Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plant J ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976238

RESUMEN

Plants produce a staggering array of chemicals that are the basis for organismal function and important human nutrients and medicines. However, it is poorly defined how these compounds evolved and are distributed across the plant kingdom, hindering a systematic view and understanding of plant chemical diversity. Recent advances in plant genome/transcriptome sequencing have provided a well-defined molecular phylogeny of plants, on which the presence of diverse natural products can be mapped to systematically determine their phylogenetic distribution. Here, we built a proof-of-concept workflow where previously reported diverse tyrosine-derived plant natural products were mapped onto the plant tree of life. Plant chemical-species associations were mined from literature, filtered, evaluated through manual inspection of over 2500 scientific articles, and mapped onto the plant phylogeny. The resulting "phylochemical" map confirmed several highly lineage-specific compound class distributions, such as betalain pigments and Amaryllidaceae alkaloids. The map also highlighted several lineages enriched in dopamine-derived compounds, including the orders Caryophyllales, Liliales, and Fabales. Additionally, the application of large language models, using our manually curated data as a ground truth set, showed that post-mining processing can largely be automated with a low false-positive rate, critical for generating a reliable phylochemical map. Although a high false-negative rate remains a challenge, our study demonstrates that combining text mining with language model-based processing can generate broader phylochemical maps, which will serve as a valuable community resource to uncover key evolutionary events that underlie plant chemical diversity and enable system-level views of nature's millions of years of chemical experimentation.

2.
Viruses ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36992382

RESUMEN

Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.


Asunto(s)
Acinetobacter baumannii , Bacteriófagos , Antibacterianos
3.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901793

RESUMEN

Bacteria have developed different mechanisms to defend against phages, such as preventing phages from being adsorbed on the surface of host bacteria; through the superinfection exclusion (Sie) block of phage's nucleic acid injection; by restricting modification (R-M) systems, CRISPR-Cas, aborting infection (Abi) and other defense systems to interfere with the replication of phage genes in the host; through the quorum sensing (QS) enhancement of phage's resistant effect. At the same time, phages have also evolved a variety of counter-defense strategies, such as degrading extracellular polymeric substances (EPS) that mask receptors or recognize new receptors, thereby regaining the ability to adsorb host cells; modifying its own genes to prevent the R-M systems from recognizing phage genes or evolving proteins that can inhibit the R-M complex; through the gene mutation itself, building nucleus-like compartments or evolving anti-CRISPR (Acr) proteins to resist CRISPR-Cas systems; and by producing antirepressors or blocking the combination of autoinducers (AIs) and its receptors to suppress the QS. The arms race between bacteria and phages is conducive to the coevolution between bacteria and phages. This review details bacterial anti-phage strategies and anti-defense strategies of phages and will provide basic theoretical support for phage therapy while deeply understanding the interaction mechanism between bacteria and phages.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Bacteriófagos/genética , Bacterias/genética , Sistemas CRISPR-Cas , Mutación
4.
Front Microbiol ; 14: 1329330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38348304

RESUMEN

Early and precise detection and identification of various pathogens are essential for epidemiological monitoring, disease management, and reducing the prevalence of clinical infectious diseases. Traditional pathogen detection techniques, which include mass spectrometry, biochemical tests, molecular testing, and culture-based methods, are limited in application and are time-consuming. Next generation sequencing (NGS) has emerged as an essential technology for identifying pathogens. NGS is a cutting-edge sequencing method with high throughput that can create massive volumes of sequences with a broad application prospects in the field of pathogen identification and diagnosis. In this review, we introduce NGS technology in detail, summarizes the application of NGS in that identification of different pathogens, including bacteria, fungi, and viruses, and analyze the challenges and outlook for using NGS to identify clinical pathogens. Thus, this work provides a theoretical basis for NGS studies and provides evidence to support the application of NGS in distinguishing various clinical pathogens.

5.
Curr Opin Plant Biol ; 67: 102219, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35550985

RESUMEN

The shikimate pathway connects the central carbon metabolism with the biosynthesis of aromatic amino acids-l-tyrosine, l-phenylalanine, and l-tryptophan-which play indispensable roles as precursors of numerous aromatic phytochemicals. Despite the importance of the shikimate pathway-derived products for both plant physiology and human society, the regulatory mechanism of the shikimate pathway remains elusive. This review summarizes the recent progress and current understanding on the plant 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHP synthase or DHS) enzymes that catalyze the committed reaction of the shikimate pathway. We particularly focus on how the DHS activity is regulated in plants in comparison to those of microbes and discuss potential roles of DHS as the critical gatekeeper for the production of plant aromatic compounds.


Asunto(s)
Productos Biológicos , Fosfatos , 3-Desoxi-7-Fosfoheptulonato Sintasa/química , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Tirosina/química , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...