Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
ACS Appl Mater Interfaces ; 16(19): 25113-25123, 2024 May 15.
Article En | MEDLINE | ID: mdl-38693723

MXene inks offer a promising avenue for the scalable production and customization of printing electronics. However, simultaneously achieving a low solid content and printability of MXene inks, as well as mechanical flexibility and environmental stability of printed objects, remains a challenge. In this study, we overcame these challenges by employing high-viscosity aramid nanofibers (ANFs) to optimize the rheology of low-concentration MXene inks. The abundant entangled networks and hydrogen bonds formed between MXene and ANF significantly increase the viscosity and yield stress up to 103 Pa·s and 200 Pa, respectively. This optimization allows the use of MXene/ANF (MA) inks at low concentrations in direct ink writing and other high-viscosity processing techniques. The printable MXene/ANF inks with a high conductivity of 883.5 S/cm were used to print shields with customized structures, achieving a tunable electromagnetic interference shielding effectiveness (EMI SE) in the 0.2-48.2 dB range. Furthermore, the MA inks exhibited adjustable infrared (IR) emissivity by changing the ANF ratio combined with printing design, demonstrating the application for infrared anticounterfeiting. Notably, the printed MXene/ANF objects possess outstanding mechanical flexibility and environmental stability, which are attributed to the reinforcement and protection of ANF. Therefore, these findings have significant practical implications as versatile MXene/ANF inks can be used for customizable, scalable, and cost-effective production of flexible printed electronics.

2.
Foods ; 13(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38790820

Although the water extract of Eucommia ulmoides leaf (WEE) promotes egg laying in hens, its palatability is poor. To improve the palatability of E. ulmoides leaf, probiotic fermentation was used, and fermented extract E. ulmoides leaf (FEE) was prepared using Lactiplantibacillus plantarum. The safety of FEE was investigated using a long-term toxicity test, and no oxidative damage, inflammatory reactions, or histological lesions were observed in the experimental rats receiving dietary supplementation of FEE at 200 mg/kg, suggesting that FEE is suitable for long-term feeding. Subsequently, dietary supplementation of FEE (group C) in comparison with dietary supplementation of WEE (group B), as well as a control (group A), was applied in the hen industry. Laying performance, egg quality, egg nutrition, egg flavor, and the gut microbiome were analyzed comparatively. Interestingly, the laying rate was observed to be four percentage points higher with dietary supplementation of FEE at 200 mg/kg compared with the control and two percentage points higher compared with the dietary addition of WEE at the same dosage. Simultaneously, a slight upregulation in daily feed consumption was determined in the FEE-supplemented group compared with the blank control and the WEE-supplemented group, indicating that the inclusion of FEE stimulated the hens' appetite. Moreover, variations in egg amino acids, fatty acids, and volatile components were obtained with either dietary addition, FEE or WEE, implying that dietary supplementation of the fermented and water-extracted E. ulmoides leaf extracts contributed to egg flavor change. Furthermore, variations in the gut microbiota were mediated by FEE, increasing the relative abundance of the genus Lactobacillus. These alterations in gut microbiota were tightly related to improved laying performance and egg flavor changes. Our results indicate that FEE is a better alternative feed additive in the hen industry than WEE.

3.
Heliyon ; 10(7): e29008, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38601588

Nowadays, Megalobrama hoffmanni is a typical cultured fish in south China due to its resource decline in the Pearl River. Meanwhile, since antibiotics had been banned internationally, Chinese medical herbal plant serving as alternative to antibiotics has been adopted in aquaculture. In the present study, to ensure the health growth of M. hoffmanni, extract of traditional medical herbal plant Ampelopsis grossedentata was dietary supplemented and a series experiments were performed, including growth performance determination, physiological/biochemical detection, nutrition analysis, histology analysis, and 16S rRNA amplicon sequencing. Growth performance enhancement was determined since the weight gain rate (WGR), specific growth rate (SGR), and condition factor (CF) of M. hoffmanni increased as feeding inclusion A. grossedentata extract. Interestingly, the total content of muscle fatty acids ascended via supplementing A. grossedentata extract at middle level, in which group the activities of superoxide dismutase (SOD) and catalase (CAT) significantly increased and thus retarded the lipid peroxidation process (manifesting as malondialdehyde (MDA) content rising). Additionally, immune response and inflammatory reaction was stimulated in low and high level A. grossedentata extract added groups, indicating a suitable dosage of A. grossedentata extract benefited in safety production. Moreover, gut microbiota community varied hugely as daily supplementation A. grossedentata extract and the keystone species were tightly related to lipid transformation, which ultimately led to fatty acids composition variation. Our results confirmed that dietary supplementation A. grossedentata extract at the middle level (0.5‰, w/w) is suitable for serving as feed additive in healthful aquaculture of M. hoffmanni.

