Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Adv Mater ; 36(30): e2403202, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751336

RESUMEN

Conductive metal-organic frameworks (c-MOFs) and ionic liquids (ILs) have emerged as auspicious combinations for high-performance supercapacitors. However, the nanoconfinement from c-MOFs and high viscosity of ILs slow down the charging process. This hindrance can, however, be resolved by adding solvent. Here, constant-potential molecular simulations are performed to scrutinize the solvent impact on charge storage and charging dynamics of MOF-IL-based supercapacitors. Conditions for >100% enhancement in capacity and ≈6 times increase in charging speed are found. These improvements are confirmed by synthesizing near-ideal c-MOFs and developing multiscale models linking molecular simulations to electrochemical measurements. Fundamentally, the findings elucidate that the solvent acts as an "ionophobic agent" to induce a substantial enhancement in charge storage, and as an "ion traffic police" to eliminate convoluted counterion and co-ion motion paths and create two distinct ion transport highways to accelerate charging dynamics. This work paves the way for the optimal design of MOF supercapacitors.

2.
CNS Neurosci Ther ; 30(2): e14611, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353051

RESUMEN

AIMS: Basolateral amygdala (BLA), as a center for stress responses and emotional regulation, is involved in visceral hypersensitivity of irritable bowel syndrome (IBS) induced by stress. In the present study, we aimed to investigate the role of EphB2 receptor (EphB2) in BLA and explore the underlying mechanisms in this process. METHODS: Visceral hypersensitivity was induced by water avoidance stress (WAS). Elevated plus maze test, forced swimming test, and sucrose preference test were applied to assess anxiety- and depression-like behaviors. Ibotenic acid or lentivirus was used to inactivate BLA in either the induction or maintenance stage of visceral hypersensitivity. The expression of protein was determined by quantitative PCR, immunofluorescence, and western blot. RESULTS: EphB2 expression was increased in BLA in WAS rats. Inactivation of BLA or downregulation of EphB2 in BLA failed to induce visceral hypersensitivity as well as anxiety-like behaviors. However, during the maintenance stage of visceral pain, visceral hypersensitivity was only partially relieved but anxiety-like behaviors were abolished by inactivation of BLA or downregulation of EphB2 in BLA. Chronic WAS increased the expression of EphB2, N-methyl-D-aspartate receptors (NMDARs), and postsynaptic density protein (PSD95) in BLA. Downregulation of EphB2 in BLA reduced NMDARs and PSD95 expression in WAS rats. However, activation of NMDARs after the knockdown of EphB2 expression still triggered visceral hypersensitivity and anxiety-like behaviors. CONCLUSIONS: Taken together, the results suggest that EphB2 in BLA plays an essential role in inducing visceral hypersensitivity. In the maintenance stage, the involvement of EphB2 is crucial but not sufficient. The increase in EphB2 induced by WAS may enhance synaptic plasticity in BLA through upregulating NMDARs, which results in IBS-like symptoms. These findings may give insight into the treatment of IBS and related psychological distress.


Asunto(s)
Complejo Nuclear Basolateral , Síndrome del Colon Irritable , Dolor Visceral , Animales , Ratas , Complejo Nuclear Basolateral/metabolismo , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/psicología , Ratas Sprague-Dawley , Receptor EphB2/metabolismo , Estrés Psicológico/psicología , Dolor Visceral/metabolismo , Agua/metabolismo
3.
J Clin Periodontol ; 51(4): 417-430, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38016486

