Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Biochem Biotechnol ; 196(3): 1450-1463, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37418127

RESUMEN

S-adenosyl-l-methionine (SAM), a vital physiologically active substance in living organisms, is produced by fermentation over Saccharomyces cerevisiae. The main limitation in SAM production was the low biosynthesis ability of SAM in S. cerevisiae. The aim of this work is to breed an SAM-overproducing mutant through UV mutagenesis coupled with high-throughput selection. Firstly, a high-throughput screening method by rapid identification of positive colonies was conducted. White colonies on YND medium were selected as positive strains. Then, nystatin/sinefungin was chosen as a resistant agent in directed mutagenesis. After several cycles of mutagenesis, a stable mutant 616-19-5 was successfully obtained and exhibited higher SAM production (0.41 g/L vs 1.39 g/L). Furthermore, the transcript levels of the genes SAM2, ADO1, and CHO2 involved in SAM biosynthesis increased, while ergosterol biosynthesis genes in mutant 616-19-5 significantly decreased. Finally, building on the above work, S. cerevisiae 616-19-5 could produce 10.92 ± 0.2 g/L SAM in a 5-L fermenter after 96 h of fermentation, showing a 2.02-fold increase in the product yield compared with the parent strain. Paving the way of breeding SAM-overproducing strain has improved the good basis for SAM industrial production.


Asunto(s)
Metionina , S-Adenosilmetionina , Saccharomyces cerevisiae/genética , Ensayos Analíticos de Alto Rendimiento , Fitomejoramiento , Racemetionina
2.
Bioprocess Biosyst Eng ; 46(11): 1639-1650, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37733076

RESUMEN

With potent herbicidal activity, biocatalysis synthesis of L-glufosinate has drawn attention. In present research, NAP-Das2.3, a deacetylase capable of stereoselectively resolving N-acetyl-L-glufosinate to L-glufosinate mined from Arenimonas malthae, was heterologously expressed and characterized. In Escherichia coli, NAP-Das2.3 activity only reached 0.25 U/L due to the formation of inclusive bodies. Efficient soluble expression of NAP-Das2.3 was achieved in Pichia pastoris. In shake flask and 5 L bioreactor fermentation, NAP-Das2.3 activity by recombinant P. pastoris reached 107.39 U/L and 1287.52 U/L, respectively. The optimum temperature and pH for N-acetyl-glufosinate hydrolysis by NAP-Das2.3 were 45 °C and pH 8.0, respectively. The Km and Vmax of NAP-Das2.3 towards N-acetyl-glufosinate were 25.32 mM and 19.23 µmol mg-1 min-1, respectively. Within 90 min, 92.71% of L-enantiomer in 100 mM racemic N-acetyl-glufosinate was converted by NAP-Das2.3. L-glufosinate with high optical purity (e.e.P above 99.9%) was obtained. Therefore, the recombinant NAP-Das2.3 might be an alternative for L-glufosinate biosynthesis.


Asunto(s)
Reactores Biológicos , Pichia , Proteínas Recombinantes/química , Pichia/genética , Pichia/metabolismo , Fermentación
3.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2248-2264, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37401593

RESUMEN

S-adenosyl-l-methionine (SAM) is ubiquitous in living organisms and plays important roles in transmethylation, transsulfuration and transamination in organisms. Due to its important physiological functions, production of SAM has attracted increasing attentions. Currently, researches on SAM production mainly focus on microbial fermentation, which is more cost-effective than that of the chemical synthesis and the enzyme catalysis, thus easier to achieve commercial production. With the rapid growth in SAM demand, interests in improving SAM production by developing SAM hyper-producing microorganisms aroused. The main strategies for improving SAM productivity of microorganisms include conventional breeding and metabolic engineering. This review summarizes the recent research progress in improving microbial SAM productivity to facilitate further improving SAM productivity. The bottlenecks in SAM biosynthesis and the solutions were also addressed.


