Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Waste Manag ; 172: 151-161, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37918308

RESUMEN

Vegetation root exudates have the ability to shape soil microbial community structures, thereby enhancing CH4 bio-oxidation capacity in landfill cover systems. In this study, the CH4 oxidation capacity of indigenous vegetation rhizosphere microorganisms within operational landfill covers in Chongqing, China, was investigated for the first time, with the objective of identifying suitable plant candidates for CH4 mitigation initiatives within landfill cover systems. Furthermore, a multi-omics methodology was employed to explore microbial community structures and metabolic variances within the rhizospheric environment of diverse vegetation types. The primary aim was to elucidate the fundamental factors contributing to divergent CH4 oxidation capacities observed in rhizosphere soils. The findings demonstrated that herbaceous vegetation predominated in landfill covers. Notably, Rumex acetosa exhibited the highest CH4 oxidation capacity in the rhizosphere soil, approximately 20 times greater than that in non-rhizosphere soil. Root exudates played a crucial role in inducing the colonization of CH4-oxidizing functional microorganisms in the rhizosphere, subsequently prompting the development of specific metabolic pathways. This process, in turn, enhanced the functional activity of the microorganisms while concurrently bolstering their tolerance to microbial pollutants. Consequently, the addition of substances like Limonexic acid strengthened the CH4 bio-oxidation process, thereby underscoring the suitability of Rumex acetosa and similar vegetation species as preferred choices for landfill cover vegetation restoration.


Asunto(s)
Metano , Rizosfera , Metano/química , Multiómica , Oxidación-Reducción , Instalaciones de Eliminación de Residuos , Suelo/química , Microbiología del Suelo
2.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1874-1888, 2022 May 25.
Artículo en Chino | MEDLINE | ID: mdl-35611735

RESUMEN

Landfill is one of the important sources of carbon tetrachloride (CT) pollution, and it is important to understand the degradation mechanism of CT in landfill cover for better control. In this study, a simulated landfill cover system was set up, and the biotransformation mechanism of CT and the associated micro-ecology were investigated. The results showed that three stable functional zones along the depth, i.e., aerobic zone (0-15 cm), anoxic zone (15-45 cm) and anaerobic zone (> 45 cm), were generated because of long-term biological oxidation in landfill cover. There were significant differences in redox condition and microbial community structure in each zone, which provided microbial resources and favorable conditions for CT degradation. The results of biodegradation indicated that dechlorination of CT produced chloroform (CF), dichloromethane (DCM) and Cl- in anaerobic and anoxic zones. The highest concentration of dechlorination products occurred at 30 cm, which were degraded rapidly in aerobic zone. In addition, CT degradation rate was 13.2-103.6 µg/(m2·d), which decreased with the increase of landfill gas flux. The analysis of diversity sequencing revealed that Mesorhizobium, Thiobacillus and Intrasporangium were potential CT-degraders in aerobic, anaerobic and anoxic zone, respectively. Moreover, six species of dechlorination bacteria and eighteen species of methanotrophs were also responsible for anaerobic transformation of CT and aerobic degradation of CF and DCM, respectively. Interestingly, anaerobic dechlorination and aerobic transformation occurred simultaneously in the anoxic zone in landfill cover. Furthermore, analysis of degradation mechanism suggested that generation of stable anaerobic-anoxic-aerobic zone by regulation was very important for the harmless removal of full halogenated hydrocarbon in vadose zone, and the increase of anoxic zone scale enhanced their removal. These results provide theoretical guidance for the removal of chlorinated pollutants in landfills.


Asunto(s)
Tetracloruro de Carbono , Instalaciones de Eliminación de Residuos , Bacterias/metabolismo , Biodegradación Ambiental , Tetracloruro de Carbono/análisis , Tetracloruro de Carbono/metabolismo , Metano/análisis , Metano/metabolismo
3.
Ecotoxicol Environ Saf ; 230: 113110, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34971998

RESUMEN

The cometabolism mechanism of chlorinated hydrocarbon solvents (CHSs) in mixed consortia remains largely unknown. CHS biodegradation characteristics and microbial networks in methanotrophic consortia were studied for the first time. The results showed that all CHSs can efficiently be degraded via cometabolism with a maximum degradation rate of 4.8 mg/(h·gcell). Chloroalkane and chloroethylene were more easily degraded than chlorobenzenes by methanotrophic consortia, especially nonfully chlorinated aliphatic hydrocarbons, which were converted to Cl- with a production rate of 0.29-0.36 mg/(h·gcell). In addition, the microecological response results indicated that Methylocystaceae (49.0%), Methylomonas (65.3%) and Methylosarcina (41.9%) may be the major functional degraders in methanotrophic consortia. Furthermore, the results of the microbial correlation network suggested that interactive relationships constructed by type I methanotrophs and heterotrophs determined biodegradability. Additionally, PICRUSt analysis showed that CHSs could increase the relative abundance of CHS degradation genes and reduce the relative abundance of methane oxidation genes, which was in good agreement with the experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA