepening of research in recent years, more and more isoquinoline alkaloids have been isolated and identified and proved to contain a variety of biological activities and pharmacological effects. In this review, we introduce the research progress of isoquinoline alkaloids from 2019 to 2022, mainly in the part of biological activities, including antitumor, antimicrobial, antidiabetic, antiviral, anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, analgesic, and other activities. This study provides a clear direction for the rational development and utilization of isoquinoline alkaloids, suggesting that these alkaloids have great potential in the field of drug research.


Asunto(s)
Alcaloides , Antiinfecciosos , Alcaloides/química , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Isoquinolinas/farmacología , Isoquinolinas/química
12.
Angew Chem Int Ed Engl ; 63(23): e202402458, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38545814

RESUMEN

Visible-light sensitive and bi-functionally favored CO2 reduction (CRR)/evolution (CER) photocathode catalysts that can get rid of the utilization of ultraviolet light and improve sluggish kinetics is demanded to conquer the current technique-barrier of traditional Li-CO2 battery. Here, a kind of redox molecular junction sp2c metal-covalent organic framework (i.e. Cu3-BTDE-COF) has been prepared through the connection between Cu3 and BTDE and can serve as efficient photocathode catalyst in light-assisted Li-CO2 battery. Cu3-BTDE-COF with redox-ability, visible-light-adsorption region, electron-hole separation ability and endows the photocathode with excellent round-trip efficiency (95.2 %) and an ultralow voltage hysteresis (0.18 V), outperforming the Schiff base COFs (i.e. Cu3-BTDA-COF and Cu3-DT-COF) and majority of the reported photocathode catalysts. Combined theoretical calculations with characterizations, Cu3-BTDE-COF with the integration of Cu3 centers, thiazole and cyano groups possess strong CO2 adsorption/activation and Li+ interaction/diffusion ability to boost the CRR/CER kinetics and related battery property.

13.
Curr Opin Biotechnol ; 86: 103084, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38394936

RESUMEN

Precision fermentation involves the rewiring of metabolic pathways in generally recognized as safe microorganisms, fermentation scale-up, and downstream processing to produce food ingredients from abundant and inexpensive substrates. Using precise genome editing of food-fermenting microorganisms, precision fermentation can also produce fermented foods with more desirable properties. These genetic tools allow for the manipulation of flavors and nutritional content in fermented foods, the economic production of functional food ingredients, and the sustainable production of otherwise-costly macronutrients. By introducing the metabolic designs, genetic modifications, and resulting products of engineered microorganisms developed through academic and industrial research, this review aims to provide insights into the potentials and challenges of precision fermentation for the economic, safe, and sustainable production of foods.


Asunto(s)
Alimentos Fermentados , Ingredientes Alimentarios , Fermentación , Alimentos , Microbiología de Alimentos
14.
J Environ Manage ; 353: 120225, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38330837

RESUMEN

China's growing demand for bulk chemicals and concerns regarding energy security are scaling up coal-to-olefins (CTO) production. Three generations of independent dimethyl ether/methanol-to-olefins technologies have been successively launched with greatly improved production efficiencies. However, to date, widespread concerns regarding the intensive environmental impacts and potential economic risks have not been addressed in the context of this industrialization. Here we show that, through the technological progress from the first to the third generation, life cycle energy consumption, water consumption, and carbon emissions can be reduced to 119.5 GJ/t, 27.6 t/t, and 9.1 t CO2-eq/t, respectively, and human health damage, ecosystem quality damage, and resource scarcity impacts can be decreased by 40.5 %, 50.1 %, and 16.4 %, respectively. This is accompanied by an excellent performance in terms of production cost, net present value, and internal return rate at 792.5 USD/t, 173.4 USD/t, and 19.4 %, respectively. Substantial environmental and economic benefits can be gained by coupling renewables in the form of using green hydrogen from solar and wind power to synthesize methanol. Particularly, life cycle carbon emissions and resource scarcity impacts are reduced by 23.4 % and 22.4 %, respectively, exceeding the reduction in technological progress. However, coupling renewables increases the life cycle energy consumption to 154.5 GJ/t, counteracting the benefits of technological progress. Our results highlight the importance of technological progress and coupled renewables for enhancing the sustainability of the CTO industry.