RESUMEN

AIM: This Mendelian randomization (MR) study was performed to explore the potential bidirectional causal relationship between the gut microbiome (GM) and periodontitis. MATERIALS AND METHODS: We used genetic instruments from the genome-wide association study of European descent for periodontitis from the GeneLifestyle Interactions in Dental Endpoints (GLIDE) consortium (17,353 cases and 28,210 controls) and the FinnGen consortium (4434 cases and 259,234 controls) to investigate the causal relationship with GM (the MiBioGen consortium, 18,340 samples), and vice versa. Several MR techniques, which include inverse variance weighting (IVW), MR-Egger, weighted median, simple mode and weighted mode approaches, were employed to investigate the causal relationship between the exposures and the outcomes. Cochran's Q-test was performed to detect heterogeneity. The MR-Egger regression intercept and MR pleiotropy residual sum and outlier test (MR-PRESSO) were conducted to test potential horizontal pleiotropy. Leave-one-out sensitivity analyses were used to assess the stabilities of single nucleotide polymorphisms (SNPs). Finally, the IVW results from the two databases were analysed using meta-analysis. RESULTS: We confirmed three potential causal relationships between GM taxa and periodontitis at the genus level. Among them, the genera Alistipes and Holdemanella were genetically associated with an increased risk of periodontitis. In reverse, periodontitis may lead to a decreased abundance of the genus Ruminococcaceae UCG014. CONCLUSIONS: The demonstration of a causal link between GM and periodontitis provides compelling evidence, highlighting the interconnectivity and interdependence of the gut-oral and oral-gut axes.


Asunto(s)
Microbioma Gastrointestinal , Periodontitis , Humanos , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Causalidad , Periodontitis/genética
4.
Cell Rep ; 42(11): 113362, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37938970

RESUMEN

Upregulation of FGL1 helps tumors escape from immune surveillance, and therapeutic antibodies targeting FGL1 have potential as another immune checkpoint inhibitor. However, the underlying mechanism of high FGL1 protein level in cancers is not well defined. Here, we report that FBXO38 interacts with and ubiquitylates FGL1 to negatively regulate its stability and to mediate cancer immune response. Depletion of FBXO38 markedly augments FGL1 abundance, not only suppressing CD8+ T cell infiltration and enhancing immune evasion of tumor but also increasing inflammation in mice. Importantly, we observe a negative correlation of FBXO38 with FGL1 and IL-6 in non-small cell lung cancer specimens. FGL1 and IL-6 levels positively correlate with TNM (tumor, lymph node, metastasis) stages, while FBXO38 and the infiltrating CD8+ T cells negatively correlate with TNM stages. Our study identifies a mechanism regulating FGL1 stability and a target to enhance the immunotherapy and suggests that the combination of anti-FGL1 and anti-IL-6 is a potential therapeutic strategy for cancer immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Linfocitos T CD8-positivos , Inflamación , Interleucina-6 , Ubiquitinación
5.
Oral Dis ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37807890

RESUMEN

OBJECTIVE: This study aimed to investigate the effect of METTL3 knockdown on osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in the weak inflammation microenvironments, as well as the underlying mechanisms. MATERIALS AND METHODS: PDLSCs were stimulated by lipopolysaccharide from Escherichia coli (E. coli LPS), followed by quantification of METTL3. METTL3 expression was assessed using RT-qPCR and Western blot analysis in periodontitis. METTL3 knockdown PDLSCs were stimulated with or without E. coli LPS. The evaluation included proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules. Bioinformatics analysis and Western blot determined the association between METTL3 and the PI3K/Akt pathway. RESULTS: METTL3 was overexpressed in periodontitis. METTL3 knockdown in PDLSCs reduced proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules in both environments. Bioinformatics analysis suggested a link between METTL3 and the PI3K/Akt pathway. METTL3 knockdown inhibited PI3K/Akt signaling pathway activation. CONCLUSION: METTL3 knockdown might inhibit osteogenesis in PDLSCs through the inactivation of PI3K/Akt signaling pathway. Concomitant findings might shed novel light on the roles and potential mechanisms of METTL3 in the LPS-stimulated inflammatory microenvironments of PDLSCs.

6.
Phys Rev Lett ; 131(9): 096201, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721826

RESUMEN

Electrical double layer (EDL) formation determines the reversible heat generation of supercapacitors. While classical theories suggest an exothermic nature, experiments revealed that it can be endothermic, depending on the polarization and electrolyte. Here, we perform constant-potential molecular dynamics simulations and develop a lattice gas model to explore the reversible heat of EDL formation in aqueous and ionic liquid (IL) electrolytes. Our Letter reveals that EDL formation in aqueous electrolytes exhibits endothermicity under negative polarization; it shows new complexity of endothermicity followed by exothermicity in ILs, regardless of electrode polarity. These thermal behaviors are determined by the structural evolution during EDL formation, dominated by adsorbed solvent molecules rather than ions in aqueous electrolytes but governed by "demixing" and "vacancy occupation" phenomena in ILs. This Letter provides new insights into the reversible heat of supercapacitors and presents a theoretical approach to investigating thermal behaviors involving the dynamics of EDLs.