Asunto(s)
Fitomejoramiento , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Fermentación , Ingeniería Metabólica
4.
Enzyme Microb Technol ; 164: 110189, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36586225

RESUMEN

S-adenosyl-L-methionine (SAM), used in diverse pharmaceutical applications, was biosynthesized from L-methionine (L-met) and adenosine triphosphate (ATP). This study aims to increase the accumulation of SAM in Saccharomyces cerevisiae by promoting ATP availability. Strain ΔSOD1 was obtained from the parent strain WT15-33 (CCTCC M 2021915) by deleting gene sod1, which improved the supply of ATP. The SAM content in strain ΔSOD1 exhibited a 22.3% improvement compared to the parent strain, which reached 93.6 mg g-1. The transformation of NADH (reduced nicotinamide adenine dinucleotide) and the relative expression of ATPase essential genes were investigated, respectively. The results showed that the lack of gene sod1 benefited the generation of ATP, which positively regulated the synthesis of SAM. Besides that, the production of SAM was further enhanced by improving substrate assimilation. With the infusion of 1.44 g L-1L-met and 0.60 g L-1 adenosine at 24 h (h) and 0 h following fermentation, the optimum medium could produce 1.54 g L-1 SAM. Based on the regulations mentioned above, the SAM concentration of strain ΔSOD1 enhanced from 7.3 g L-1 to 10.1 g L-1 in a 5-L fermenter in 118 h. This work introduces a novel idea for the biosynthesis of ATP and SAM, and the strain ΔSOD1 has the potential for industrial production.


Asunto(s)
S-Adenosilmetionina , Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Fermentación , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa-1
5.
Appl Environ Microbiol ; 88(18): e0080422, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36036598

RESUMEN

Microbial-induced calcite precipitation is a promising technology to solve the problem of cracks in soil concrete. The most intensively investigated microorganisms are urease-producing bacteria. Lysinibacillus that is used as urease-producing bacteria in concrete repair has rarely been reported. In this study, Lysinibacillus boronitolerans with a high urease activity was isolated from soil samples. This strain is salt- and alkali-tolerance, and at pH 13, can grow to ~OD600 2.0 after 24 h. At a salt concentration of 6%, the strain can still grow to ~OD600 1.0 after 24 h. The feasibility of using this strain in self-healing concrete was explored. The data showed that cracks within ~0.6 mm could be repaired naturally with hydration when spores and substrates were added to the concrete in an appropriate proportion. Moreover, the number and morphology of CaCO3 crystals that were produced by bacteria can be influenced by the concrete environment. An efficiency method to elucidate the process of microbial-induced calcium carbonate crystal formation was established with Particle Track G400. This study provides a template for future studies on the theory of mineralization based on microorganisms. IMPORTANCE The formation of calcium carbonate crystals in concrete by urease-producing bacteria is not understood fully. In this study, a Lysinibacillus boronitolerans strain with a high urease activity was isolated and used to analyze the counts and sizes of the crystals and the relationship with time. The data showed that the number of crystal particles increases exponentially in a short period with sufficient substrate, after which the crystals grow, precipitate or break. In concrete, the rate-limiting steps of calcium carbonate crystal accumulation are spore germination and urease production. These results provided data support for the rational design of urease-producing bacteria in concrete repair.


Asunto(s)
Materiales de Construcción , Ureasa , Álcalis , Bacillaceae , Bacterias , Carbonato de Calcio/química , Materiales de Construcción/microbiología , Suelo
6.
3 Biotech ; 12(9): 223, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35975026

RESUMEN

To improve S-Adenosyl-L-methionine (a compound with important physiological functions, SAM) production, atmospheric and room temperature plasma and ultraviolet-LiCl mutagenesis were carried out with Saccharomyces cerevisiae strain ZY 1-5. The mutants were screened with ethionine, L-methionine, nystatin and cordycepin as screening agents. Adaptive evolution of a positive mutant UV6-69 was further performed by droplet microfluidics cultivation with ethionine as screening pressure. After adaptation, mutant T11-1 was obtained. Its SAM titer in shake flask fermentation reached 1.31 g/L, which was 191% higher than that of strain ZY 1-5. Under optimal conditions, the SAM titer and biomass of mutant T11-1 in 5 L bioreactor reached 10.72 g/L and 105.9 g dcw/L (142.86% and 34.22% higher than those of strain ZY 1-5), respectively. Comparative transcriptome analysis between strain ZY 1-5 and mutant T11-1 revealed the enhancements in TCA cycle and gluconeogenesis/glycolysis pathways as well as the inhibitions in serine and ergosterol synthesis of mutant T11-1. The elevated SAM synthesis of mutant T11-1 may attribute to the above changes. Taken together, this study is helpful for industrial production of SAM.

