Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 86
1.
Medicine (Baltimore) ; 103(19): e38079, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728471

Atrial fibrillation (AF) is a prevalent cardiac arrhythmia, with recent research indicating a correlation between immune system characteristics and the development of AF. However, it remains uncertain whether the immunological response is the primary underlying component or a secondary consequence of AF. Initially, we investigated the effect of immune cells on AF by performing forward Mendelian randomization (MR) analyses with immune cells as the exposure variable and their associated genetic variants as instrumental variables. Subsequently, we performed reverse MR analyses with AF as the exposure variable and immune cells as the outcome variable to exclude the interference of reverse causality, to distinguish between primary and secondary effects, and to further elucidate the causal relationship between the immune system and AF. We discovered that membrane proteins on specific immune cells, such as CD25 on memory B cells-which functions as a part of the interleukin-2 receptor-may be risk factors for AF development, with odds ratios of 1.0233 (95% confidence interval: 1.0012-1.0458, P = .0383). In addition, certain immune cell counts, such as the CD4 regulatory T cell Absolute Count, play a protective factor in the development of AF (odds ratio: 0.9513, 95% confidence interval: 0.9165-0.9874; P = .0086). More detailed results are elaborated in the main text. Our MR study has yielded evidence that substantiates a genetically inferred causal association between the immune system and AF. Identifying the risk factors associated with AF is vital to facilitate the development of innovative pharmaceutical treatments.


Atrial Fibrillation , Mendelian Randomization Analysis , Atrial Fibrillation/genetics , Atrial Fibrillation/immunology , Atrial Fibrillation/epidemiology , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Risk Factors , B-Lymphocytes/immunology
2.
J Mater Chem B ; 12(18): 4289-4306, 2024 May 08.
Article En | MEDLINE | ID: mdl-38595070

The past few decades have witnessed substantial progress in biomedical materials for addressing health concerns and improving disease therapeutic and diagnostic efficacy. Conventional biomedical materials are typically created through an ex vivo approach and are usually utilized under physiological environments via transfer from preparative media. This transfer potentially gives rise to challenges for the efficient preservation of the bioactivity and implementation of theranostic goals on site. To overcome these issues, the in situ synthesis of biomedical materials on site has attracted great attention in the past few years. Peptides, which exhibit remarkable biocompability and reliable noncovalent interactions, can be tailored via tunable assembly to precisely create biomedical materials. In this review, we summarize the progress in the self-assembly of peptides in living cells for disease diagnosis and therapy. After a brief introduction to the basic design principles of peptide assembly systems in living cells, the applications of peptide assemblies for bioimaging and disease treatment are highlighted. The challenges in the field of peptide self-assembly in living cells and the prospects for novel peptide assembly systems towards next-generation biomaterials are also discussed, which will hopefully help elucidate the great potential of peptide assembly in living cells for future healthcare applications.


Biocompatible Materials , Peptides , Theranostic Nanomedicine , Humans , Peptides/chemistry , Peptides/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Animals
3.
Int J Biol Macromol ; 265(Pt 1): 130680, 2024 Apr.
Article En | MEDLINE | ID: mdl-38462121

The catechol moiety found within mussel proteins plays a pivotal role in enhancing their adhesive properties. Nonetheless, catechol compounds, such as dopamine (DOP) derivatives, are susceptible to oxidation, leading to the formation of quinone. This oxidation process poses a significant challenge in the development of DOP-based hydrogels, hampering their adhesion capabilities and hindering polymerization. To protect DOP moieties from oxidation, DOP and N-(3-aminopropyl)methacrylamide (AMA) moieties were grafted onto the side groups of biocompatible poly(glutamic acid) (PGA). Subsequently, the DOP unit, serving as a second guest, would be captured by a polymerizable rotaxane of cucurbituril (CB[n]), in which the host molecule CB[8] complexed with the first guest, polymerizable methyl viologen (MV), forming a protective function and dynamic cross-linking. Upon exposure to light curing, a composite network emerged through the synergy of covalent cross-linking and supramolecular host-guest complexation of DOP with CB[8]. The generated complexation between DOP and CB[8] could protect the DOP moieties, resulting in photocured hydrogels with exceptional adhesive strength and remarkable tensile capabilities. Moreover, 3D printing technology was used to create various models with these DOP-based hydrogels, demonstrating their promising applications in future.