4.
J Agric Food Chem ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38619015

Succinate dehydrogenase (SDH) is one of the most important molecular targets for the development of novel fungicides. With the emerging problem of resistance in plant fungal pathogens, novel compounds with high fungicidal activity need to be developed, but the study of chiral pesticides for the inhibition of highly destructive plant pathogens has been rarely reported in recent years. Therefore, a series of novel chiral isoxazoline-benzofuran-sulfonamide derivatives were designed to investigate potential novel antifungal molecules. The chiral target compound 3a was cultured as a single crystal and confirmed using X-ray diffraction. All the target compounds were tested for antifungal activity, and compounds 3c, 3i, 3s, and 3r were found to have significant antifungal effects against S. sclerotiorum with EC50 values of 0.42 mg/L, 0.33 mg/L, 0.37 mg/L, and 0.40 mg/L, respectively, which were superior to the commercial fungicide fluopyram (EC50 = 0.47 mg/L). The IC50 value of compound 3i against the SDH of S. sclerotiorum was 0.63 mg/mL, which was further demonstrated by enzyme activity assays. Scanning electron microscopy showed that 3i had a significant inhibitory effect on S. sclerotiorum. In addition, the fluorescence quenching analysis assay indicated that compound 3i had a similar effect with the positive control fluopyram. Molecular docking exhibited that target compounds with chiral configuration had better affinity than racemic configuration, and 3i possessed stronger action than fluopyram, which was in keeping with the in vitro test results. These results would provide a basis and reference for the development of novel chiral fungicides.

5.
Article En | MEDLINE | ID: mdl-38683903

Graphene is a promising material for thermoacoustic sources due to its extremely low heat capacity per unit area and high thermal conductivity. However, current graphene thermoacoustic devices have limited device area and relatively high cost, which limit their applications of daily use. Here, we adopt a dip-coating method to fabricate a large-scale and cost-effective graphene sound source. This sound source has the three-dimensional (3D) porous structure that can increase the contact area between graphene and air, thus assisting heat to release into the air. In this method, polyurethane (PU) is used as a support, and graphene nanoplates are attached onto the PU skeleton so that a highly flexible graphene foam (GrF) device is obtained. At a measuring distance of 1 mm, it can emit sound at up to 70 dB under the normalized input power of 1 W. Considering its unique porous structure, we establish a thermoacoustic analysis model to simulate the acoustic performance of GrF. Furthermore, the obtained GrF can be made up to 44 in. (100 cm × 50 cm) in size, and it has good flexibility and processability, which broadens the application fields of GrF loudspeakers. It can be attached to the surfaces of objects with different shapes, making it suitable to be used as a large-area speaker in automobiles, houses, and other application scenarios, such as neck mounted speaker. In addition, it can also be widely used as a fully flexible in-ear earphone.