7.
J Periodontal Res ; 58(5): 968-985, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357608

RESUMEN

BACKGROUND AND OBJECTIVES: Periodontitis, a prevalent chronic inflammatory condition, poses a significant risk of tooth loosening and subsequent tooth loss. Within the realm of programmed cell death, a recently recognized process known as necroptosis has garnered attention for its involvement in numerous inflammatory diseases. Nevertheless, its correlation with periodontitis is indistinct. Our study aimed to identify necroptosis-related lncRNAs and crucial lncRNA-miRNA-mRNA regulatory axes in periodontitis to further understand the pathogenesis of periodontitis. MATERIALS AND METHODS: Gene expression profiles in gingival tissues were acquired from the Gene Expression Omnibus (GEO) database. Selecting hub necroptosis-related lncRNA and extracting the key lncRNA-miRNA-mRNA axes based on the ceRNA network by adding novel machine-learning models based on conventional analysis and combining qRT-PCR validation. Then, an artificial neural network (ANN) model was constructed for lncRNA in regulatory axes, and the accuracy of the model was validated by receiver operating characteristic (ROC) curve analysis. The clinical effect of the model was evaluated by decision curve analysis (DCA). Weighted correlation network analysis (WGCNA) and single-sample gene set enrichment analysis (ssGSEA) was performed to explore how these lncRNAs work in periodontitis. RESULTS: Seven hub necroptosis-related lncRNAs and three lncRNA-miRNA-mRNA regulatory axes (RP11-138A9.1/hsa-miR-98-5p/ZBP1 axis, RP11-96D1.11/hsa-miR-185-5p/EZH2 axis, and RP4-773 N10.4/hsa-miR-21-5p/TLR3 axis) were predicted. WGCNA revealed that RP11-138A9.1 was significantly correlated with the "purple module". Functional enrichment analysis and ssGSEA demonstrated that the RP11-138A9.1/hsa-miR-98-5p/ZBP1 axis is closely related to the inflammation and immune processes in periodontitis. CONCLUSION: Our study predicted a crucial necroptosis-related regulatory axis (RP11-138A9.1/hsa-miR-98-5p/ZBP1) based on the ceRNA network, which may aid in elucidating the role and mechanism of necroptosis in periodontitis.


Asunto(s)
MicroARNs , Periodontitis , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Necroptosis/genética , Periodontitis/genética , MicroARNs/genética , ARN Mensajero
8.
Inflammation ; 46(5): 1932-1951, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37311930

RESUMEN

Periodontitis is a prevalent and persistent inflammatory condition that impacts the supporting tissues of the teeth, including the gums and bone. Recent research indicates that mitochondrial dysfunction may be involved in the onset and advancement of periodontitis. The current work sought to reveal the interaction between mitochondrial dysfunction and the immune microenvironment in periodontitis. Public data were acquired from MitoCarta 3.0, Mitomap, and GEO databases. Hub markers were screened out by five integrated machine learning algorithms and verified by laboratory experiments. Single-cell sequencing data were utilized to unravel cell-type specific expression levels of hub genes. An artificial neural network model was constructed to discriminate periodontitis from healthy controls. An unsupervised consensus clustering algorithm revealed mitochondrial dysfunction-related periodontitis subtypes. The immune and mitochondrial characteristics were calculated using CIBERSORTx and ssGSEA algorithms. Two hub mitochondria-related markers (CYP24A1 and HINT3) were identified. Single-cell sequencing data revealed that HINT3 was primarily expressed in dendritic cells, while CYP24A1 was mainly expressed in monocytes. The hub genes based artificial neural network model showed robust diagnostic performance. The unsupervised consensus clustering algorithm revealed two distinct mitochondrial phenotypes. The hub genes exhibited a strong correlation with the immune cell infiltration and mitochondrial respiratory chain complexes. The study identified two hub markers that may serve as potential targets for immunotherapy and provided a novel reference for future investigations into the function of mitochondria in periodontitis.