7.
Sheng Wu Gong Cheng Xue Bao ; 38(2): 605-619, 2022 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-35234385

RESUMEN

Acarbose is widely used as α-glucosidase inhibitor in the treatment of type Ⅱ diabetes. Actinoplanes sp. is used for industrial production of acarbose. As a secondary metabolite, the biosynthesis of acarbose is quite complex. In addition to acarbose, a few acarbose structural analogs are also accumulated in the culture broth of Actinoplanes sp., which are hard to remove. Due to lack of systemic understanding of the biosynthesis and regulation mechanisms of acarbose and its structural analogs, it is difficult to eliminate or reduce the biosynthesis of the structural analogs. Recently, the advances in omics technologies and molecular biology have facilitated the investigations of biosynthesis and regulatory mechanisms of acarbose and its structural analogs in Actinoplanes sp.. The genes involved in the biosynthesis of acarbose and its structural analogs and their regulatory mechanism have been extensively explored by using bioinformatics analysis, genetic manipulation and enzymatic characterization, which is summarized in this review.


Asunto(s)
Acarbosa , Diabetes Mellitus Tipo 2 , Acarbosa/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Técnicas Genéticas , Humanos
8.
Sheng Wu Gong Cheng Xue Bao ; 38(12): 4797-4807, 2022 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-36593212

RESUMEN

As a strategic emerging industry of China, the biotechnology industry develops rapidly in recent years, which significantly increased the demand for creative and capable talents. As a core curriculum of bioengineering specialty, biotechnology equipment plays an important role in fostering such talents. To address the problems in biotechnology equipment course teaching such as limited equipment availability, limited engineering practice, and lack of learning motivations, curriculum reform and optimization were performed based on curriculum resource development, virtual reality-physical combined engineering training, and boosting learning motivations. The optimized teaching contents focus on fostering morality, intelligence, and creative practice abilities by connecting new requirements of social development, introducing new progress in biotechnology research, as well as new practices in research and development (R & D). Measures such as teaching methods innovation, assessment and evaluation methods optimization, cutting-edge R & D progress, diverse resources integration, and online-offline combined teaching, were developed to boost the learning motivation and foster the innovation competence of students. By above exploration and practice, the practice and innovation competence of students were significantly enhanced.


Asunto(s)
Aprendizaje , Estudiantes , Humanos , Curriculum , Bioingeniería , Ingeniería Biomédica
9.
Molecules ; 26(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34641330

RESUMEN

In mass spectrometry (MS)-based metabolomics, missing values (NAs) may be due to different causes, including sample heterogeneity, ion suppression, spectral overlap, inappropriate data processing, and instrumental errors. Although a number of methodologies have been applied to handle NAs, NA imputation remains a challenging problem. Here, we propose a non-negative matrix factorization (NMF)-based method for NA imputation in MS-based metabolomics data, which makes use of both global and local information of the data. The proposed method was compared with three commonly used methods: k-nearest neighbors (kNN), random forest (RF), and outlier-robust (ORI) missing values imputation. These methods were evaluated from the perspectives of accuracy of imputation, retrieval of data structures, and rank of imputation superiority. The experimental results showed that the NMF-based method is well-adapted to various cases of data missingness and the presence of outliers in MS-based metabolic profiles. It outperformed kNN and ORI and showed results comparable with the RF method. Furthermore, the NMF method is more robust and less susceptible to outliers as compared with the RF method. The proposed NMF-based scheme may serve as an alternative NA imputation method which may facilitate biological interpretations of metabolomics data.


