Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
J Dent Sci ; 18(4): 1850-1858, 2023 Oct.
Article En | MEDLINE | ID: mdl-37799901

Abstract: Background/purpose: Overlay restorations can be used clinically as a treatment option to preserve natural dentine. However, whether the residual enamel thickness and overlay thickness affect the adhesion between the restoration and tooth is still unknown. This study was to investigate effects of the overlay thickness and residual enamel thickness on bonding strength. Materials and methods: Overlays of different thicknesses were prepared with natural teeth which had 2, 4, and 6 mm of occlusal reduction (n = 10). Specimens were subjected to 10,000 cycles in water at 5-55 °C, and finally compressive strength tests were used to evaluate the bonding strength. Results: All groups showed good bond strength (P > 0.05). The overlay restorations of different thicknesses reduced the preparation amount by 30.3%-7.2% and significantly preserved more of the tooth structure (P < 0.005). Compared to the control group, the overlay restoration increased the marginal fitness by about 0.67-0.88 times. The thermal cycling indicated that the decrease in the maximum bearing stress was due to the aging of the ceramic itself. Therefore, the thickness of the overlay had a greater influence on the compressive strength than the bond strength. Conclusion: Based on the above this study recommends an overlay thickness of at least 2 mm in clinical practice. The aging test confirmed that adhesion between the overlay and teeth was quite firm and stable. This shows that a stable adhesive effect of the overlay can be used as a treatment option for preserving a greater amount of a tooth's structure.

2.
Diagnostics (Basel) ; 13(7)2023 Mar 29.
Article En | MEDLINE | ID: mdl-37046510

An important consideration in medical plastic surgery is the evaluation of the patient's facial symmetry. However, because facial attractiveness is a slightly individualized cognitive experience, it is difficult to determine face attractiveness manually. This study aimed to train a model for assessing facial attractiveness using transfer learning while also using the fine-grained image model to separate similar images by first learning features. In this case, the system can make assessments based on the input of facial photos. Thus, doctors can quickly and objectively treat patients' scoring and save time for scoring. The transfer learning was combined with CNN, Xception, and attention mechanism models for training, using the SCUT-FBP5500 dataset for pre-training and freezing the weights as the transfer learning model. Then, we trained the Chang Gung Memorial Hospital Taiwan dataset to train the model based on transfer learning. The evaluation uses the mean absolute error percentage (MAPE) value. The root mean square error (RMSE) value is used as the basis for experimental adjustment and the quantitative standard for the model's predictive. The best model can obtain 0.50 in RMSE and 18.5% average error in MAPE. A web page was developed to infer the deep learning model to visualize the predictive model.

3.
Sensors (Basel) ; 23(4)2023 Feb 16.
Article En | MEDLINE | ID: mdl-36850824

This research combines the application of artificial intelligence in the production equipment fault monitoring of aerospace components. It detects three-phase current abnormalities in large hot-pressing furnaces through smart meters and provides early preventive maintenance. Different anomalies are classified, and a suitable monitoring process algorithm is proposed to improve the overall monitoring quality, accuracy, and stability by applying AI. We also designed a system to present the heater's power consumption and the hot-pressing furnace's fan and visualize the process. Combining artificial intelligence with the experience and technology of professional technicians and researchers to detect and proactively grasp the health of the hot-pressing furnace equipment improves the shortcomings of previous expert systems, achieves long-term stability, and reduces costs. The complete algorithm introduces a model corresponding to the actual production environment, with the best model result being XGBoost with an accuracy of 0.97.