6.
Sci Total Environ ; 929: 172362, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38649047

Pollution-induced declines in fishery resources restrict the sustainable development of fishery. As a kind of typical environmental pollutant, the mechanism of polycyclic aromatic hydrocarbons (PAHs) facilitating fishery resources declines needs to be fully illustrated. To determine how PAHs have led to declines in fishery resources, a systematic toxicologic analysis of the effects of PAHs on aquatic organisms via food-web bioaccumulation was performed in the Pearl River and its estuary. Overall, PAH bioaccumulation in aquatic organisms was correlated with the trophic levels along food-web, exhibiting as significant positive correlations were observed between PAHs concentration and the trophic levels of fishes in the Pearl River Estuary. Additionally, waterborne PAHs exerted significant direct effects on dietary organisms (P < 0.05), and diet-borne PAHs subsequently exhibited significant direct effects on fish (P < 0.05). However, an apparent block effect was found in dietary organisms (e.g., zooplankton) where 33.49 % of the total system throughput (TST) was retained at trophic level II, exhibiting as the highest PAHs concentration, bioaccumulation factor (BAF), and biomagnification factor (BMF) of ∑15PAHs in zooplankton were at least eight-fold greater than those in fishes in both the Pearl River and its estuary, thereby waterborne PAHs exerted either direct or indirect effects on fishes that ultimately led to food-web simplification. Regardless of the block effect of dietary organisms, a general toxic effect of PAHs on aquatic organisms was observed, e.g., Phe and BaP exerted lethal effects on phytoplankton Chlorella pyrenoidosa and zooplankton Daphnia magna, and decreased reproduction in fishes Danio rerio and Megalobrama hoffmanni via activating the NOD-like receptors (NLRs) signaling pathway. Consequently, an assembled aggregate exposure pathway for PAHs revealed that increases in waterborne PAHs led to bioaccumulation of PAHs in aquatic organisms along food-web, and this in turn decreased the reproductive ability of fishes, thus causing decline in fishery resources.


Aquatic Organisms , Bioaccumulation , Environmental Monitoring , Food Chain , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/metabolism , Animals , Aquatic Organisms/drug effects , Fishes/metabolism , Estuaries , Rivers/chemistry , China
7.
Adv Sci (Weinh) ; : e2309668, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38537163

Tin-based perovskite solar cells (PSCs) are promising environmentally friendly alternatives to their lead-based counterparts, yet they currently suffer from much lower device performance. Due to variations in the chemical properties of lead (II) and tin (II) ions, similar treatments may yield distinct effects resulting from differences in underlying mechanisms. In this work, a surface treatment on tin-based perovskite is conducted with a commonly employed ligand, iso-butylammonium iodide (iso-BAI). Unlike the passivation effects previously observed in lead-based perovskites, such treatment leads to the recrystallization of the surface, driven by the higher solubility of tin-based perovskite in common solvents. By carefully designing the solvent composition, the perovskite surface is effectively modified while preserving the integrity of the bulk. The treatment led to enhanced surface crystallinity, reduced surface strain and defects, and improved charge transport. Consequently, the best-performing power conversion efficiency of FASnI3 PSCs increases from 11.8% to 14.2%. This work not only distinguishes the mechanism of surface treatments in tin-based perovskites from that of lead-based counterparts, but also underscores the critical role in designing tailor-made strategies for fabricating efficient tin-based PSCs.

8.
Front Oncol ; 14: 1302864, 2024.
Article En | MEDLINE | ID: mdl-38425344

Objective: GATA binding protein 3 (GATA3) and forkhead box A1 (FOXA1) have been individually implicated in the progression of upper tract urothelial carcinoma (UTUC). This study aims to evaluate the prognostic value of GATA3/FOXA1 co-expression in UTUC patients. Methods: We collected 108 UTUC pathological tissue samples with complete follow-up data and 24 normal control urothelial tissues. We created a 132-site microarray and performed immunohistochemistry (IHC) to measure GATA3 and FOXA1 expression levels. Kaplan-Meier survival and Cox regression analyses were conducted to assess UTUC prognosis. Results: GATA3 expression was positively correlated with FOXA1 (P=0.031). Absence of GATA3/FOXA1 co-expression (GATA3-/FOXA1-) was associated with tumor extensive necrosis (P=0.001) after Bonferroni correction for multiple comparisons. GATA3-/FOXA1- was associated with shorter Disease-Free Survival (DFS) (P=0.001) and Cancer-Specific Survival (CSS) (P<0.001) than other combination groups. Multivariate analyses identified extensive necrosis as an independent prognostic factor for CSS (P=0.030). Conclusions: Our study revealed a positive correlation between GATA3 and FOXA1 expression in UTUC. GATA3-/FOXA1- is linked to tumor extensive necrosis and poor prognosis in UTUC and may serve as a potential biomarker for UTUC patients.