Asunto(s)
Biología Computacional/métodos , Metabolómica/métodos , Algoritmos , Análisis por Conglomerados , Espectrometría de Masas
10.
Front Bioeng Biotechnol ; 9: 659700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095098

RESUMEN

Acarbose is an effective anti-diabetic drug to treat type 2 diabetes mellitus (T2DM), a chronic degenerative metabolic disease caused by insulin resistance. The beneficial effects of acarbose on blood sugar control in T2DM patients have been confirmed by many studies. However, the effect of acarbose on patient kidney has yet to be fully elucidated. In this study, we report in detail the gene expression cascade shift, pathway and module enrichment, and interrelation network in acarbose-treated Rattus norvegicus kidneys based on the in-depth analysis of the GSE59913 microarray dataset. The significantly differentially expressed genes (DEGs) in the kidneys of acarbose-treated rats were initially screened out by comparative analysis. The enriched pathways for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were further identified. The protein-protein interaction (PPI) analysis for DEGs was achieved through the STRING database mining. Pathway interrelation and hub genes for enriched pathways were further examined to uncover key biological effects of acarbose. Results revealed 44 significantly up-regulated genes and 86 significantly down-regulated genes (130 significant differential genes in total) in acarbose-treated rat kidneys. Lipid metabolism pathways were considerably improved by acarbose, and the physical conditions in chronic kidney disease (CKD) patients were improved possibly through the increase of the level of high-density lipoprotein (HDL) by lecithin-cholesterol acyl-transferase (LCAT). These findings suggested that acarbose may serve as an ideal drug for CKD patients, since it not only protects the kidney, but also may relieve the complications caused by CKD.

11.
Biodegradation ; 31(4-6): 275-288, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32936376

RESUMEN

Ivermectin (IVM) is a widely used antiparasitic agent and acaricide. Despite its high efficiency against nematodes and arthropods, IVM may pose a threat to the environment due to its ecotoxcity. In this study, degradation of IVM by a newly isolated bacterium Aeromonas taiwanensis ZJB-18,044 was investigated. Strain ZJB-18,044 can completely degrade 50 mg/L IVM in 5 d with a biodegradation ability of 0.42 mg/L/h. Meanwhile, it exhibited high tolerance (50 mg/L) to doramectin, emamectin, rifampicin, and spiramycin. It can also efficiently degrade doramectin, emamectin, and spiramycin. The IVM degradation of strain ZJB-18,044 can be inhibited by erythromycin, azithromycin, spiramycin or rifampicin. However, supplement of carbonyl cyanide m-chlorophenylhydrazone, an uncoupler of oxidative phosphorylation, can partially recover the IVM degradation. Moreover, strain ZJB-18,044 cells can pump out excess IVM to maintain a low intracellular IVM concentration. Therefore, the IVM tolerance of strain ZJB-18,044 may be due to the regulation of the intracellular IVM concentration by the activated macrolide efflux pump(s). With the high IVM degradation efficiency, A. taiwanensis ZJB-18,044 may serve as a bioremediation agent for IVM and other macrolides in the environment.


Asunto(s)
Aeromonas , Ivermectina , Antiparasitarios , Biodegradación Ambiental
12.
3 Biotech ; 10(7): 312, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32582509

RESUMEN

Gibberellic acid (GA3) is a natural plant growth hormone that has been widely used in agriculture and horticulture. To obtain higher GA3 producing strains, the method of screening the strains for resistance to simvastatin was used after treatment with nitrosoguanidine (NTG) and gamma rays. The rationale for the strategy was that mutants showing simvastatin resistance were likely to be high GA3 producers, as their activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is relatively more effective. GA3 yield of mutant S109 increased by 14.2% than that of the original strain. The GA3 production ability in mutant S109 remained relatively stable after ten generations. With the addition of 0.4 g glycerol on the 5th day during the fermentation process in Erlenmeyer flask, maximum GA3 production of 2.7 g/L was achieved by this mutant, exhibiting 28.6% increase compared with original strain. Furthermore, we also achieved 2.8 g/L GA3 and had a 33.3% increase with addition 20 g glycerol on the 5th day during the fermentation process in a 5-L bioreactor. Our results indicated efficient GA3 production could be achieved on the condition that the supply of glycerol at the suitable conditions. This study would lay a foundation for industrial production of GA3.