Asunto(s)
Alquenos , Carbón Mineral , Humanos , Ecosistema , Metanol , Desarrollo Económico , Carbono/análisis , Dióxido de Carbono/análisis , China
15.
Biochim Biophys Acta Gen Subj ; 1868(4): 130567, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38242182

RESUMEN

Glioblastoma (GBM) is a highly aggressive type of primary brain cancer with a poor prognosis, and despite intensive research, survival rates have not significantly improved. Non-coding RNAs (ncRNAs) are emerging as critical regulators of GBM pathogenesis, including angiogenesis, which is essential for tumor growth and invasion. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) have been identified as regulators of angiogenesis in GBM. miRNAs such as miR-21, miR-10b, and miR-26a promote angiogenesis by targeting anti-angiogenic factors, while lncRNAs such as H19 and MALAT1 inhibit angiogenesis by regulating pro-angiogenic factors. CircRNAs, such as circSMARCA5 and circBACH2, also regulate angiogenesis through various mechanisms. Similarly, signaling pathways such as the vascular endothelial growth factor (VEGF) pathway play critical roles in angiogenesis and have been targeted for GBM therapy. However, resistance to anti-angiogenic therapies is a significant obstacle in clinical practice. Developing novel therapeutic strategies targeting ncRNAs and angiogenesis is a promising approach for GBM. Potential targets include miRNAs, lncRNAs, circRNAs, and downstream signaling pathways that regulate angiogenesis. This review highlights the critical roles of ncRNAs and angiogenesis in GBM pathogenesis and the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.


Asunto(s)
Glioblastoma , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Glioblastoma/patología , Factor A de Crecimiento Endotelial Vascular , Angiogénesis , Calidad de Vida , ARN Circular/genética , MicroARNs/genética , MicroARNs/metabolismo
16.
Aging (Albany NY) ; 16(2): 1374-1389, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38295303

RESUMEN

A growing body of clinical data has shown that patients with Alzheimer's disease (AD) have symptoms such as liver dysfunction and microbial-gut-brain axis dysfunction in addition to brain pathology, presenting a systemic multisystemic pathogenesis. Considering the systemic benefits of exercise, here, we first observed the effects of long-term treadmill exercise on liver injuries in APP/PS1 transgenic AD mice and explored the potential mechanisms of the gut-liver-brain axis's role in mediating exercise's ability to reduce bacterial lipopolysaccharide (LPS) pathology in the brain. The results showed that the livers of the AD mice were in states of oxidative stress, while the mice after long-term treadmill exercise showed alleviation of their oxidative stress, their intestinal barriers were protected, and the ability of their Kupffer cells to hydrolyze LPS was improved, in addition to the accumulation of LPS in their brains being reduced. Notably, the livers of the AD mice were in immunosuppressed states, with lower pro-oxidative and antioxidative levels than the livers of the wild-type mice, while exercise increased both their oxidative and antioxidative levels. These results suggest that long-term exercise modulates hepatic redox homeostasis in AD mice, attenuates oxidative damage, and reduces the accumulation of LPS in the brain through the combined action of the intestine-liver-Kupffer cells.


Asunto(s)
Enfermedad de Alzheimer , Condicionamiento Físico Animal , Animales , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Macrófagos del Hígado/metabolismo , Lipopolisacáridos , Hígado/metabolismo , Ratones Transgénicos , Oxidación-Reducción , Condicionamiento Físico Animal/fisiología
17.
Dev Cell ; 59(4): 434-447.e8, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38295794

RESUMEN

The cotyledons of etiolated seedlings from terrestrial flowering plants must emerge from the soil surface, while roots must penetrate the soil to ensure plant survival. We show here that the soil emergence-related transcription factor PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) controls root penetration via transducing external signals perceived by the receptor kinase FERONIA (FER) in Arabidopsis thaliana. The loss of FER function in Arabidopsis and soybean (Glycine max) mutants resulted in a severe defect in root penetration into agar medium or hard soil. Single-cell RNA sequencing (scRNA-seq) profiling of Arabidopsis roots identified a distinct cell clustering pattern, especially for root cap cells, and identified PIF3 as a FER-regulated transcription factor. Biochemical, imaging, and genetic experiments confirmed that PIF3 is required for root penetration into soil. Moreover, FER interacted with and stabilized PIF3 to modulate the expression of mechanosensitive ion channel PIEZO and the sloughing of outer root cap cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fosfotransferasas/metabolismo , Fitocromo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Appl Microbiol Biotechnol ; 108(1): 157, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252171