4.
Environ Sci Pollut Res Int ; 30(9): 23386-23397, 2023 Feb.
Article En | MEDLINE | ID: mdl-36323968

The River Thurso, North Scotland, receives substantial terrestrial deliveries of dissolved organic matter (DOM) leached from Europe's most extensive blanket bogs. The relatively short distance between peatlands and coastal ocean offers potential for research to investigate source-to-sea processing of terrigenous dissolved organic carbon (DOC). Here, we determined DOC concentrations in the bulk (< 0.4 µm), truly dissolved (< 5 kDa), and colloidal fraction (5 kDa - 0.4 µm) as well as DOM absorbance and fluorescence spectra during two river catchment surveys and two corresponding coastal plume surveys, in early spring (1st sampling period) and late spring (2nd sampling period). DOC concentrations ranged from 79 to 3799 µM in early spring and from 115 to 5126 µM in late spring. DOM exhibited conservative mixing across the plume in both surveys, but the plume extended further offshore in the second survey due to a pulse of freshwater caused by recent rainfall. Fluorescence excitation-emission matrices (EEMs) and fluorescence indices revealed that the flushed DOM was humic-like, recently synthesized DOM. Coupled with C/N ratio analyses and molecular weight fractionation, the fluorescence indices also provided evidence for the gradual altering of DOM characteristics along the bog - headstream - loch - river continuum. The same analytical tools revealed that seasonal variations occurred within the DOM pool of marine origin, i.e., greater abundance of low-molecular weight bacterial or algal DOM in the late spring survey. The time scale of such variations relative to the flushing time of water through the aquatic continuum should be taken into account when interpreting the DOM property-salinity distributions of major river plumes.


Dissolved Organic Matter , Fresh Water , Rivers , Scotland , Spectrometry, Fluorescence
5.
Sci Rep ; 12(1): 20133, 2022 11 22.
Article En | MEDLINE | ID: mdl-36418355

This study was to determine the significance of factors considered for the measurement accuracy of personal dosimeter in dosimetry services such as dosimetry service, irradiation category, years of use and readout frequency. The investigation included management information questionnaire, on-site visit and blind test. The blind test with random selected personal badge was used in inter-comparison of eight dosimetry services, and the test results followed ANSI/HPS N13.11 criteria. This study also analyzed the measurement deviations if they felt in the criteria of ICRP 75 or not. One-way ANOVA tests were used to analyze the significant difference of the measurement deviations in different dosimetry services, irradiation categories, and years of use. Simple linear-regression test was performed for the significance of the prediction model between measurement deviations and readout frequencies. All visited dosimetry services followed the proper statue of basic management and passed the performance check of the tolerance level. The average deviations corresponding to category I, category II deep dose, and category II shallow dose were 6.08%, 9.49%, and 10.41% respectively. There had significant differences of measurement deviation in different dosimetry services (p < 0.0001) and irradiation categories (p = 0.016) but no significant difference in years of use (p = 0.498). There was no significance in the linear-regression model between measurement deviation and badge readout frequencies. Based on the regular calibration of the personal dosimeter, the deviation of the measured value is mainly affected by different dosimetry services and irradiation categories; and there shows no significant influence by years of use and readout frequency.


Radiation Dosimeters , Radiometry , Calibration , Analysis of Variance
6.
Front Med (Lausanne) ; 9: 937216, 2022.
Article En | MEDLINE | ID: mdl-36016999

Backgrounds: Falls are currently one of the important safety issues of elderly inpatients. Falls can lead to their injury, reduced mobility and comorbidity. In hospitals, it may cause medical disputes and staff guilty feelings and anxiety. We aimed to predict fall risks among hospitalized elderly patients using an approach of artificial intelligence. Materials and methods: Our working hypothesis was that if hospitalized elderly patients have multiple risk factors, their incidence of falls is higher. Artificial intelligence was then used to predict the incidence of falls of these patients. We enrolled those elderly patients aged >65 years old and were admitted to the geriatric ward during 2018 and 2019, at a single medical center in central Taiwan. We collected 21 physiological and clinical data of these patients from their electronic health records (EHR) with their comprehensive geriatric assessment (CGA). Data included demographic information, vital signs, visual ability, hearing ability, previous medication, and activity of daily living. We separated data from a total of 1,101 patients into 3 datasets: (a) training dataset, (b) testing dataset and (c) validation dataset. To predict incidence of falls, we applied 6 models: (a) Deep neural network (DNN), (b) machine learning algorithm extreme Gradient Boosting (XGBoost), (c) Light Gradient Boosting Machine (LightGBM), (d) Random Forest, (e) Stochastic Gradient Descent (SGD) and (f) logistic regression. Results: From modeling data of 1,101 elderly patients, we found that machine learning algorithm XGBoost, LightGBM, Random forest, SGD and logistic regression were successfully trained. Finally, machine learning algorithm XGBoost achieved 73.2% accuracy. Conclusion: This is the first machine-learning based study using both EHR and CGA to predict fall risks of elderly. Multiple risk factors of falls in hospitalized elderly patients can be put into a machine learning model to predict future falls for early planned actions. Future studies should be focused on the model fitting and accuracy of data analysis.