13.
J Microbiol Biotechnol ; 30(8): 1252-1260, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32522969

RESUMEN

(R)-2-(4-hydroxyphenoxy)propionic acid (HPOPA) is a key intermediate for the preparation of aryloxyphenoxypropionic acid herbicides (R-isomer). In order to improve the HPOPA production from the substrate (R)-2-phenoxypropionic acid (POPA) with Beauveria bassiana CCN-A7, static cultivation and H2O2 addition were attempted and found to be conducive to the task at hand. This is the first report on HPOPA production under static cultivation and reactive oxygen species (ROS) induction. On this premise, the cultivation conditions and fermentation medium compositions were optimized. As a result, the optimal carbon source, organic nitrogen source, and inorganic nitrogen source were determined to be glucose, peptone, and ammonium sulfate, respectively. The optimal inoculum size and fermentation temperature were 13.3% and 28°C, respectively. The significant factors including glucose, peptone, and H2O2, identified based on Plackett-Burman design, were further optimized through Central Composite Design (CCD). The optimal concentrations/amounts were as follows: glucose 38.81 g/l, peptone 7.28 g/l, and H2O2 1.08 ml/100 ml. Under the optimized conditions, HPOPA titer was improved from 9.60 g/l to 19.53 g/l, representing an increase of 2.03- fold. The results obtained in this work will provide novel strategies for improving the biosynthesis of hydroxy aromatics.


Asunto(s)
Beauveria/metabolismo , Medios de Cultivo/química , Peróxido de Hidrógeno/metabolismo , Propionatos/metabolismo , Carbono , Suplementos Dietéticos , Fermentación , Nitrógeno/metabolismo , Especies Reactivas de Oxígeno , Temperatura
14.
Appl Biochem Biotechnol ; 192(1): 42-56, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32212108

RESUMEN

R-2-(4-Hydroxyphenoxy)propionic acid (R-HPPA) is a pivotal intermediate for the synthesis of aryloxyphenoxypropionate (APP) herbicide. To rapidly screen microbial isolates with the capacity of hydroxylating R-2-phenoxypropionic acid to R-HPPA from various environmental samples, a convenient and safe 96-well microplate assay method with sodium nitrite (NaNO2) as chromogenic reagent was proposed and optimized. The optimum assay conditions were as follows: the detection wavelength was 420 nm, the concentration of NaNO2 solution was 6.0 g/L, color reaction temperature was 60 °C, the pH of the NaNO2 solution was 2.4, and the reaction time was 40 min. With the aid of this method, screening for microorganisms with C-4-specific hydroxylation activity of R-PPA was conducted. As a result, 23 strains among 3744 single colonies isolated from various samples exhibited the hydroxylation activity. Among these strains, the highest bioconversion rate was achieved by Penicillium oxalicum A5 and Aspergillus versicolor A12, respectively. After 72-h cultivation in shake flask, their conversion rates of R-HPPA from 10 g/L R-PPA reached 21.18% and 40.24%, respectively. The established method was effective in rapid screening of microbes capable of biosynthesizing R-HPPA through hydroxylation of R-PPA, and the obtained two fungi species could be potentially used for R-HPPA production.