RESUMEN

Nanosilver oxide exhibits strong antibacterial and photocatalytic properties and has shown great application potential in food packaging, biochemical fields, and other fields involving diseases and pest control. In this study, Ag2O nanoparticles were synthesized using Bacillus thuringiensis (Bt-Ag2O NPs). The physicochemical characteristics of the Bt-Ag2O NPs were analyzed by UV‒vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), inductively coupled plasma emission spectrometry (ICP), high-resolution transmission electron microscopy (HR-TEM), and zeta potential. The phis-chemical characterization revealed that the Bt-Ag2O NPs are in spherical shape with the small particle size (18.24 nm), high crystallinity, well dispersity, and stability. The biopesticidal and antifungal effects of Bt-Ag2O NPs were tested against Tribolium castaneum, Aspergillus flavus, and Penicillium chrysogenum. The survival, growth, and reproduction of tested pests and molds were significantly inhibited by Bt-Ag2O NPs in a dose-dependent manner. Bt-Ag2O NPs showed higher pesticidal activities against T. castaneum than Bt and commercial Ag2O NPs. The LC50 values of Bt, Ag2O NPs, and Bt-Ag2O NPs were 0.139%, 0.072%, and 0.06% on day 14, respectively. The Bt-Ag2O NPs also showed well antifungal activities against A. flavus and P. chrysogenum, while it resulted a small inhibition zone than commercial Ag2O NPs did. In addition, A. flavus showed much more sensitive to Bt-Ag2O NP treatments, compared to P. chrysogenum. Our results revealed that Bt-Ag2O NPs synthesized using B. thuringiensis could act as pesticides and antifungal agents in stored-product fields. KEY POINTS: • Bt-Ag2O NPs could be synthesized using Bacillus thuringiensis (Bt). • The NPs showed a high degree of crystallinity, spherical shape, and small particle size. • The NPs also showed excellent insecticidal and antifungal activity.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Nanopartículas , Plaguicidas , Plaguicidas/farmacología , Antifúngicos/farmacología , Insecticidas/farmacología
19.
Small ; 20(12): e2307467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940620

RESUMEN

The electrochemical reduction of carbon dioxide (CO2) to ethylene creates a carbon-neutral approach to converting carbon dioxide into intermittent renewable electricity. Exploring efficient electrocatalysts with potentially high ethylene selectivity is extremely desirable, but still challenging. In this report, a laboratory-designed catalyst HKUST-1@Cu2O/PTFE-1 is prepared, in which the high specific surface area of the composites with improved CO2 adsorption and the abundance of active sites contribute to the increased electrocatalytic activity. Furthermore, the hydrophobic interface constructed by the hydrophobic material polytetrafluoroethylene (PTFE) effectively inhibits the occurrence of hydrogen evolution reactions, providing a significant improvement in the efficiency of CO2 electroreduction. The distinctive structures result in the remarkable hydrocarbon fuels generation with high Faraday efficiency (FE) of 67.41%, particularly for ethylene with FE of 46.08% (-1.0 V vs RHE). The superior performance of the catalyst is verified by DFT calculation with lower Gibbs free energy of the intermediate interactions with improved proton migration and selectivity to emerge the polycarbon(C2+) product. In this work, a promising and effective strategy is presented to configure MOF-based materials with tailored hydrophobic interface, high adsorption selectivity and more exposed active sites for enhancing the efficiency of the electroreduction of CO2 to C2+ products with high added value.

20.
Can J Physiol Pharmacol ; 102(1): 33-41, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944129

RESUMEN

Lipopolysaccharide (LPS) results in a lethal hypoglycemic response. However, the main molecular mechanism involved in LPS-induced glucose metabolism disorder is poorly understood. This study intends to investigate the signaling pathways involved in LPS-induced hypoglycemia and potential efficacy of extracellular signal-regulated kinase (ERK) inhibitor SCH772984. The effects of LPS and SCH772984 on gluconeogenesis, glucose absorption, and glycogenolysis were evaluated by pyruvate tolerance test, oral glucose tolerance test, and glucagon test, respectively. After a single intraperitoneal injection of 0.5 mg/kg LPS, the mice's blood glucose levels and gluconeogenesis ability were significantly lower than that of control group. Besides, mRNA and protein expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) decreased significantly after LPS treatment. LPS induced the phosphorylation of ERK1/2, MEK1/2 (mitogen-activated protein kinase), and Foxo1 while inhibited Foxo1 expression in the nucleus, indicating an important role of the MEK/ERK/Foxo1 signaling in the inhibition of gluconeogenesis by LPS. Furthermore, SCH772984 elevated blood glucose, increased the G6Pase and PEPCK expression, and inhibited pERK1/2 and pFoxo1 expression in LPS-induced mice. In summary, LPS inhibited gluconeogenesis and induced hypoglycemia through the MEK/ERK/Foxo1 signal pathway, and ERK inhibitor could effectively reverse decreased blood glucose in mice with LPS treatment. These findings provide a novel therapeutic target for LPS-induced hypoglycemia.


Asunto(s)
Gluconeogénesis , Hipoglucemia , Ratones , Animales , Glucemia/metabolismo , Lipopolisacáridos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hígado , Glucosa/metabolismo , Hipoglucemia/inducido químicamente , Hipoglucemia/tratamiento farmacológico , Hipoglucemia/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ratones Endogámicos C57BL , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...