7.
CRISPR J ; 5(2): 329-340, 2022 04.
Article En | MEDLINE | ID: mdl-35438515

The RNA-guided Cas9 nuclease from Streptococcus pyogenes has become an important gene-editing tool. However, its intrinsic off-target activity is a major challenge for biomedical applications. Distinct from some reported engineering strategies that specifically target a single domain, we rationally introduced multiple amino acid substitutions across multiple domains in the enzyme to create potential high-fidelity variants, considering the Cas9 specificity is synergistically determined by various domains. We also exploited our previously derived atomic model of activated Cas9 complex structure for guiding new modifications. This approach has led to the identification of the HSC1.2 Cas9 variant with enhanced specificity for DNA cleavage. While the enhanced specificity associated with the HSC1.2 variant appeared to be position-dependent in the in vitro cleavage assays, the frequency of off-target DNA editing with this Cas9 variant is much less than that of the wild-type Cas9 in human cells. The potential mechanisms causing the observed position-dependent effect were investigated through molecular dynamics simulation. Our discoveries establish a solid foundation for leveraging structural and dynamic information to develop Cas9-like enzymes with high specificity in gene editing.


CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , DNA Cleavage , Endonucleases/genetics , Humans , RNA/chemistry
8.
Cell Death Dis ; 13(3): 262, 2022 03 24.
Article En | MEDLINE | ID: mdl-35322011

Mutations in N-glycanase 1 (NGLY1), which deglycosylates misfolded glycoproteins for degradation, can cause NGLY1 deficiency in patients and their abnormal fetal development in multiple organs, including microcephaly and other neurological disorders. Using cerebral organoids (COs) developed from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), we investigate how NGLY1 dysfunction disturbs early brain development. While NGLY1 loss had limited impact on the undifferentiated cells, COs developed from NGLY1-deficient hESCs showed defective formation of SATB2-positive upper-layer neurons, and attenuation of STAT3 and HES1 signaling critical for sustaining radial glia. Bulk and single-cell transcriptomic analysis revealed premature neuronal differentiation accompanied by downregulation of secreted and transcription factors, including TTR, IGFBP2, and ID4 in NGLY1-deficient COs. NGLY1 malfunction also dysregulated ID4 and enhanced neuronal differentiation in CO transplants developed in vivo. NGLY1-deficient CO cells were more vulnerable to multiple stressors; treating the deficient cells with recombinant TTR reduced their susceptibility to stress from proteasome inactivation, likely through LRP2-mediated activation of MAPK signaling. Expressing NGLY1 led to IGFBP2 and ID4 upregulation in CO cells developed from NGLY1-deficiency patient's hiPSCs. In addition, treatment with recombinant IGFBP2 enhanced ID4 expression, STAT3 signaling, and proliferation of NGLY1-deficient CO cells. Overall, our discoveries suggest that dysregulation of stress responses and neural precursor differentiation underlies the brain abnormalities observed in NGLY1-deficient individuals.


Organoids , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Proteasome Endopeptidase Complex , Glycoproteins/metabolism , Humans , Neurogenesis , Organoids/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Proteasome Endopeptidase Complex/metabolism
9.
Adv Healthc Mater ; 10(11): e2100024, 2021 06.
Article En | MEDLINE | ID: mdl-33890420

Scaffolds for tissue engineering aim to mimic the native extracellular matrix (ECM) that provides physical support and biochemical signals to modulate multiple cell behaviors. However, the majority of currently used biomaterials are oversimplified and therefore fail to provide a niche required for the stimulation of tissue regeneration. In the present study, 3D decellularized ECM (dECM) scaffolds derived from mesenchymal stem cell (MSC) spheroids and with intricate matrix composition are developed. Specifically, application of macromolecular crowding (MMC) to MSC spheroid cultures facilitate ECM assembly in a 3D configuration, resulting in the accumulation of ECM and associated bioactive components. Decellularized 3D dECM constructs produced under MMC are able to adequately preserve the microarchitecture of structural ECM components and are characterized by higher retention of growth factors. This results in a stronger proangiogenic bioactivity as compared to constructs produced under uncrowded conditions. These dECM scaffolds can be homogenously populated by endothelial cells, which direct the macroassembly of the structures into larger cell-carrying constructs. Application of empty scaffolds enhances intrinsic revascularization in vivo, indicating that the 3D dECM scaffolds represent optimal proangiogenic bioactive blocks for the construction of larger engineered tissue constructs.