Asunto(s)
Aspergillus/metabolismo , Herbicidas/química , Penicillium/metabolismo , Éteres Fenílicos/química , Propionatos/química , Nitrito de Sodio/química , Agar/química , Animales , Aspergillus/genética , Biomasa , Bombyx/microbiología , Catálisis , China , ADN Ribosómico/genética , Fermentación , Concentración de Iones de Hidrógeno , Hidroxilación , Penicillium/genética , Filogenia , Aguas del Alcantarillado/microbiología , Microbiología del Suelo , Temperatura
15.
Prep Biochem Biotechnol ; 50(8): 781-787, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153245

RESUMEN

R-2-(4-hydroxyphenoxy)propionic acid (R-HPPA) is a key chiral intermediate for phenoxypropionic acid herbicide synthesis. In this study, to improve the production of R-HPPA with B. bassiana ZJB16007, the cultivation conditions in solid-state fermentation (SSF) were investigated. The effects of various substrates on R-HPPA production were evaluated and the process parameters were also optimized. The results showed that rice bran was the optimal substrate for R-HPPA production. The optimal medium components and cultivation conditions were: rice bran: silkworm chrysalis powder = 5.25: 2.25 (g: g), nutrient salts solution 12 mL which contained 50 g/L R-PPA, pH 5.0, and cultivated at 28 °C for 11 days. Under the optimized conditions, the transformation of R-HPPA was significantly improved and the yield of R-HPPA reached 77.78%, which was 15.14% higher than that of the control (67.55%). Therefore, SSF may serve as an alternative for R-HPPA production by B. bassiana ZJB16007.


Asunto(s)
Beauveria/metabolismo , Oryza/metabolismo , Propionatos/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Fermentación , Microbiología Industrial/métodos
16.
Biotechnol Appl Biochem ; 67(3): 343-353, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31846537

RESUMEN

R-2-(4-hydroxyphenoxy)propionicacid (HPOPA) is a valuable intermediate for the synthesis of enantiomerically pure aryloxyphenoxypropionic acid herbicides. In this work, to improve the HPOPA biosynthesis by Beauveria bassiana ZJB16002 from the substrate R-2-phenoxypropionic acid (POPA), the original HPOPA producer B. bassiana ZJB16002 was subjected to physical mutagenesis with 137 Cs-γ irradiation and chemical mutagen N-methyl-N'-nitro-N-nitrasoguanidine (NTG) induced mutagenesis. The effects of different treatment doses of the mutagens on the lethal rate and positive mutation rate were investigated, and the results showed that the optimal 137 Cs-γirradiation dose and NTG concentration was 850 Gy and 500 µg/mL, respectively. Under these conditions, a mutant strain CCN-7 with the highest HPOPA production capacity was obtained through two rounds of 137 Cs-γ irradiation treatment followed by one round of NTG mutagenesis. At the substrate (POPA) concentration of 50 g/L, HPOPA titer of CCN-7 reached 36.88 g/L, which was 9.73-fold higher than the parental strain. The morphology of the wild-type and mutant strain was compared and the results might provide helpful information in exploration of the correlation of morphology and biochemical features of B. bassiana.


Asunto(s)
Beauveria/genética , Beauveria/metabolismo , Propionatos/metabolismo , Beauveria/química , Estructura Molecular , Éteres Fenílicos/química , Éteres Fenílicos/metabolismo , Propionatos/química , Estereoisomerismo
17.
Sheng Wu Gong Cheng Xue Bao ; 35(9): 1607-1618, 2019 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-31559743

RESUMEN

With the rapid development of modern biotechnology, fermentation process is increasingly important in industrial production. To guarantee the stability of products, fermentation process should be elaborately monitored and controlled. Biomass is an important parameter for on-line monitoring in bioprocesses because biomass can reflect cell growth in a bioreactor directly. In-situ microscope, a non-invasive and image-analysis based technology, can real-time monitor cells in biological process. This review summarizes the development and application of in-situ microscopy in biomass monitoring.


Asunto(s)
Biomasa , Microscopía , Reactores Biológicos , Biotecnología , Fermentación
18.
Bioprocess Biosyst Eng ; 42(10): 1573-1582, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31190281