Macrocyclic Compounds , Rotaxanes , Hydrogels , Dopamine , Adhesives
4.
J Inflamm Res ; 17: 641-653, 2024.
Article En | MEDLINE | ID: mdl-38328560

Objective: In this study, we investigated the effect and mechanism of action of eugenol on oxidized low-density lipoprotein (ox-LDL)-induced abnormal proliferation and migration of human vascular smooth muscle cells (HVSMCs). Methods: HVSMCs were treated with 100 ug/mL ox-LDL for 24 hours to establish a cell model. After 1-hour pretreatment, eugenol at concentrations of 5, 25, and 50 uM was added. Cell viability was assessed using an MTT assay, PCNA expression was detected using Western blot, cell cycle distribution was analyzed using flow cytometry, and cell migration ability was evaluated using wound healing and Transwell migration assays. To investigate the mechanisms, Ang II receptors were inhibited by 1000 nM valsartan, MFG-E8 was knocked down by shRNA, MCP-1 was inhibited by siRNA, and MFG-E8 was overexpressed using plasmids. Results: The findings from this study elucidated the stimulatory impact of ox-LDL on the proliferation and functionality of HVSMCs. Different concentrations of eugenol effectively mitigated the enhanced activity of HVSMCs induced by ox-LDL, with 50 uM eugenol exhibiting the most pronounced inhibitory effect. Flow cytometry and Western blot results showed ox-LDL reduced G1 phase cells and increased PCNA expression, while 50 uM eugenol inhibited ox-LDL-induced HVSMC proliferation. In wound healing and Transwell migration experiments, the ox-LDL group showed larger cell scratch filling and migration than the control group, both of which were inhibited by 50 uM eugenol. Inhibiting the Ang II/MFG-E8/MCP-1 signaling cascade mimicked eugenol's effects, while MFG-E8 overexpression reversed eugenol's inhibitory effect. Conclusion: Eugenol can inhibit the proliferation and migration of ox-LDL-induced HVSMCs by inhibiting Ang II/MFG-E8/MCP-1 signaling cascade, making it a potential therapeutic drug for atherosclerosis.

5.
Front Cardiovasc Med ; 10: 1296389, 2023.
Article En | MEDLINE | ID: mdl-38107262

Dilated cardiomyopathy (DCM) is one of the most common primary myocardial diseases. However, to this day, it remains an enigmatic cardiovascular disease (CVD) characterized by ventricular dilatation, which leads to myocardial contractile dysfunction. It is the most common cause of chronic congestive heart failure and the most frequent indication for heart transplantation in young individuals. Genetics and various other factors play significant roles in the progression of dilated cardiomyopathy, and variants in more than 50 genes have been associated with the disease. However, the etiology of a large number of cases remains elusive. Numerous studies have been conducted on the genetic causes of dilated cardiomyopathy. These genetic studies suggest that mutations in genes for fibronectin, cytoskeletal proteins, and myosin in cardiomyocytes play a key role in the development of DCM. In this review, we provide a comprehensive description of the genetic basis, mechanisms, and research advances in genes that have been strongly associated with DCM based on evidence-based medicine. We also emphasize the important role of gene sequencing in therapy for potential early diagnosis and improved clinical management of DCM.

6.
Front Immunol ; 14: 1290578, 2023.
Article En | MEDLINE | ID: mdl-38115996

Background: Guillain-Barré syndrome (GBS) is a medical condition characterized by the immune system of the body attacking the peripheral nerves, including those in the spinal nerve roots, peripheral nerves, and cranial nerves. It can cause limb weakness, abnormal sensations, and facial nerve paralysis. Some studies have reported clinical cases associated with the severe coronavirus disease 2019 (COVID-19) and GBS, but how COVID-19 affects GBS is unclear. Methods: We utilized bioinformatics techniques to explore the potential genetic connection between COVID-19 and GBS. Differential expression of genes (DEGs) related to COVID-19 and GBS was collected from the Gene Expression Omnibus (GEO) database. By taking the intersection, we obtained shared DEGs for COVID-19 and GBS. Subsequently, we utilized bioinformatics analysis tools to analyze common DEGs, conducting functional enrichment analysis and constructing Protein-protein interaction networks (PPI), Transcription factors (TF) -gene networks, and TF-miRNA networks. Finally, we validated our findings by constructing the Receiver Operating Characteristic (ROC) curves. Results: This study utilizes bioinformatics tools for the first time to investigate the close genetic relationship between COVID-19 and GBS. CAMP, LTF, DEFA1B, SAMD9, GBP1, DDX60, DEFA4, and OAS3 are identified as the most significant interacting genes between COVID-19 and GBS. In addition, the signaling pathway of NOD-like receptors is believed to be essential in the link between COVID-19 and GBS.


COVID-19 , Communicable Diseases , Guillain-Barre Syndrome , Humans , COVID-19/genetics , COVID-19/complications , Guillain-Barre Syndrome/etiology , Muscle Weakness , Communicable Diseases/complications , Protein Interaction Maps , Intracellular Signaling Peptides and Proteins
7.
Angew Chem Int Ed Engl ; 62(49): e202314578, 2023 12 04.
Article En | MEDLINE | ID: mdl-37870078

The presence of disordered region or large interacting surface within proteins significantly challenges the development of targeted drugs, commonly known as the "undruggable" issue. Here, we report a heterogeneous peptide-protein assembling strategy to selectively phosphorylate proteins, thereby activating the necroptotic signaling pathway and promoting cell necroptosis. Inspired by the structures of natural necrosomes formed by receptor interacting protein kinases (RIPK) 1 and 3, the kinase-biomimetic peptides are rationally designed by incorporating natural or D -amino acids, or connecting D -amino acids in a retro-inverso (DRI) manner, leading to one RIPK3-biomimetic peptide PR3 and three RIPK1-biomimetic peptides. Individual peptides undergo self-assembly into nanofibrils, whereas mixing RIPK1-biomimetic peptides with PR3 accelerates and enhances assembly of PR3. In particular, RIPK1-biomimetic peptide DRI-PR1 exhibits reliable binding affinity with protein RIPK3, resulting in specific cytotoxicity to colon cancer cells that overexpress RIPK3. Mechanistic studies reveal the increased phosphorylation of RIPK3 induced by RIPK1-biomimetic peptides, elucidating the activation of the necroptotic signaling pathway responsible for cell death without an obvious increase in secretion of inflammatory cytokines. Our findings highlight the potential of peptide-protein hybrid aggregation as a promising approach to address the "undruggable" issue and provide alternative strategies for overcoming cancer resistance in the future.


Apoptosis , Peptides , Apoptosis/physiology , Cell Death , Phosphorylation , Peptides/pharmacology , Amino Acids
8.
Biomimetics (Basel) ; 8(5)2023 Aug 25.
Article En | MEDLINE | ID: mdl-37754140