9.
Angew Chem Int Ed Engl ; 63(14): e202319282, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38272832

The power conversion efficiencies (PCEs) of perovskite solar cells have recently developed rapidly compared to crystalline silicon solar cells. To have an effective way to control the crystallization of perovskite thin films is the key for achieving good device performance. However, a paradox in perovskite crystallization is from the mismatch between nucleation and Oswald ripening. Usually, the large numbers of nucleation sites tend to weak Oswald ripening. Here, we proposed a new mechanism to promote the formation of nucleation sites by reducing surface energy from 44.9 mN/m to 36.1 mN/m, to spontaneously accelerate the later Oswald ripening process by improving the grain solubility through the elastic modulus regulation. The ripening rate is increased from 2.37 Åm ⋅ s-1 to 4.61 Åm ⋅ s-1 during annealing. Finally, the solar cells derived from the optimized films showed significantly improved PCE from 23.14 % to 25.32 %. The long-term stability tests show excellent thermal stability (the optimized device without encapsulation maintaining 82 % of its initial PCE after 800 h aging at 85 °C) and an improved light stability under illumination. This work provides a new method, the elastic modulus regulation, to enhance the ripening process.

10.
Foods ; 13(2)2024 Jan 15.
Article En | MEDLINE | ID: mdl-38254574

Globally, type 2 diabetes (T2DM) is on the rise. Maintaining a healthy diet is crucial for both treating and preventing T2DM.As a common vegetable in daily diet, broccoli has antioxidant, anti-inflammatory and anticarcoma physiological activities. We developed a mouse model of type 2 diabetes and carried out a systematic investigation to clarify the function of broccoli in reducing T2DM symptoms and controlling intestinal flora. The findings demonstrated that broccoli could successfully lower fasting blood glucose (FBG), lessen insulin resistance, regulate lipid metabolism, lower the levels of TC, TG, LDL-C, and MDA, stop the expression of IL-1ß and IL-6, and decrease the harm that diabetes causes to the pancreas, liver, fat, and other organs and tissues. Furthermore, broccoli altered the intestinal flora's makeup in mice with T2DM. At the genus level, the relative abundance of Allobaculum decreased, and that of Odoribacter and Oscillospira increased; At the family level, the relative abundances of Odoribacteraceae, Rikenellaceae and S24-7 decreased, while the relative abundances of Erysipelotrichaceae and Rikenellaceae increased.

11.
CNS Neurosci Ther ; 30(2): e14395, 2024 02.
Article En | MEDLINE | ID: mdl-37553557

AIMS: This study investigated the impact of transcutaneous auricular vagus nerve stimulation (taVNS) on working memory (WM) in refractory temporal lobe epilepsy (rTLE) and the underlying mechanisms. METHODS: In this randomized double-blind study, 28 rTLE patients were subjected to an active or sham taVNS (a/s-taVNS) protocol for 20 weeks (a-taVNS group, n = 19; s-ta VNS group, n = 9). Patients performed visual WM tasks during stimulation and neural oscillations were simultaneously recorded by 19-channel electroencephalography. RESULTS: Compared with the baseline state, reaction time was significantly shorter after 20 weeks of taVNS in the a-taVNS group (p = 0.010), whereas no difference was observed in the s-taVNS group (p > 0.05). The power spectral density (PSD) of the theta frequency band in the Fz channel decreased significantly after a-taVNS during WM-encoding (p = 0.020), maintenance (p = 0.038), and retrieval (p = 0.039) phases, but not in the s-taVNS group (all p > 0.05). CONCLUSION: Neural oscillations during WM were altered by taVNS and WM performance was improved. Alterations in frontal midline theta oscillations may be a marker for the effect of taVNS on cognitive regulation.


Epilepsy, Temporal Lobe , Vagus Nerve Stimulation , Humans , Memory, Short-Term , Epilepsy, Temporal Lobe/therapy , Double-Blind Method , Vagus Nerve
12.
Small Methods ; 8(1): e2300899, 2024 Jan.
Article En | MEDLINE | ID: mdl-37749953