RESUMEN

R-2-(4-hydroxyphenoxy)propionic acid (R-HPPA) is a key intermediate of the enantiomerically pure phenoxypropionic acid herbicides. R-HPPA could be biosynthesized through selective introduction of a hydroxyl group (-OH) into the substrate R-2-phenoxypropionic acid (R-PPA) at C-4 position, facilitated by microorganisms with hydroxylases. In this study, an efficient high-throughput screening method for improved R-HPPA biosynthesis through microbial hydroxylation was developed. As a hydroxylated aromatic product, R-HPPA could be oxidized by oxidant potassium dichromate to form brown-colored quinone-type compound. The concentration of R-HPPA can be quantified according to the absorbance of the colored compound at a suitable wavelength of 570 nm; and the R-HPPA biosynthetic capability of microorganism strains could also be rapidly evaluated. After optimization of the assay conditions, the high-throughput screening method was successfully used in identification of Beauveria bassiana mutants with enhanced R-HPPA biosynthesis capacity. A positive mutant C-7 with high tolerance to 20 g/L R-PPA was rapidly selected from 1920 mutants. The biomass and R-HPPA titer were 12.5- and 38.19-fold higher compared with the original strain at 20 g/L R-PPA. This high-throughput screening method developed in this work could also be a potential tool for screening strains producing other important phenolic compounds.


Asunto(s)
Beauveria , Pruebas Genéticas , Mutación , Propionatos/metabolismo , Beauveria/genética , Beauveria/metabolismo
19.
J Microbiol Methods ; 158: 44-51, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30703447

RESUMEN

(R)-2-(4-hydroxyphenoxy)propionic acid ((R)-HPOPA) is an important intermediate for the synthesis of optically pure aryloxyphenoxypropionic acid herbicides. Regioselective hydroxylation of (R)-2-phenoxypropionic acid ((R)-POPA) by microbes is one of the most useful methods for the industrial production of (R)-HPOPA. In this study, we designed and optimized a rapid throughput assay for screening (R)-HPOPA producing bacterial/fungal strains which can regioselectively hydroxylate (R)-POPA. (R)-HPOPA could react with 4-aminoantipyrine (4-AAP) in the presence of potassium hexacyanoferrate (K3[Fe(CN)6]) to form indoxyl antipyrine, an orange-red chromophore, that can easily spectrophotometrically be determined at 550 nm. During the verification of the assay we observed an average recovery rate of between 97.3% and 104.5%. Apart from the rapid throughput, no obvious differences in detection (R)-HPOPA in the culture broth samples were found between our rapid throughput multiplate assay and a high-performance liquid chromatography method. Our optimized assay method is simple, rapid and accurate with high repeatability. It has the potential for high throughput screening (about 3000-5000 samples/day) of the (R)-HPOPA producing strains.


Asunto(s)
Bacterias/metabolismo , Ensayos Analíticos de Alto Rendimiento , Propionatos/metabolismo , Espectrofotometría , Bioensayo
20.
Int J Biol Macromol ; 116: 563-571, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29753012

RESUMEN

Iminodiacetic acid (IDA) is widely used as an intermediate in the manufacturing of chelating agents, glyphosate herbicides and surfactants. To improve activity and tolerance to the substrate for IDA production, Acidovorax facilis nitrilase was selected for further modification by the gene site saturation mutagenesis method. After screened by a two-step screening method, the best mutant (Mut-F168V/T201N/S192F/M191T/F192S) was selected. Compared to the wild-type nitrilase, Mut-F168V/T201N/S192F/M191T/F192S showed 136% improvement in specific activity. Co2+ stimulated nitrilase activity, whereas Cu2+, Zn2+ and Tween 80 showed a strong inhibitory effect. The Vmax and kcat of Mut-F168V/T201N/S192F/M191T/F192S were enhanced 1.23 and 1.23-fold, while the Km was decreased 1.53-fold. The yield of Mut-F168V/T201N/S192F/M191T/F192S with 453.2 mM of IDA reached 71.9% in 5 h when 630 mM iminodiacetonitrile was used as substrate. This study indicated that mutant nitrilase obtained in this study is promising in applications for the upscale production of IDAN.


Asunto(s)
Sustitución de Aminoácidos , Aminohidrolasas , Proteínas Bacterianas , Comamonadaceae , Mutagénesis Sitio-Dirigida , Aminohidrolasas/química , Aminohidrolasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Comamonadaceae/enzimología , Comamonadaceae/genética , Proteínas Recombinantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA