Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Org Lett ; 26(13): 2635-2640, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38526487

A synthetic method for the efficient preparation of partially hydrogenated benzo[f]cyclobuta[cd]cyclopenta[h]benzofurans and cyclopropa[c]chromen-3a(1H)-ols that relies on the gold(I)-catalyzed cascade cycloisomerization of 3-allyloxy-1,6-diynes is described.

2.
J Org Chem ; 89(2): 1147-1159, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38175524

An expedient and efficient synthetic method for the divergent synthesis of 1-trifluoromethylated cyclopenta[b]indoles that relies on Brønsted acid-catalyzed dehydrative Nazarov-type cyclization of CF3-substituted 3-indolylallyl alcohols is described. Two classes of 1-trifluoromethylated cyclopenta[b]indoles can be easily accessed simply by changing the NH-protecting group of indoles. With arylsulfonyl protected 3-indolylallyl alcohols as starting materials, the reaction provided the arylsulfonyl protected 1-trifluoromethylated cyclopenta[b]indoles in good to excellent yields, whereas pivaloyl (Piv) protected substrates led to the formation of NH-free 1-trifluoromethylated cyclolopenta[b]indoles with another alkenyl isomer. This protocol features tunable chemoselectivity, operational simplicity, excellent functional group compatibility, and mild metal-free conditions.

3.
Org Lett ; 25(27): 4956-4961, 2023 Jul 14.
Article En | MEDLINE | ID: mdl-37384549

A novel and unprecedented p-toluenesulfonic acid-catalyzed dehydrative Nazarov-type cyclization/C2-N1 bond cleavage cascade reaction of perfluoroalkylated 3-indolyl(2-benzothienyl)methanols has been developed. This reaction provides an efficient and practical protocol for the construction of highly functionalized benzothiophene-fused cyclopentenones with exclusive stereoselectivity. In addition, this cascade transformation also delineates a rare example of the involvement of the selective C2-N1 bond cleavage of indoles.


Acids , Methanol , Stereoisomerism , Cyclization , Catalysis , Acids/chemistry
4.
J Comput Chem ; 44(1): 15-26, 2023 Jan 05.
Article En | MEDLINE | ID: mdl-36169382

The hydrogen evolution effect of ZrS2 carrier loaded with transition metal single-atom (SA) was explored by first-principles method. ZrS2 was constructed with transition metal single-atom and dual-atom. The structure-activity relationship of supported single-atom catalysts was described by electronic properties and hydrogen evolution kinetics. The results show that the ZrS2 carrier-loaded atomic-level catalysts are more likely to occur in acidic environments, where the Mo SA load has a higher hydrogen precipitation capacity than the Pt SA. In the case of dual-atom adsorption, most of the hydrogen reduction processes are higher than that of single atom loading, which indicates that the outer orbital hybridization is more likely to lead to the interfacial charge recombination of the catalyst. Thereinto, Ni/Pt @ZrS2 has the lowest Gibbs free energy (0.08 eV), and the synergistic effect of transition metals induces the deviation of the center of the d-band from the Fermi level and improves the dissociation ability of H ions. The design provides a new catalytic model for the HER and provides some ideas for understanding the two-site catalysis.

5.
Nanotechnology ; 33(27)2022 Apr 12.
Article En | MEDLINE | ID: mdl-35344947

The stability of functional carriers single-atom catalysts can be effectively guaranteed by using stable mineral materials to support low dimensional catalytic materials. In this paper, the theoretical calculation of electrochemical hydrogen evolution reaction (HER) of the composite functional single-atom catalysts supported by single-atom Ni was carried out using first-principles method. And the original structure of MoS2,amorphous structure and S-vacancy structure are studied. Through the analysis and discussion of electronic properties, adsorption energy and active sites, it is found that Ni@Amorphous MoS2-FeS has excellent effect of hydrogen evolution in acidic environment, ΔGHis 0.312 eV, and the other two structures supporting Ni single-atom also have excellent HER properties in a wide range of pH. This design broadens the research idea of single-atom catalysts carriers and provides a new direction for the research and development of electrocatalytic materials.