Mesenchymal Stem Cells , Tissue Engineering , Endothelial Cells , Extracellular Matrix , Stem Cells , Tissue Scaffolds
10.
Sensors (Basel) ; 21(7)2021 Apr 01.
Article En | MEDLINE | ID: mdl-33915906

To achieve a sensitive and accurate method in body temperature measurement of cattle, this study explores the uses of infrared thermography (IRT), an anemometer, and a humiture meter as a multiple sensors architecture. The influence of environmental factors on IRT, such as wind speed, ambient temperature, and humidity, was considered. The proposed signal processes removed the IRT frames affected by air flow, and also eliminated the IRT frames affected by random body movement of cattle using the frame difference method. In addition, the proposed calibration method reduced the impact of ambient temperature and humidity on IRT results, thereby increasing the accuracy of IRT temperature. The difference of mean value and standard deviation value between recorded rectal reference temperature and IRT temperature were 0.04 °C and 0.10 °C, respectively, and the proposed system substantially improved the measurement consistency of the IRT temperature and reference on cattle body temperature. Moreover, with a relatively small IRT image sensor, the combination of multiple sensors architecture and proper data processing still achieved good temperature accuracy. The result of the root-mean-square error (RMSE) was 0.74 °C, which is quite close to the accurate result of the IRT measurement.


Body Temperature , Thermography , Animals , Cattle , Humidity , Infrared Rays , Temperature , Wind
11.
Front Cell Dev Biol ; 8: 304, 2020.
Article En | MEDLINE | ID: mdl-32528947

Cerebral organoids (COs) developed from human induced pluripotent stem cells (hiPSCs) have been noticed for their potential in research and clinical applications. While skin fibroblast-derived hiPSCs are proficient at forming COs, the cellular and molecular features of COs developed using hiPSCs generated from other somatic cells have not been systematically examined. Urinary epithelial cells (UECs) isolated from human urine samples are somatic cells that can be non-invasively collected from most individuals. In this work, we streamlined the production of COs using hiPSCs reprogrammed from urine sample-derived UECs. UEC-derived hiPSC-developed COs presented a robust capacity for neurogenesis and astrogliogenesis. Although UEC-derived hiPSCs required specific protocol optimization to properly form COs, the cellular and transcriptomic features of COs developed from UEC-derived hiPSCs were comparable to those of COs developed from embryonic stem cells. UEC-derived hiPSC-developed COs that were initially committed to forebrain development showed cellular plasticity to transition between prosencephalic and rhombencephalic fates in vitro and in vivo, indicating their potential to develop into the cell components of various brain regions. The opposite regulation of AKT activity and neural differentiation was found in these COs treated with AKT and PTEN inhibitors. Overall, our data reveal the suitability, advantage, and possible limitations of human urine sample-derived COs for studying neurodevelopment and pharmacological responses.

13.
Microsyst Nanoeng ; 6: 2, 2020.
Article En | MEDLINE | ID: mdl-34567617

Conventional electroporation approaches show limitations in the delivery of macromolecules in vitro and in vivo. These limitations include low efficiency, noticeable cell damage and nonuniform delivery of cells. Here, we present a simple 3D electroporation platform that enables massively parallel single-cell manipulation and the intracellular delivery of macromolecules and small molecules. A pyramid pit micropore array chip was fabricated based on a silicon wet-etching method. A controllable vacuum system was adopted to trap a single cell on each micropore. Using this chip, safe single-cell electroporation was performed at low voltage. Cargoes of various sizes ranging from oligonucleotides (molecular beacons, 22 bp) to plasmid DNA (CRISPR-Cas9 expression vectors, >9 kb) were delivered into targeted cells with a significantly higher transfection efficiency than that of multiple benchmark methods (e.g., commercial electroporation devices and Lipofectamine). The delivered dose of the chemotherapeutic drug could be controlled by adjusting the applied voltage. By using CRISPR-Cas9 transfection with this system, the p62 gene and CXCR7 gene were knocked out in tumor cells, which effectively inhibited their cellular activity. Overall, this vacuum-assisted micropore array platform provides a simple, efficient, high-throughput intracellular delivery method that may facilitate on-chip cell manipulation, intracellular investigation and cancer therapy.