Controlling the crystallization to achieve high-quality homogeneous perovskite film is the key strategy in developing perovskite electronic devices. Here, an in situ dynamic optical probing technique is demonstrated that can monitor the fast crystallization of perovskites and effectively minimize the influence of laser excitation during the measurement. This study finds that the typical static probing technique would damage and induce phase segregation in the perovskite films during the excitation. These issues can be effectively resolved with the dynamic probing approach. It also found that the crystallization between MAPbI3 and MAPbI2 Br is strikingly different. In particular, MAPbI2 Br suffers from inefficient nucleation during the spin-coating that strongly affects the uniform crystal growth in the annealing process. The commonly used pre-heating process is found at a lower temperature not only can further promote the nucleation but also to complete the crystallization of MAPbI2 Br. The role of further annealing at a higher temperature is to facilitate ion-dissociation on the crystal surface to form a passivation layer to stabilize the MAPbI2 Br lattices. The device performance is strongly correlated with the film formation mechanism derived from the in situ results. This work demonstrates that the in situ technique can provide deep insight into the crystallization mechanism, and help to understand the growth mechanism of perovskites with different compositions and dimensionalities.

13.
Cancer Med ; 13(1): e6720, 2024 Jan.
Article En | MEDLINE | ID: mdl-38111983

BACKGROUND: Although adjuvant chemotherapy (ACT) is widely used to treat patients with Stage II/III colorectal cancer (CRC), administering ACT to specific patients remains a challenge. The decision to ACT requires an accurate assessment of recurrence risk and absolute treatment benefit. However, the traditional TNM staging system does not accurately assess a patient's individual risk of recurrence. METHODS: To identify recurrence risk-related genetic factors for Stage II/III CRC patients after radical surgery, we conducted an analysis of whole-exome sequencing of 47 patients with Stage II/III CRC who underwent radical surgery at five institutions. Patients were grouped into non-recurrence group (NR, n = 24, recurrence-free survival [RFS] > 5 years) and recurrence group (R, n = 23, RFS <2 years). The TCGA-COAD/READ cohort was employed as the validation dataset. RESULTS: A recurrence-predictive model (G8plus score) based on eight gene (CUL9, PCDHA12, HECTD3, DCX, SMARCA2, FAM193A, AATK, and SORCS2) mutations and tumor mutation burden/microsatellite instability (TMB/MSI) status was constructed, with 97.87% accuracy in our data and 100% negative predictive value in the TCGA-COAD/READ cohort. For the TCGA-COAD/READ cohort, the G8plus-high group had better RFS (HR = 0.22, p = 0.024); the G8plus-high tumors had significantly more infiltrated immune cell types, higher tertiary lymphoid structure signature scores, and higher immunological signature scores. The G8plus score was also a predict biomarker for immunotherapeutic in advanced CRC in the PUCH cohort. CONCLUSIONS: In conclusion, the G8plus score is a powerful biomarker for predicting the risk of recurrence in patients with stage II/III CRC. It can be used to stratify patients who benefit from ACT and immunotherapy.


Colorectal Neoplasms , Microsatellite Instability , Humans , Prognosis , Colorectal Neoplasms/therapy , Colorectal Neoplasms/drug therapy , Neoplasm Staging , Biomarkers, Tumor/genetics
14.
J Agric Food Chem ; 72(1): 715-725, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38123485

Cd pollution-safe cultivar (Cd-PSC) is a feasible strategy to minimize Cd contamination in leafy vegetables. The shoot Cd concentrations of 23 Lactuca sativa cultivars under Cd stress ranged from 0.124 to 2.155 mg·kg-1 with a maximum cultivar difference of 8 folds. Typical Cd-PSC C16 (L) and high-Cd-accumulating cultivar C13 (H) were screened to investigate the mechanisms of Cd accumulations in L. sativa through determining Cd concentrations, Cd subcellular distributions, phytochelatin profiles, and phytochelatin biosynthesis-related genes' expressions. Higher Cd distribution in a heat stable fraction in C13 (H) indicated that the high Cd accumulation trait of C13 (H) mainly depended on the Cd-phytochelatin complexes. Root phytochelatin concentrations were significantly elevated in C13 (H) (5.83 folds) than in C16 (L) (2.69 folds) (p < 0.05) under Cd stress. Significantly downregulated expressions of glutathione S-transferase rather than the regulation of phytochelatin synthesis genes in the root of C13 (H) might be responsible for sufficient glutathione supply for phytochelatins synthesis. These findings suggested that phytochelatin elevation in C13 (H) would favor the Cd root to shoot transportation, which provides new insights into the phytochelatin-related cultivar-dependent Cd accumulating characteristic in L. sativa.


Phytochelatins , Soil Pollutants , Phytochelatins/metabolism , Cadmium/metabolism , Lactuca/genetics , Soil Pollutants/metabolism , Plant Roots/chemistry
15.
Animals (Basel) ; 13(23)2023 Nov 28.
Article En | MEDLINE | ID: mdl-38067029

To improve the palatability of Artemisia argyi, fermented A. argyi (AAF) were prepared by Lactobacillus plantarum and Saccharomyces cerevisiae, which were used in the hen industry subsequently. Six hundred hens were randomly divided into three groups: control (A), dietary supplementation AAF at a low level (B), and dietary supplementation AAF at a high level (C). After feeding for four months, egg production, egg quality, egg nutrition, egg flavor, plasma biochemical parameters, intestinal histology, and microbiome of the gut contents were analyzed among the three tested groups. Interestingly, 5-6 percentage points elevation in the laying rates were observed in the AAF-supplemented groups in comparison to the control, accompanied with a 5 g increase in daily feed consumption. Since no alteration in egg/body weights was detected, laying performance enhancement was the main effect of dietary supplementation AAF. Meanwhile, the compositions of the egg amino acids and fatty acids changed as the feed inclusion AAF changed, e.g., His and linoleic acid decreased almost 0.1 and 0.5 g/100 g, respectively, while oleic acid increased almost 0.4 g/100 g. In addition, although no significant difference was detected (p > 0.05), the ß-diversity of the gut microbiota decreased as the diet addition of AAF decreased, and probiotics (Faecalibacterium, Prevotellaceae, Intestinimonas, and Lachnospiraceae) were the dominant keystone species under AAF treatments. These probiotics were well associated with the egg nutrition component variations based on the correlation analysis, as the Sankey plot showed. Furthermore, the results of headspace-gas chromatography-ion mobility spectrometry manifested that the egg volatile components varied (e.g., the contents of acetone, 4-methyl-3-penten-2-one, 1-hydroxy-2-propanone, ethyl acetate, ethyl octanoate, ethanol, and 2-butanol in the B and C groups were higher than in the A group) and separated clearly as daily supplementation AAF, indicating AAF hugely contributed to the egg flavor variation. Due to no significant differences noticed between the B and C groups, dietary supplementation AAF at a relative low level was enough to serve as a feed attractant in the hen industry for real feeding.

16.
Small ; : e2306786, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38061990

There is increasing demand to power Internet of Things devices using ambient energy sources. Flexible, low-temperature, organic/inorganic thermoelectric devices are a breakthrough next-generation approach to meet this challenge. However, these systems suffer from poor performance and expensive processing preventing wide application of the technology. In this study, by combining a ferroelectric polymer (Polyvinylidene fluoride (PVDF, ß phase)) with p-type Bi0.5 Sb1.5 Te3 (BST) a thermoelectric composite film with maximum is produced power factor. Energy filter from ferroelectric-thermoelectric junction also leads to high Seebeck voltage ≈242 µV K-1 . For the first time, compelling evidence is provided that the dipole of a ferroelectric material is helping decouple electron transport related to carrier mobility and the Seebeck coefficient, to provide 5× or more improvement in thermoelectric power factor. The best composition, PVDF/BST film with BST 95 wt.% has a power factor of 712 µW•m-1  K-2 . A thermoelectric generator fabricated from a PVDF/BST film demonstrated Pmax T 12.02 µW and Pdensity 40.8 W m-2 under 50 K temperature difference. This development also provides a new insight into a physical technique, applicable to both flexible and non-flexible thermoelectrics, to obtain comprehensive thermoelectric performance.

