Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Biomol Struct Dyn ; : 1-13, 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37902569

In recent years, numerous researchers have made local chemical modifications to the structure of curcumin while its basic structure remains unchanged, thus, producing curcumin derivatives. In this article, tetrahydrocurcumin was obtained by hydrogenation of curcumin, DFT calculation and characterization at the theoretical level of B3LYP/6 -311++G(d,p) were carried out. The observed IR and Raman spectra are in good agreement with the theoretical spectra. The FMO and ESP of tetrahydrocurcumin are predicted. The interaction in the system is shown graphically and analyzed by IGMH. Compared with curcumin, tetrahydrocurcumin lacks the unsaturated C = C bond, which makes it more stable and more bioavailable. Molecular docking with antioxidant targets elucidated the ligand-protein interaction and molecular dynamics simulation showed the antioxidant activity of tetrahydrocurcumin. The antioxidant activity of tetrahydrocurcumin was proved by DPPH• and •OH radical scavenging experiments. In essence, these derivatives exhibit enhanced physiological activity in certain aspects compared to the original curcumin. Moreover, the computational pharmacology techniques lay a theoretical groundwork for the development and modification of high-efficiency, low-toxicity drugs that interface with various targets of curcumin in the future.Communicated by Ramaswamy H. Sarma.

2.
Life Sci Space Res (Amst) ; 38: 87-100, 2023 Aug.
Article En | MEDLINE | ID: mdl-37481313

The response of plants to radiation is an essential topic in both space plant cultivation and mutation breeding by radiation. In this study, heavy ion beams (HIB) generated by the ground accelerator and X-rays (XR) were used as models of high linear energy transfer (LET) and low LET radiation to study the molecular response mechanism of Platycodon grandiflorus (P. grandiflorus) seedlings after irradiation. The gene and protein expression profiles of P. grandiflorus after 15 Gy HIB and 20 Gy XR radiation were analyzed by transcriptome and proteome. The results showed that the number of differentially expressed genes (DEGs) induced by HIB radiation was less than that of XR group, but HIB radiation induced more differentially expressed proteins (DEPs). Both HIB and XR radiation activated genes of RNA silencing, double-strand break repair and cell catabolic process. DNA replication and cell cycle related genes were down-regulated. The genes of cell wall and external encapsulating structure were up-regulated after HIB radiation. The gene expression of protein folding and glucan biosynthesis increased after XR radiation. Protein enrichment analysis indicated that HIB radiation resulted in differential protein enriched in photosynthesis and secondary metabolite biosynthesis pathways, while XR radiation induced differential protein of glyoxylate and dicarboxylate metabolism and carbon metabolism. After HIB and XR radiation, the genes of antioxidant system and terpenoid and polyketide metabolic pathways presented different expression patterns. HIB radiation led to the enrichment of non-homologous end-joining pathway. The results will contribute to understanding the biological effects of plants under space radiation.


Heavy Ions , Platycodon , X-Rays , Antioxidants , Carbon
3.
J Plant Physiol ; 285: 153995, 2023 Jun.
Article En | MEDLINE | ID: mdl-37163868

Plant growth-promoting rhizobacteria (PGPR) can promote plant growth and protect plants from pathogens, which contributes to sustainable agricultural development. Several studies have reported their beneficial characteristics in facilitating plant growth and development and enhancing plant stress resistance through different mechanisms. However, there is still a challenge to study the molecular mechanism of plant response to PGPR. We integrated the transcriptome and metabolome of Arabidopsis thaliana (Arabidopsis) to understand its responses to the inoculation with an isolated PGPR strain (BT22) of Bacillus megaterium. Fresh shoot weight, dry shoot weight and leaf number of Arabidopsis were increased by BT22 treatment, showing a positive growth-promoting effect. According multi-omics analysis, 878 differentially expressed genes (296 up-regulated, 582 down-regulated) and 139 differentially expressed metabolites (66 up-regulated, 73 down-regulated) response to BT22 inoculation. GO enrichment results indicate that the up-regulated genes mainly enriched in the regulation of growth and auxin response pathways. In contrast, the down-regulated genes mainly enriched in wounding response, jasmonic acid and ethylene pathways. BT22 inoculation regulated plant hormone signal transduction of Arabidopsis, including auxin and cytokinin response genes AUX/IAA, SAUR, and A-ARR related to cell enlargement and cell division. The contents of nine flavonoids and seven phenylpropanoid metabolites were increased, which help to induce systemic resistance in plants. These results suggest that BT22 promoted Arabidopsis growth by regulating plant hormone homeostasis and inducing metabolome reprogramming.