6.
Ecol Appl ; 32(3): e2546, 2022 04.
Article En | MEDLINE | ID: mdl-35080327

Marine classification schemes based on abiotic surrogates often inform regional marine conservation planning in lieu of detailed biological data. However, these schemes may poorly represent ecologically relevant biological patterns required for effective design and management strategies. We used a community-level modeling approach to characterize and delineate representative mesoscale (tens to thousands of kilometers) assemblages of demersal fish and benthic invertebrates in the Northwest Atlantic. Hierarchical clustering of species occurrence data from four regional annual multispecies trawl surveys revealed three to six groupings (predominant assemblage types) in each survey region, broadly associated with geomorphic and oceanographic features. Indicator analyses identified 3-34 emblematic taxa of each assemblage type. Random forest classifications accurately predicted assemblage distributions from environmental covariates (AUC > 0.95) and identified thermal limits (annual minimum and maximum bottom temperatures) as important predictors of distribution in each region. Using forecasted oceanographic conditions for the year 2075 and a regional classification model, we projected assemblage distributions in the southernmost bioregion (Scotian Shelf-Bay of Fundy) under a high emissions climate scenario (RCP 8.5). Range expansions to the northeast are projected for assemblages associated with warmer and shallower waters of the Western Scotian Shelf over the 21st century as thermal habitat on the relatively cooler Eastern Scotian Shelf becomes more favorable. Community-level modeling provides a biotic-informed approach for identifying broadscale ecological structure required for the design and management of ecologically coherent, representative, well-connected networks of Marine Protected Areas. When combined with oceanographic forecasts, this modeling approach provides a spatial tool for assessing sensitivity and resilience to climate change, which can improve conservation planning, monitoring, and adaptive management.


Fishes , Invertebrates , Animals , Climate Change , Ecosystem , Temperature
7.
Interdiscip Sci ; 13(4): 693-702, 2021 Dec.
Article En | MEDLINE | ID: mdl-34143353

Transmembrane proteins play a vital role in cell life activities. There are several techniques to determine transmembrane protein structures and X-ray crystallography is the primary methodology. However, due to the special properties of transmembrane proteins, it is still hard to determine their structures by X-ray crystallography technique. To reduce experimental consumption and improve experimental efficiency, it is of great significance to develop computational methods for predicting the crystallization propensity of transmembrane proteins. In this work, we proposed a sequence-based machine learning method, namely Prediction of TransMembrane protein Crystallization propensity (PTMC), to predict the propensity of transmembrane protein crystallization. First, we obtained several general sequence features and the specific encoded features of relative solvent accessibility and hydrophobicity. Second, feature selection was employed to filter out redundant and irrelevant features, and the optimal feature subset is composed of hydrophobicity, amino acid composition and relative solvent accessibility. Finally, we chose extreme gradient boosting by comparing with other several machine learning methods. Comparative results on the independent test set indicate that PTMC outperforms state-of-the-art sequence-based methods in terms of sensitivity, specificity, accuracy, Matthew's Correlation Coefficient (MCC) and Area Under the receiver operating characteristic Curve (AUC). In comparison with two competitors, Bcrystal and TMCrys, PTMC achieves an improvement by 0.132 and 0.179 for sensitivity, 0.014 and 0.127 for specificity, 0.037 and 0.192 for accuracy, 0.128 and 0.362 for MCC, and 0.027 and 0.125 for AUC, respectively.


Computational Biology , Membrane Proteins , Crystallization , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions
8.
PLoS One ; 13(10): e0205505, 2018.
Article En | MEDLINE | ID: mdl-30356324

Emerald Basin on the Scotian Shelf off Nova Scotia, Canada, is home to a globally unique aggregation of the glass sponge Vazella pourtalesi, first documented in the region in 1889. In 2009, Fisheries and Oceans Canada (DFO) implemented two Sponge Conservation Areas to protect these sponge grounds from bottom fishing activities. Together, the two conservation areas encompass 259 km2. In order to ascertain the degree to which the sponge grounds remain unprotected, we modelled the presence probability and predicted range distribution of V. pourtalesi on the Scotian Shelf using random forest modelling on presence-absence records. With a high degree of accuracy the random forest model predicted the highest probability of occurrence of V. pourtalesi in the inner basins on the central Scotian Shelf, with lower probabilities at the shelf break and in the Fundian and Northeast Channels. Bottom temperature was the most important determinant of its distribution in the model. Although the two DFO Sponge Conservation Areas protect some of the more significant concentrations of V. pourtalesi, much of its predicted distribution remains unprotected (over 99%). Examination of the hydrographic conditions in Emerald Basin revealed that the V. pourtalesi sponge grounds are associated with a warmer and more saline water mass compared to the surrounding shelf. Reconstruction of historical bottom temperature and salinity in Emerald Basin revealed strong multi-decadal variability, with average bottom temperatures varying by 8°C. We show that this species has persisted in the face of this climatic variability, possibly indicating how it will respond to future climate change.