17.
Nanomaterials (Basel) ; 13(20)2023 Oct 18.
Article En | MEDLINE | ID: mdl-37887936

Low-temperature synthesis of Bi2Se3 thin film semiconductor thermoelectric materials is prepared by the plasma-enhanced chemical vapor deposition method. The Bi2Se3 film demonstrated excellent crystallinity due to the Se-rich environment. Experimental results show that the prepared Bi2Se3 film exhibited 90% higher transparency in the mid-IR region, demonstrating its potential as a functional material in the atmospheric window. Excellent mobility of 2094 cm2/V·s at room temperature is attributed to the n-type conductive properties of the film. Thermoelectrical properties indicate that with the increase in Se vapor, a slight decrease in conductivity of the film is observed at room temperature with an obvious increase in the Seebeck coefficient. In addition, Bi2Se3 thin film showed an enhanced power factor of as high as 3.41 µW/cmK2. Therefore, plasma-enhanced chemical vapor deposition (PECVD)-grown Bi2Se3 films on Al2O3 (001) substrates demonstrated promising thermoelectric properties.

18.
Adv Mater ; : e2307635, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37714163

Multiple cation-composited perovskites are demonstrated as a promising approach to improving the performance and stability of perovskite solar cells (PSCs). However, recipes developed for fabricating high-performance perovskites in laboratories are always not transferable in large-scale production, as perovskite crystallization is highly sensitive to processing conditions. Here, using an in situ optical method, the ambient temperature effect on the crystallization process in multiple cation-composited perovskites is investigated. It is found that the typical solvent-coordinated intermediate phase in methylammonium lead iodide (MAPbI3 ) is absent in formamidinium lead iodide (FAPbI3 ), and nucleation is almost completed in FAPbI3 right after spin-coating. Interestingly, it is found that there is noticeable nuclei aggregation in Formamidinium (FA)-based perovskites even during the spin-coating process, which is usually only observed during the annealing in MAPbI3 . Such aggregation is further promoted at a higher ambient temperature or in higher FA content. Instead of the general belief of stress release-induced crack formation, it is proposed that the origin of the cracks in FA-based perovskites is due to the aggregation-induced solute depletion effect. This work reveals the limiting factors for achieving high-quality FA-based perovskite films and helps to unlock the existing narrow processing window for future large-scale production.

19.
Environ Sci Pollut Res Int ; 30(45): 101168-101177, 2023 Sep.
Article En | MEDLINE | ID: mdl-37648912

Cadmium (Cd) contamination and boron (B) deficiency are two major challenges associated with the farmland soils in Southern China. Therefore, this study was conducted to examine the impacts of B supply on Cd accumulation in water spinach (Ipomoea aquatica) using a cultivar (T308) with high Cd accumulation. The study further investigated the physiological mechanism behind the changes in Cd accumulation due to B supply. The findings revealed that B supply substantially reduced the Cd concentration in the leaves of water spinach by 41.20% and 37.16% under the Cd stress of 10 µM and 25 µM, respectively. Subcellular distribution of Cd showed that the Cd content as well as its proportion in root cell wall (RCW) increased significantly after B supply. Fourier transform infrared spectroscopy showed significant enrichment of negatively charged groups (such as -OH, -COOH, and -NH2) in the RCW after B supply. Overall, B supply also enhanced covalently bound pectin (CSP) content as well as the Cd content linked with CSP under Cd stress. These observations revealed that B regulated the Cd chelation in RCW, thereby reducing the amassment of Cd in water spinach.

20.
Small ; 19(47): e2303885, 2023 Nov.
Article En | MEDLINE | ID: mdl-37496030

The black-to-yellow phase transition in perovskite quantum dots (QDs) is more complex than in bulk perovskites, regarding the role of surface energy. Here, with the assistance of in situ grazing-incidence wide-angle and small-angle X-ray scattering (GIWAXS/GISAXS), distinct phase behaviors of cesium lead iodide (CsPbI3 ) QD films under two different temperature profiles-instant heating-up (IHU) and slow heating-up (SHU) is investigated. The IHU process can cause the phase transition from black phase to yellow phase, while under the SHU process, the majority remains in black phase. Detailed studies and structural refinement analysis reveal that the phase transition is triggered by the removal of surface ligands, which switches the energy landscape. The lattice symmetry determines the transition rate and the coexistence black-to-yellow phase ratio. The SHU process allows longer relaxation time for a more ordered QD packing, which helps sustain the lattice symmetry and stabilizes the black phase. Therefore, one can use the lattice symmetry as a general index to monitor the CsPbI3 QD phase transition and finetune the coexistence black-to-yellow phase ratio for niche applications.

...