Many approaches inspired by brain science have been proposed for robotic control, specifically targeting situations where knowledge of the dynamic model is unavailable. This is crucial because dynamic model inaccuracies and variations can occur during the robot's operation. In this paper, inspired by the central nervous system (CNS), we present a CNS-based Biomimetic Motor Control (CBMC) approach consisting of four modules. The first module consists of a cerebellum-like spiking neural network that employs spiking timing-dependent plasticity to learn the dynamics mechanisms and adjust the synapses connecting the spiking neurons. The second module constructed using an artificial neural network, mimicking the regulation ability of the cerebral cortex to the cerebellum in the CNS, learns by reinforcement learning to supervise the cerebellum module with instructive input. The third and last modules are the cerebral sensory module and the spinal cord module, which deal with sensory input and provide modulation to torque commands, respectively. To validate our method, CBMC was applied to the trajectory tracking control of a 7-DoF robotic arm in simulation. Finally, experiments are conducted on the robotic arm using various payloads, and the results of these experiments clearly demonstrate the effectiveness of the proposed methodology.

9.
Accid Anal Prev ; 192: 107238, 2023 Nov.
Article En | MEDLINE | ID: mdl-37540978

OBJECTIVE: The advent of automated vehicles (AVs) provides an opportunity to design integrated wheelchair seating stations that provide an equivalent level of safety for occupants using wheelchairs as those using vehicle seating. This study designed a frontal occupant protection system for an integrated second-row wheelchair seating station that includes optimized airbags and seatbelt systems. METHODS: MADYMO models were used to optimize belt geometry for a midsized male ATD seated in a surrogate wheelchair fixture, with and without inclusion of a Self Conforming Rearseat Air Bag (SCaRAB). Sled tests were performed to confirm the benefits of airbag use and optimized belt geometry. Additional modeling was performed with commercial manual and power wheelchairs, to identify the effects of wheelchair design and forward clear space on occupant kinematics and injury measures. Additional sled tests were performed with manual and power wheelchairs to demonstrate effectiveness of the restraint system with commercial products. RESULTS: Simulations and tests both showed improved kinematics using an optimized seatbelt system geometry compared to a commonly used suboptimal D-ring location that places the shoulder belt at a more outboard location. Use of the SCaRAB helped compensate for suboptimal geometry. Results include specific recommendations for belt geometry relative to the wheelchair seating station and airbag parameters suitable for protecting occupants seated in wheelchairs. Restraint systems initially optimized using the surrogate wheelchair also performed well with the two commercial wheelchairs. The clear space required for maneuvering a wheelchair will likely prevent injurious head contact in frontal crashes. CONCLUSIONS: This study is the first to design a frontal optimal occupant protection system for an integrated second-row wheelchair seating station, demonstrating that it should be feasible once integrated wheelchair seating stations are included in AVs.


Air Bags , Wheelchairs , Male , Humans , Accidents, Traffic/prevention & control , Seat Belts , Biomechanical Phenomena
10.
Front Cardiovasc Med ; 10: 1194814, 2023.
Article En | MEDLINE | ID: mdl-37424925

A 52-year-old Chinese woman was admitted to a cardiac intensive care unit (CCU) due to nausea, vomiting, and dyspnea, which began a day before her hospitalization. Metoprolol succinate and conventional treatment for acute myocardial infarction (AMI) were initially administered to the patient based on electrocardiogram (ECG) findings and elevated cardiac troponin I (cTnI). However, the following day, she developed aggravated nausea, vomiting, fever, sweating, a flushed face, a rapid heart rate, and a significant rise in blood pressure. Furthermore, ultrasonic cardiography (UCG) displayed takotsubo-like changes; nevertheless, ECG indicated inconsistent cTnI peaks with extensive infarction. After coronary computed tomography angiography (CTA) ruled out (AMI), and in conjunction with the uncommon findings, we strongly suspected that the patient had a secondary condition of pheochromocytoma-induced takotsubo cardiomyopathy (Pheo-TCM). In the meanwhile, the use of metoprolol succinate was promptly discontinued. This hypothesis was further supported by the subsequent plasma elevation of multiple catecholamines and contrast-enhanced computed tomography (CECT). After one month of treatment with high-dose Phenoxybenzamine in combination with metoprolol succinate, the patient met the criteria for surgical excision and successfully underwent the procedure. This case report demonstrated that pheochromocytoma could induce TCM and emphasized the significance of distinguishing it from AMI (in the context of beta-blocker usage and anticoagulant management).