Animal Distribution , Climate Change , Models, Theoretical , Porifera , Ammonia/chemistry , Animals , Conservation of Natural Resources , Nitrates/chemistry , Nova Scotia , Oceans and Seas , Phosphates/chemistry , Probability , Salinity , Silicates/chemistry , Temperature
9.
Sci Adv ; 4(3): eaaq0929, 2018 03.
Article En | MEDLINE | ID: mdl-29600272

The spatial genetic structure of most species in the open marine environment remains largely unresolved. This information gap creates uncertainty in the sustainable management, recovery, and associated resilience of marine communities and our capacity to extrapolate beyond the few species for which such information exists. We document a previously unidentified multispecies biogeographic break aligned with a steep climatic gradient and driven by seasonal temperature minima in the northwest Atlantic. The coherence of this genetic break across our five study species with contrasting life histories suggests a pervasive macroecological phenomenon. The integration of this genetic structure with habitat suitability models and climate forecasts predicts significant variation in northward distributional shifts among populations and availability of suitable habitat in future oceans. The results of our integrated approach provide new perspective on how cryptic intraspecific diversity associated with climatic variation influences species and community response to climate change beyond simple poleward shifts.


Climate Change , Ecosystem , Atlantic Ocean , Cluster Analysis , Geography , Principal Component Analysis , Probability , Species Specificity , Temperature
10.
Int J Med Mushrooms ; 17(3): 287-95, 2015.
Article En | MEDLINE | ID: mdl-25954912

Polysaccharides from mushrooms including Pleurotus eryngii, P. ostreatus, P. nebrodensis, Lentinus edodes, Hypsizygus marmoreus, Flammulina velutipes, Ganoderma lucidum, and Hericium erinaceus were isolated by water extraction and alcohol precipitation. Our results suggest that all tested polysaccharides have the significant antioxidant capacities of scavenging free radicals (1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals). Among them, the H. erinaceus polysaccharide exhibits the highest 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity, whereas the L. edodes polysaccharide shows the strongest scavenging ability for hydroxyl radicals. Furthermore, using the MCF-7 breast cancer cell line and HeLa cells, all 8 selected polysaccharides are able to inhibit the proliferation of tumor cells, but the strength of inhibition varied depending on the mushroom species and the concentration used. Notably, G. lucidum polysaccharide shows the highest inhibition activity on MCF-7 cells. By comparison, H. erinaceus polysaccharide has the strongest inhibitory effect on HeLa cells. Moreover, high-performance liquid chromatography with a carbohydrate analysis column showed significant differences in polysaccharide components among these mushrooms. Thus our data suggest that the different species of mushrooms have the variable functions because of their own specific polysaccharide components. The 8 mushroom polysaccharides have the potential to be used as valuable functional food additives or sources of therapeutic agents for antioxidant and cancer treatments, especially polysaccharides from H. erinaceus, L. edodes, and G. lucidum.


Agaricales/chemistry , Antioxidants/pharmacology , Cell Proliferation/drug effects , Growth Inhibitors/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Polysaccharides/pharmacology , Agaricales/classification , Antioxidants/chemistry , Cell Line, Tumor , Growth Inhibitors/chemistry , Humans , Plant Extracts/chemistry , Polysaccharides/chemistry
11.
Plant Physiol Biochem ; 83: 107-16, 2014 Oct.
Article En | MEDLINE | ID: mdl-25128646

The C-repeat binding factors (CBFs)/dehydration-responsive element-binding protein (DREBs) are a group of conserved transcription factors that play an important role in the response and adaptation to environmental stress in many plants. Two highly similar CBF/DREB1-like genes, PhCBF4a and PhCBF4b, were previously identified in Populus hopeiensis. In this paper, we describe the function of these proteins in detail in terms of abiotic stress tolerance. Phylogenic analysis suggests that PhCBF4a and PhCBF4b are expressed as two distinct alleles. Expression of both genes is induced mainly by dehydration, low-temperature, and high-salinity. Agroinfiltration experiments in tobacco leaves revealed differential transcriptional activation of the genes, likely driven by differences in their C-terminal regions. When constitutively expressed in Arabidopsis, PhCBF4a and PhCBF4b induced elevated expression of the CBF/DREB1 regulons without prior stimulus, resulting in dwarfism, delayed flowering, and greater drought tolerance compared with vector controls. These results demonstrate that PhCBF4a and PhCBF4b are functional transcriptional regulators involved in the response of P. hopeiensis to abiotic stresses.