Arabidopsis , Bacillus megaterium , Arabidopsis/metabolism , Bacillus megaterium/genetics , Bacillus megaterium/metabolism , Plant Growth Regulators/metabolism , Transcriptome , Indoleacetic Acids/metabolism , Metabolome
4.
Zhongguo Zhong Yao Za Zhi ; 48(4): 900-907, 2023 Feb.
Article Zh | MEDLINE | ID: mdl-36872260

From the perspective of market classification of Cnidii Fructus, this paper revealed the scientific connotation of evaluating the quality grade of Cnidii Fructus by its appearance traits. Thirty batches of Cnidii Fructus in different grades were selected as the research objects. The canonical correlation analysis and principal component analysis(PCA) were used to explore the measurement values of 15 appearance traits and intrinsic content indexes. The results of correlation analysis showed that except the aspect ratio, the 5 appearance trait indexes(length, width, 1 000-grain weight, broken grain weight proportion, and chroma) and 9 internal content indexes(the content of moisture, total ash, acid insoluble ash, osthole, imperatorin, 5-methoxy psoralen, isopimpinellin, xanthotoxin, and xanthotol) showed significant correlation to varying degrees. In addition, there was a significant positive correlation between the first typical variable U_1 composed of appearance traits and the first typical variable V_1 composed of internal content indexes(CR_1=0.963, P<0.01). The results of PCA showed that the classification results of appearance traits for 30 batches of Cnidii Fructus were consistent with the actual information of the samples. Under the same analysis conditions, 30 batches of Cnidii Fructus were reclassified by 9 groups of internal content indexes, and the analysis results were consistent. From the classification standard of the appearance traits of the system study, the statistical results of 6 appearance traits of Cnidii Fructus showed a correlation with grades. There was a good correlation between the appearance and the internal content of Cnidii Fructus, and the appearance quality effectively predicted the level of the internal content. There is a certain scientific basis for the quality classification of Cnidii Fructus by main appearance traits. Appearance classification can replace quality grading to realize the "quality evaluation through morphological identification" of Cnidii Fructus.


Fruit , Social Group , Phenotype , Principal Component Analysis
5.
Molecules ; 27(22)2022 Nov 21.
Article En | MEDLINE | ID: mdl-36432199

Hanseniaspora uvarum, a non-Saccharomyces cerevisiae species, has a crucial effect on the aroma characteristics of fruit wines, thus, attracting significant research interest in recent years. In this study, H. uvarum-Saccharomyces cerevisiae mixed fermentation was used to ferment Rosa roxburghii Tratt, blueberry fruit wine, and plum fruit wines using either a co-inoculated or a sequentially inoculated approach. The three fruit wines' volatile aroma characteristics were analyzed by headspace-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results showed that the mixed inoculation of H. uvarum and S. cerevisiae reduced the alcoholic content of Kongxinli fruit wine. Moreover, H. uvarum-S. cerevisiae fermented Rosa roxburghii Tratt, blueberry, and plum fruit wines and further enriched their flavor compounds. The overall flavor characteristics of sequentially inoculated fruit wines differed significantly from those fermented with S. cerevisiae alone, although several similarities were also observed. Sequential inoculation of H. uvarum and S. cerevisiae positively affected the mellowness of the wine and achieved a better harmony of the overall wine flavors. Therefore, H. uvarum-Saccharomyces cerevisiae mixed fermentation can improve the complexity of the wines' aromatic composition and empower them with a unique identity. In particular, H. uvarum-Saccharomyces cerevisiae blueberry wine produced by mixed fermentation had the widest variety and content of aroma compounds among the fermented wines. Therefore, H. uvarum-Saccharomyces cerevisiae mixed-fermentation inoculation in the three fermented fruit wines significantly increased the aroma compound variety and content, thus, enriching their aroma richness and complexity. This study is the first comparative evaluation of the aroma characteristics of different fruit wines fermented with a mixed inoculation of H. uvarum and S. cerevisiae and provides a preliminary guide for these fruit wines produced with non-Saccharomyces yeast.


Blueberry Plants , Prunus domestica , Rosa , Wine , Wine/analysis , Fermentation , Saccharomyces cerevisiae , Odorants/analysis
6.
Foods ; 12(1)2022 Dec 25.
Article En | MEDLINE | ID: mdl-36613314

To explore the effect of micronization on the structural, functional, and antioxidant properties of wheat bran, wheat bran with mean particle size (D50) of 46.08, 34.29, 26.51, 26.35, and 26.05 µm were prepared by using an ultrafine pulverizer under different rolling frequencies (0, 6, 9, 12, and 15 times). The main chemical components and structural, functional, and antioxidant properties of the wheat bran were compared and a correlation analysis was conducted. As the D50 of the wheat bran decreased from 46.08 µm to 26.05 µm, the micromorphology exhibited the destruction of the bundle structure, which is formed by starch and fiber, during which the starch particles peeled off, the fiber fragments destructed, and some of the slim fiber fragments attached to the surfaces of the starch granules. According to the X-ray diffraction pattern, part of the crystalline structure was transformed into an amorphous structure and the crystallization index decreased from 13.08% to 3.95%. According to the near-infrared spectrum, more active groups, such as the hydroxyl group, were exposed; however, no new groups were generated. These structural changes accordingly caused changes in the chemical components, functional properties, and antioxidant properties of the wheat bran. Specifically, the protein, total phenols, total flavonoids, and fatty acid content increased by 6.72%, 23.47%, 19.07%, and 172.88%, respectively. The lipase activity, antioxidant activity in vitro (DPPH• scavenging activity, ABTS+• scavenging activity, and ferric reducing antioxidant power), and the water-holding, cholesterol-adsorption, sodium nitrite-adsorption, and cation-exchange capacities, were enhanced to some extent. The oil-holding capacity decreased from 3.01 g/g to 1.32 g/g. The swelling capacity decreased first and then increased and the swelling capacity of the wheat bran with a D50 of 34.29 µm was the lowest (3.62 mL/g). Therefore, the micronization could be used as a pretreatment method to improve the functional and antioxidant properties of wheat bran; however, the optimal particle size of wheat bran is based on the function of the product.

...