14.
J Fluoresc ; 30(1): 21-25, 2020 Jan.
Article En | MEDLINE | ID: mdl-31838621

In this study, a rapid, inexpensive and convenient microwave assisted synthesis of indole-3-propionic acid-bisphenol A diglycidyl ether (IPA-SR3) fluorescent probe was developed. This fluorescent probe has the dual illumination characteristics of photoinduced electron transfer and aggregation-induced emission for the specific detection of Cu2+ ion in water. The wavelength-dependent photoluminescence behavior of the aggregated IPA-SR3 was highly selective (Ksv = 1.5 × 104 M-1) and sensitive in Cu2+ ion detection, with a low limit of detection (2.9 µM). Therefore, it can be used to detect low-concentration Cu2+ in water samples. Details of the synthesis procedure and fluorescence characteristics are presented herein. Graphical Abstract.

15.
Elife ; 82019 07 30.
Article En | MEDLINE | ID: mdl-31361218

The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (SpyCas9), along with a programmable single-guide RNA (sgRNA), has been exploited as a significant genome-editing tool. Despite the recent advances in determining the SpyCas9 structures and DNA cleavage mechanism, the cleavage-competent conformation of the catalytic HNH nuclease domain of SpyCas9 remains largely elusive and debatable. By integrating computational and experimental approaches, we unveiled and validated the activated Cas9-sgRNA-DNA ternary complex in which the HNH domain is neatly poised for cleaving the target DNA strand. In this catalysis model, the HNH employs the catalytic triad of D839-H840-N863 for cleavage catalysis, rather than previously implicated D839-H840-D861, D837-D839-H840, or D839-H840-D861-N863. Our study contributes critical information to defining the catalytic conformation of the HNH domain and advances the knowledge about the conformational activation underlying Cas9-mediated DNA cleavage.


CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , DNA/metabolism , RNA, Guide, Kinetoplastida/metabolism , Streptococcus pyogenes/enzymology , Catalytic Domain , DNA/chemistry , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , RNA, Guide, Kinetoplastida/chemistry
16.
Trends Biotechnol ; 37(11): 1175-1188, 2019 11.
Article En | MEDLINE | ID: mdl-31072609

Wearable healthcare devices are mainly used for biosensing and transdermal delivery. Recent advances in wearable biosensors allow for long-term and real-time monitoring of physiological conditions at a cellular resolution. Transdermal drug delivery systems have been further scaled down, enabling wide selections of cargo, from natural molecules (e.g., insulin and glucose) to bioengineered molecules (e.g., nanoparticles). Some emerging nanopatches show promise for precise single-cell gene transfection in vivo and have advantages over conventional tools in terms of delivery efficiency, safety, and controllability of delivered dose. In this review, we discuss recent technical advances in wearable micro/nano devices with unique capabilities or potential for single-cell biosensing and transfection in the skin or other organs, and suggest future directions for these fields.


Biosensing Techniques/instrumentation , Monitoring, Physiologic/instrumentation , Transfection/instrumentation , Animals , Drug Delivery Systems/instrumentation , Humans , Skin/metabolism , Wearable Electronic Devices
17.
ACS Appl Nano Mater ; 2(10): 6249-6257, 2019 Oct 25.
Article En | MEDLINE | ID: mdl-33585803

Targeting therapeutic agents to specific organs in the body remains a challenge despite advances in the science of systemic drug delivery. We have engineered a programmable-bioinspired nanoparticle (P-BiNP) delivery system to simultaneously target the bone and increase uptake in homotypic tumor cells by coating polymeric nanoparticles with programmed cancer cell membranes. This approach is unique in that we have incorporated relevant clinical bioinformatics data to guide the design and enhancement of biological processes that these nanoparticles are engineered to mimic. To achieve this, an analysis of RNA expression from metastatic prostate cancer patients identified ITGB3 (a subunit of integrin α V ß 3) as overexpressed in patients with bone metastasis. Cancer cells were stimulated to increase this integrin expression on the cell surface, and these membranes were subsequently used to coat cargo carrying polymeric nanoparticles. Physicochemical optimization and characterization of the P-BiNPs showed desirable qualities regarding size, ζ potential, and stability. In vitro testing confirmed enhanced homotypic binding and uptake in cancer cells. P-BiNPs also demonstrated improved bone localization in vivo with a murine model. This novel approach of identifying clinically relevant targets for dual homotypic and bone targeting has potential as a strategy for treatment and imaging modalities in diseases that affect the bone as well as broader implications for delivering nanoparticles to other organs of interest.