Genes, Plant , Plant Proteins/genetics , Populus/genetics , Amino Acid Sequence , Molecular Sequence Data , Plant Proteins/chemistry , Sequence Homology, Amino Acid
12.
Carbohydr Polym ; 112: 16-23, 2014 Nov 04.
Article En | MEDLINE | ID: mdl-25129711

Previous study has verified the polysaccharide from the fruiting body of Pleurotus eryngii (PEPE) is capable of decreasing the lipid content in both of cell-line and mouse model. However, little is known about underlying mechanisms and whether this bioactive polysaccharide exists in submerged culture. Here, we verified the excreted polysaccharides EP and EP-1 from submersion culture of P. eryngii have the remarkable inhibitory effects on lipid accumulation in macrophage-derived foam cells. Structure analysis indicates EP-1 consists of D-types of glucose, galactose and mannose with the main ß(1 → 3)-glucan glycosidic linkage branched at O-6 by α-D-glucose while EP digested by ß-1,3-glucanase fails to decrease the lipid accumulation, suggesting that the special structure is essential for its function. Expression analysis suggests that EP is able to cause the down-regulation of the scavenger receptor-CD36 on both transcription and protein levels. Most importantly, EP can be obtained by fermentation in a mass-production.


CD36 Antigens/metabolism , Foam Cells/drug effects , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Pleurotus/chemistry , Animals , Carbohydrate Conformation , Cells, Cultured , Down-Regulation/drug effects , Foam Cells/metabolism , Fungal Polysaccharides/isolation & purification , Galactose/analysis , Glucose/analysis , Lipid Metabolism/drug effects , Lipoproteins, LDL/metabolism , Macrophages/drug effects , Magnetic Resonance Spectroscopy , Mannose/analysis , Mice , Molecular Weight , Pleurotus/metabolism , Structure-Activity Relationship
13.
BMC Genomics ; 13: 286, 2012 Jun 29.
Article En | MEDLINE | ID: mdl-22747754

BACKGROUND: Drought is one of the main environmental factors limiting tree growth and productivity of plantation forests worldwide. Populus hopeiensis Hu et Chow is one of the most important commercial plantation tree species in China. However, the genes controlling drought tolerance in this species have not been identified or characterized. Here, we conducted differential expression analyses and identified a number of genes that were up- or downregulated in P. hopeiensis during water stress. To the best of our knowledge, this is the first comprehensive study of differentially expressed genes in water-stressed P. hopeiensis. RESULTS: Using the cDNA-AFLP detection technique, we used 256 primer combinations to identify differentially expressed genes in P. hopeiensis during water stress. In total, 415 transcript derived-fragments (TDFs) were obtained from 10× deep sequencing of 473 selected TDFs. Of the 415 TDFs, 412 were annotated by BLAST searches against various databases. The majority of these genes encoded products involved in ion transport and compartmentalization, cell division, metabolism, and protein synthesis. The TDFs were clustered into 12 groups on the basis of their expression patterns. Of the 415 reliable TDFs, the sequences of 35 were homologous to genes that play roles in short or long-term resistance to drought stress. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR analyses. The results confirmed the expression patterns that were detected using the cDNA-AFLP technique. CONCLUSION: The cDNA-AFLP technique is an effective and powerful tool for identifying candidate genes that are differentially expressed under water stress. We demonstrated that 415 TDFs were differentially expressed in water-stressed poplar. The products of these genes are involved in various biological processes in the drought response of poplar. The results of this study will aid in the identification of candidate genes of future experiments aimed at understanding this response of poplar.


DNA, Complementary/metabolism , Dehydration/genetics , Gene Expression Profiling , Genes, Plant , Populus/genetics , Amplified Fragment Length Polymorphism Analysis , Apoptosis/genetics , Cluster Analysis , Databases, Genetic , Droughts , Gene Expression Regulation, Plant
14.
PLoS One ; 6(2): e16854, 2011 Feb 23.
Article En | MEDLINE | ID: mdl-21373198

The blue shark Prionace glauca is the most abundant large pelagic shark in the Atlantic Ocean. Although recaptures of tagged sharks have shown that the species is highly migratory, migration pathways towards the overwintering grounds remain poorly understood. We used archival satellite pop-up tags to track 23 blue sharks over a mean period of 88 days as they departed the coastal waters of North America in the autumn. Within 1-2 days of entering the Gulf Stream (median date of 21 Oct), all sharks initiated a striking diel vertical migration, taking them from a mean nighttime depth of 74 m to a mean depth of 412 m during the day as they appeared to pursue vertically migrating squid and fish prey. Although functionally blind at depth, calculations suggest that there would be a ~2.5-fold thermoregulatory advantage to swimming and feeding in the markedly cooler deep waters, even if there was any reduced foraging success associated with the extreme depth. Noting that the Gulf Stream current speeds are reduced at depth, we used a detailed circulation model of the North Atlantic to examine the influence of the diving behaviour on the advection experienced by the sharks. However, there was no indication that the shark diving resulted in a significant modification of their net migratory pathway. The relative abundance of deep-diving sharks, swordfish, and sperm whales in the Gulf Stream and adjacent waters suggests that it may serve as a key winter feeding ground for large pelagic predators in the North Atlantic.