11.
Front Pharmacol ; 14: 1166022, 2023.
Article En | MEDLINE | ID: mdl-37465523

The purpose of this experiment was to investigate the effects of Litsea cubeba essential oil (LCO) on the growth performance, blood antioxidation, immune function, apparent digestibility of nutrients, and fecal microflora in fattening pigs. A total of 120 pigs were randomly assigned to five groups, with six replicate pens per treatment and four pigs per pen, and they were fed basal diet, chlortetracycline (CTC), and low-, medium-, and high-concentration LCO. The results of the study showed that compared with the control treatment and CTC addition treatment of the basic diet, the catalase level in the serum of the pigs treated with 500 mg/kg LCO in the diet of finishing pigs was significantly increased (p < 0.05). The apparent digestibility of crude protein, crude ash, and calcium in pigs with different levels of LCO was significantly increased compared with the control treatments fed the basal diet (p < 0.05). In addition, compared with the control treatment fed the basal diet and the treatment with CTC, the apparent digestibility of ether extract in pigs treated with medium-dose LCO was significantly increased (p < 0.05), and the apparent digestibility of pigs was significantly increased after the addition of low-dose LCO (p < 0.05). Among the genera, the percentage abundance of SMB53 (p < 0.05) was decreased in the feces of the CTC group when compared to that in the medium-LCO group. At the same time, the relative abundance of L7A_E11 was markedly decreased in the feces of the control and medium- and high-concentration LCO group than that in the CTC group (p < 0.05). In conclusion, adding the level of 250 mg/kg LCO in the diet of pig could improve the growth performance and blood physiological and biochemical indicators of pigs, improve the antioxidant level of body and the efficiency of digestion and absorption of nutrients, and show the potential to replace CTC.

12.
J Thromb Thrombolysis ; 56(3): 388-397, 2023 Oct.
Article En | MEDLINE | ID: mdl-37466848

Coronary microvascular endothelial cells (CMECs) react to changes in coronary blood flow and myocardial metabolites and regulate coronary blood flow by balancing vasoconstrictors-such as endothelin-1-and the vessel dilators prostaglandin, nitric oxide, and endothelium-dependent hyperpolarizing factor. Coronary microvascular endothelial cell dysfunction is caused by several cardiovascular risk factors and chronic rheumatic diseases that impact CMEC blood flow regulation, resulting in coronary microcirculation dysfunction (CMD). The mechanisms of CMEC dysfunction are not fully understood. However, the following could be important mechanisms: the overexpression and activation of nicotinamide adenine dinucleotide phosphate oxidase (Nox), and mineralocorticoid receptors; the involvement of reactive oxygen species (ROS) caused by a decreased expression of sirtuins (SIRT3/SIRT1); forkhead box O3; and a decreased SKCA/IKCA expression in the endothelium-dependent hyperpolarizing factor electrical signal pathway. In addition, p66Shc is an adapter protein that promotes oxidative stress; although there are no studies on its involvement with cardiac microvessels, it is possible it plays an important role in CMD.


Myocardial Ischemia , Vascular Diseases , Humans , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Microcirculation , Endothelial Cells/metabolism , Vascular Diseases/metabolism , Coronary Vessels , Endothelium, Vascular/metabolism
13.
Ultrason Sonochem ; 95: 106401, 2023 May.
Article En | MEDLINE | ID: mdl-37060713

Dicaffeoylquinic acids (diCQAs) are found in a variety of edible and medicinal plants with various biological activities. An important issue is the low stability of diCQAs during extraction and food processing, resulting in the degradation and transformation. This work used 3,5-diCQA as a representative to study the influence of different parameters in ultrasonic treatment on the stability of diCQAs, including solvent, temperature, treatment time, ultrasonic power, duty cycle, and probe immersion depth. The generation of free radicals and its influence were investigated during the treatment. The stability of three diCQAs (3,5-diCQA, 4,5-diCQA and 3,4-diCQA) under the certain ultrasonic condition at different pH conditions was evaluated and found to decrease with the increase of pH, further weakened by ultrasonic treatment. Ultrasound was found to accelerate the degradation and isomerization of diCQAs. Different diCQAs showed different pattern of degradation and isomerization. The stability of diCQAs could be improved by adding epigallocatechin gallate and vitamin C.