18.
Br J Cancer ; 119(12): 1538-1551, 2018 12.
Article En | MEDLINE | ID: mdl-30385822

BACKGROUND: Although NGLY1 is known as a pivotal enzyme that catalyses the deglycosylation of denatured glycoproteins, information regarding the responses of human cancer and normal cells to NGLY1 suppression is limited. METHODS: We examined how NGLY1 expression affects viability, tumour growth, and responses to therapeutic agents in melanoma cells and an animal model. Molecular mechanisms contributing to NGLY1 suppression-induced anticancer responses were revealed by systems biology and chemical biology studies. Using computational and medicinal chemistry-assisted approaches, we established novel NGLY1-inhibitory small molecules. RESULTS: Compared with normal cells, NGLY1 was upregulated in melanoma cell lines and patient tumours. NGLY1 knockdown caused melanoma cell death and tumour growth retardation. Targeting NGLY1 induced pleiotropic responses, predominantly stress signalling-associated apoptosis and cytokine surges, which synergise with the anti-melanoma activity of chemotherapy and targeted therapy agents. Pharmacological and molecular biology tools that inactivate NGLY1 elicited highly similar responses in melanoma cells. Unlike normal cells, melanoma cells presented distinct responses and high vulnerability to NGLY1 suppression. CONCLUSION: Our work demonstrated the significance of NGLY1 in melanoma cells, provided mechanistic insights into how NGLY1 inactivation leads to eradication of melanoma with limited impact on normal cells, and suggested that targeting NGLY1 represents a novel anti-melanoma strategy.


Antineoplastic Agents/pharmacology , Apoptosis , Interferon-gamma/physiology , Melanoma/drug therapy , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/antagonists & inhibitors , Activating Transcription Factor 4/physiology , Animals , Cells, Cultured , Cytokines/analysis , Gene Expression Profiling , Humans , Interferon-gamma/genetics , Melanoma/pathology , Mice , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/physiology , Pluripotent Stem Cells/physiology , Proteasome Endopeptidase Complex/physiology , Signal Transduction/physiology , Transcription Factor CHOP/physiology
19.
Sci Rep ; 7(1): 5005, 2017 07 10.
Article En | MEDLINE | ID: mdl-28694442

Despite their well-known function in maintaining normal cell physiology, how inorganic elements are relevant to cellular pluripotency and differentiation in human pluripotent stem cells (hPSCs) has yet to be systematically explored. Using total reflection X-ray fluorescence (TXRF) spectrometry and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed the inorganic components of human cells with isogenic backgrounds in distinct states of cellular pluripotency. The elemental profiles revealed that the potassium content of human cells significantly differs when their cellular pluripotency changes. Pharmacological treatment that alters cell membrane permeability to potassium affected the maintenance and establishment of cellular pluripotency via multiple mechanisms in bona fide hPSCs and reprogrammed cells. Collectively, we report that potassium is a pluripotency-associated inorganic element in human cells and provide novel insights into the manipulation of cellular pluripotency in hPSCs by regulating intracellular potassium.


Pluripotent Stem Cells/cytology , Potassium/analysis , Animals , Cell Differentiation , Cells, Cultured , Cellular Reprogramming , Humans , Mass Spectrometry , Mice , Pluripotent Stem Cells/chemistry , Spectrometry, X-Ray Emission
20.
Asian Pac J Trop Med ; 10(2): 134-140, 2017 Feb.
Article En | MEDLINE | ID: mdl-28237477

OBJECTIVE: To discuss the effect of lesser-known potential risk factors, such as bedroom showers, on the prevalence of allergic rhinitis. METHOD: A cross-sectional, population-based study was performed using both survey and fungal culturing in southern Taiwan. There were 998 participants enrolled in the survey, and 513 sets of fungal culture obtained. With score for allergic rhinitis (SFAR) more than 7, the patient was defined to have allergic rhinitis. Risks of allergic rhinitis were calculated as odds ratios for various predicted risk factors by logistic regression. Correlation between predicted risk factors and fungal level were examined with linear regression. RESULTS: The adjusted odds ratio of frequently using bedroom shower to having allergic rhinitis was 1.572 (95% confidence interval: 1.090-2.265), and 0.962 for people with older age to have AR (95% confidence interval: 0.949-0.976). As to the 24-hour fungal level, the standardized coefficient was 0.254 for frequent use of bedroom shower, and 0.106 for window open hours. CONCLUSIONS: Use of bedroom shower is a potential risk factor for allergic rhinitis development.

...