Animal Migration/physiology , Body Temperature Regulation/physiology , Feeding Behavior/physiology , Sharks/physiology , Animals , Atlantic Ocean , Canada , Female , Geography , Male , North America , Predatory Behavior/physiology , Satellite Communications , Seasons , Time Factors
15.
Biotechnol Lett ; 33(6): 1239-47, 2011 Jun.
Article En | MEDLINE | ID: mdl-21293905

A MADS-box gene, designated PtAP3, was isolated from a floral bud cDNA library derived from Populus tomentosa. Analysis by multiple alignments of both nucleotide and amino acid sequences, together with phylogenetic analysis, revealed that PtAP3 is an ortholog of Arabidopsis AP3. Analysis of RNA extracts from vegetative and reproductive tissues of P. tomentosa by RT-PCR indicated that PtAP3 is expressed in roots, stems, leaves and vegetative and floral buds. Notably, the expression of PtAP3 fluctuated during floral bud development between September and February with differences between male and female buds. In the former, a gradual down-regulation during this period, interrupted by a slight up-regulation in December, was followed by a sharper up-regulation on February. In developing female floral buds, expression was stable from September to November, sharply up-regulated in December, and then gradually down-regulated until February. The functional role of PtAP3 was investigated in transgenic tobacco plants. Of 25 transformants, nine displayed an earlier flowering phenotype compared with the wild type plants. Furthermore, transgenic tobacco had faster growth and more leaves than untransformed controls. The traits proved to be heritable between the T0 and T1 generations. Our results demonstrate a regulatory role of the PtAP3 gene during plant flowering and growth and suggest that the gene may be an interesting target for genetic modification to induce early flowering in plants.


Genes, Plant , Nicotiana/genetics , Populus/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Base Sequence , Biotechnology , DNA, Plant/genetics , Flowers/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , MADS Domain Proteins/chemistry , MADS Domain Proteins/genetics , Models, Molecular , Molecular Sequence Data , Phenotype , Phylogeny , Plant Leaves/growth & development , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified , Protein Structure, Tertiary , Seasons , Sequence Homology, Amino Acid , Nicotiana/growth & development
16.
Plant Cell Rep ; 30(1): 89-100, 2011 Jan.
Article En | MEDLINE | ID: mdl-21104255

To understand the genetic and molecular mechanisms underlying floral development in Populus tomentosa, we isolated PtLFY, a LEAFY homolog, from a P. tomentosa floral bud cDNA library. DNA gel blot analysis showed that PtLFY is present as a single copy in the genomes of both male and female individuals of P. tomentosa. The genomic copy is composed of three exons and two introns. Relative expression levels of PtLFY in tissues of P. tomentosa were estimated by RT-PCR; our results revealed that PtLFY mRNA is highly abundant in roots and both male and female floral buds. A low level of gene expression was detected in stems and vegetative buds, and no PtLFY-specific transcripts were detected in leaves. PtLFY expression patterns were analyzed during the development of both male and female floral buds in P. tomentosa via real-time quantitative RT-PCR. Continuous, stable and high-level expression of PtLFY-specific mRNA was detected in both male and female floral buds from September 13th to February 25th, but the level of PtLFY transcripts detected in male floral buds was considerably higher than in female floral buds. Our results also showed an inverted repeat PtLFY fragment (PtLFY-IR) effectively blocked flowering of transgenic tobacco plants, and that this effect appeared to be due to post-transcriptional silencing of the endogenous tobacco LFY homologs NFL1 and NFL2.


Flowers/genetics , Gene Expression Regulation, Plant , Gene Silencing , Nicotiana/genetics , Plant Proteins/genetics , Populus/genetics , Sequence Homology, Amino Acid , Amino Acid Sequence , Cloning, Molecular , Crosses, Genetic , DNA, Plant/genetics , Gene Expression Profiling , Inverted Repeat Sequences/genetics , Molecular Sequence Data , Phenotype , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Sequence Alignment , Transcription, Genetic
...