14.
Anal Chem ; 95(7): 3848-3855, 2023 02 21.
Article En | MEDLINE | ID: mdl-36745869

Accurate diagnosis requires the development of multiple-guaranteed DNA circuits. Nevertheless, for reliable multiplexed molecular imaging, existing DNA circuits are limited by poor cell-delivering homogeneity due to their cumbersome and dispersive reactants. Herein, we developed a compact-yet-efficient hierarchical DNA hybridization (HDH) circuit for in situ simultaneous analysis of multiple miRNAs, which could be further exploited for specifically discriminating cancer cells from normal ones. By integrating the traditional hybridization chain reaction and catalytic hairpin assembly reactants into two highly organized hairpins, the HDH circuit is fitted with condensed components and multiple response domains, thus permitting the programmable multiple microRNA-guaranteed sequential activations and the localized cascaded signal amplification. The synergistic multi-recognition and amplification features of the HDH circuit facilitate the magnified detection of multiplex endogenous miRNAs in living cells. The in vitro and cellular imaging experimental results revealed that the HDH circuit displayed a reliable sensing performance with high selective cell-identification capacity. We anticipate that this compact design can provide a powerful toolkit for accurate diagnostics and pathological evolution.


Biosensing Techniques , DNA, Catalytic , MicroRNAs , MicroRNAs/genetics , MicroRNAs/analysis , Biosensing Techniques/methods , Nucleic Acid Hybridization , DNA/genetics , Molecular Imaging , DNA, Catalytic/metabolism
15.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article En | MEDLINE | ID: mdl-36674979

Cuproptosis, a new cell death pattern, is promising as an intervention target to treat tumors. Abnormal long non-coding RNA (lncRNA) expression is closely associated with the occurrence and development of papillary renal cell carcinoma (pRCC). However, cuproptosis-related lncRNAs (CRLs) remain largely unknown as prognostic markers for pRCC. We aimed to forecast the prognosis of pRCC patients by constructing models according to CRLs and to examine the correlation between the signatures and the inflammatory microenvironment. From the Cancer Genome Atlas (TCGA), RNA sequencing, genomic mutations and clinical data of TCGA-KIRP (Kidney renal papillary cell carcinoma) were analyzed. Randomly selected pRCC patients were allotted to the training and testing sets. To determine the independent prognostic impact of the training characteristic, the least absolute shrinkage and selection operator (LASSO) algorithm was utilized, together with univariate and multivariate Cox regression models. Further validation was performed in the testing and whole cohorts. External datasets were utilized to verify the prognostic value of CRLs as well. The CRLs prognostic features in pRCC were established based on the five CRLs (AC244033.2, LINC00886, AP000866.1, MRPS9-AS1 and CKMT2-AS1). The utility of CRLs was evaluated and validated in training, testing and all sets on the basis of the Kaplan-Meier (KM) survival analysis. The risk score could be a robust prognostic factor to forecast clinical outcomes for pRCC patients by the LASSO algorithm and univariate and multivariate Cox regression. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) data demonstrated that differentially expressed genes (DEGs) are primarily important for immune responses and the PI3K-Akt pathway. Arachidonic acid metabolism was enriched in the high-risk set by Gene Set Enrichment Analysis (GSEA). In addition, Tumor Immune Dysfunction and Exclusion (TIDE) analysis suggested that there was a high risk of immune escape in the high-risk cohort. The immune functions of the low- and high-risk sets differed significantly based on immune microenvironment analysis. Finally, four drugs were screened with a higher sensitivity to the high-risk set. Taken together, a novel model according to five CRLs was set up to forecast the prognosis of pRCC patients, which provides a potential strategy to treat pRCC by a combination of cuproptosis and immunotherapy.


Apoptosis , Carcinoma, Renal Cell , Kidney Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Creatine Kinase, Mitochondrial Form , Immunotherapy , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Phosphatidylinositol 3-Kinases , RNA, Long Noncoding/genetics , Tumor Microenvironment/genetics , Copper
16.
Nano Lett ; 23(4): 1386-1394, 2023 02 22.
Article En | MEDLINE | ID: mdl-36719793

Rolling circle amplification (RCA) enables the facile construction of compact and versatile DNA nanoassemblies which are yet rarely explored for intracellular analysis. This is might be ascribed to the uncontrollable and inefficient probe integration/activation. Herein, by encoding with tandem allosteric deoxyribozyme (DNA-cleaving DNAzyme), a multifunctional RCA nanogel was established for realizing the efficient intracellular microRNA imaging via the successive activation of the RCA-disassembly module and signal amplification module. The endogenous microRNA stimulates the precise degradation of DNA nanocarriers, thus leading to the efficient exposure of RCA-entrapped DNAzyme biocatalyst for an amplified readout signal. Our bioorthogonal DNAzyme disassembly strategy achieved the robust analysis of intracellular biomolecules, thus showing more prospects in clinical diagnosis.


Biosensing Techniques , DNA, Catalytic , MicroRNAs , MicroRNAs/analysis , Nanogels , Nucleic Acid Amplification Techniques/methods , DNA/analysis , Biosensing Techniques/methods , Limit of Detection
17.
Materials (Basel) ; 16(2)2023 Jan 09.
Article En | MEDLINE | ID: mdl-36676350

A transfer-purge chamber (TPC) is a double-steel-plate, heavy-concrete, curved-surface composite structure composed of steel plates, heavy concrete, and shear connectors. It is an important facility in the external refueling system of a nuclear power plant (NPP), providing a safe and reliable biological shielding space for reactor refueling operations. Temperature load is one of the most important factors that must be considered in the design of NPP structures. The temperature loads experienced by the TPC during its life cycle include those encountered in both normal and abnormal operation, which are distinct. In this study, we investigated the steady state and transient-state temperature fields and stresses of a TPC structure under normal operation and after 48 h of abnormal operation, respectively, which were calculated using Abaqus finite element software and the directly coupled method. During normal operation, the temperature field of the structure shows relatively uniform changes, and the temperature gradient of the internal concrete in the direction of its thickness has a constant value of 0.245 °C/cm. At the junction between the transfer and purge sub-chambers of the TPC, under the influence of wall curvature and deformation constraints, the maximum tensile strain of heavy concrete is 8.84 × 10-3, the maximum compressive strain is 2.04 × 10-3, the peak stress of the steel plate is 98.305 MPa, and the peak stress of the stud is 306.725 MPa. After 48 h of abnormal operation, the temperatures of the inner surface of the heavy concrete of the wall, the inner steel plate of the wall, the outer surface of the heavy concrete of the wall, and the inner steel plate of the wall increased by 8.12, 8.11, 0.31, and 0.30 °C, respectively. The tensile strain of the heavy concrete of the wall increased significantly by 52.64%, and the compressive strain of the concrete increased by 67.33%, whereas the stresses of the studs and steel plates increased by only 1.57% and 6.79%, respectively. These results show that the change in the temperature field greatly influences the stress and strain on the TPC structure. As measures for mitigating the development of this unfavorable situation of temperature stress concentration, the temperature operating range should be rationally controlled or the junction structure between the transfer and purge sub-chambers of the TPC optimized accordingly. The results of our study can provide basic data for a dynamic analysis of the TPC under conditions of combined earthquake and temperature loads.

18.
Int J Biol Macromol ; 225: 1010-1020, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36410539

This study reports on in vivo immunomodulatory activities mediated by WPEP-N-b, a heterogalactan from Pleurotus eryngii. Using cyclophosphamide (CTX)-induced immunosuppressed mice, we demonstrate here that WPEP-N-b enhances immunity as determined by the immune organ index, peripheral blood immune cell content, splenocyte proliferation, NK cell activity and T lymphocyte subpopulations. WPEP-N-b prevented apoptosis of bone marrow cells induced by CTX. The level of cytokines (i.e. TNF-α, IL-6 and IL-1ß) and macrophage activity in these immunocompromised mice were restored upon treated with WPEP-N-b. Mechanistically, it appears that WPEP-N-b enhances splenocyte proliferation and NK cell activity might through the Toll-like receptor 4 (TLR4)-PKC signaling axis, and increases macrophage activity by activating JNK, p38 and NF-κB signaling pathways and Toll-like receptor 2 (TLR2) is the possible receptor of WPEP-N-b in macrophages. Our findings indicate that WPEP-N-b may function as a natural immune stimulant.


Macrophages , Pleurotus , Animals , Mice , Macrophages/metabolism , Cytokines/metabolism , Pleurotus/metabolism , NF-kappa B/metabolism
19.
Front Cardiovasc Med ; 9: 1020672, 2022.
Article En | MEDLINE | ID: mdl-36407454

Tuberculosis is a main cause of pericardial disease in developing countries. However, in patients with atypical clinical presentation, it can lead to misdiagnosis, missed diagnosis, and delayed treatment. In this study, we report a case of a 61-year-old woman admitted to the cardiac intensive care unit with "weakness and loss of appetite" and a large pericardial effusion shown by echocardiography. After hospitalization, a pericardiocentesis was performed, and the pericardial fluid was hemorrhagic. However, the Xpert MTB/RIF and T-SPOT tests were negative, and repeated phlegm antacid smears and culture of pericardial fluid did not reveal antacid bacilli. The patient eventually underwent thoracoscopic pericardial biopsy, which revealed extensive inflammatory cells and significant granulomas. Combined with the fact that the patient's pericardial effusion was exudate, the patient was considered to be suspected of tuberculous pericarditis (TBP) and given empirical anti-tuberculosis treatment the patient's symptoms improved and the final diagnosis was TBP. In this case report, it is further shown that a negative laboratory test cannot exclude tuberculosis infection. In recurrent unexplained pericardial effusions, the pericardial biopsy is feasible. In countries with a high burden of tuberculosis, empirical antituberculosis therapy may be used to treat the pericardial effusion that excludes other possible factors.

20.
Front Pharmacol ; 13: 900701, 2022.
Article En | MEDLINE | ID: mdl-36324693

Background: Hypothyroidism is a disease commonly observed in outpatient clinics but can occasionally cause severe cardiovascular and respiratory diseases requiring hospitalization. Case report: The patient reported herein suffered from heart failure, massive pericardial effusion, type II respiratory failure, and hypothyroidism. There was no related basic diseases of respiratory and cardiovascular system in the past. She failed to be weaned from invasive ventilation multiple times after routine treatment and was finally successfully weaned on day five of receiving the combination therapy of a high-dose methylprednisolone intravenous drip and levothyroxine oral administration. Conclusion: This case report indicates that hypothyroidism may be a cause of type II respiratory failure, heart failure, and massive pericardial effusion without cardiac tamponade and that a combination of levothyroxine and corticosteroids could effectively treat the disease. Clinical workers should consider the role of thyroid function in diagnosis, and the admission team should include this aspect in the monitoring scope. Moreover, the role of hormones in the treatment of patients with severe hypothyroidism should not be ignored, and timely treatment should be provided.

...