Asunto(s)
Periodontitis , Humanos , Vitamina D3 24-Hidroxilasa , Mitocondrias , Biología Computacional , Aprendizaje Automático
9.
Adv Mater ; 35(33): e2301118, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37120155

RESUMEN

Porous graphdiynes are a new class of porous 2D materials with tunable electronic structures and various pore structures. They have potential applications as well-defined nanostructured electrodes and can provide platforms for understanding energy storage mechanisms underlying supercapacitors. Herein, the effect of stacking structure and metallicity on energy storage with such electrodes is investigated. Simulations reveal that supercapacitors based on porous graphdiynes of AB stacking structure can achieve both higher double-layer capacitance and ionic conductivity than AA stacking. This phenomenon is ascribed to more intense image forces in AB stacking, leading to a breakdown of ionic ordering and the formation of effective "free ions". Macroscale analysis shows that doped porous graphdiynes can deliver outstanding gravimetric and volumetric energy and power densities due to their enhanced quantum capacitance. These findings pave the way for designing high-performance supercapacitors by regulating pore topology and metallicity of electrode materials.

10.
J Periodontal Res ; 58(3): 529-543, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36941720

RESUMEN

OBJECTIVE: This study aims to investigate the differences in the epigenomic patterns of N6-methyladenosine (m6A) methylation in gingival tissues between patients with periodontitis (PD) and healthy controls, identifying potential biomarkers. BACKGROUND: As a multifactorial disease, PD involves multiple genetic and environmental effects. The m6A modification is the most prevalent internal mRNA modification and linked to various inflammatory diseases. However, the m6A modification pattern and m6A-related signatures in PD remain unclear. MATERIALS AND METHODS: An m6A microarray of human gingival tissues was conducted in eight subjects: four diagnosed with PD and four healthy controls. Microarray analysis was performed to identify the differentially m6A methylated mRNAs (DMGs) and the differentially expressed mRNAs (DEGs). The differentially methylated and expressed mRNAs (DMEGs) were subjected to functional enrichment analysis by Metascape. The weighted gene co-expression network analysis (WGCNA) algorithm, the least absolute shrinkage and selection operator (LASSO) regression, and univariate logistic regression were performed to identify potential biomarkers. The cell type localization of the target genes was determined using single-cell RNA-seq (scRNA-seq) analysis. The m6A methylation level and gene expression of hub genes were subsequently verified by m6A methylated RNA immunoprecipitation (MeRIP) and quantitative real-time PCR (qRT-PCR). RESULTS: In total, 458 DMGs, 750 DEGs, and 279 DMEGs were identified based on our microarray. Pathway analyses conducted for the DMEGs revealed that biological functions were mainly involved in the regulation of stem cell differentiation, ossification, circadian rhythm, and insulin secretion pathways. Besides, the genes involved in crucial biological processes were mainly expressed in fibroblast and epithelial cells. Furthermore, the m6A methylation and expression levels of two hub biomarkers (DNER and GNL2) were validated. CONCLUSION: The current study exhibited a distinct m6A epitranscriptome, identified and verified two PD-related biomarkers (DNER and GNL2), which may provide novel insights into revealing the new molecular mechanisms and latent targets of PD.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Transcriptoma/genética , Análisis por Micromatrices , Diferenciación Celular , Células Epiteliales , Proteínas del Tejido Nervioso , Receptores de Superficie Celular
11.
Front Immunol ; 13: 1042484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389665

RESUMEN

Background: Periodontitis (PD), an age-related disease, is characterized by inflammatory periodontal tissue loss, and with the general aging of the global population, the burden of PD is becoming a major health concern. Nevertheless, the mechanism underlying this phenomenon remains indistinct. We aimed to develop a classification model for PD and explore the relationship between aging subtypes and the immune microenvironment for PD based on bioinformatics analysis. Materials and Methods: The PD-related datasets were acquired from the Gene Expression Omnibus (GEO) database, and aging-related genes (ARGs) were obtained from the Human Aging Genomic Resources (HAGR). Four machine learning algorithms were applied to screen out the hub ARGs. Then, an artificial neural network (ANN) model was constructed and the accuracy of the model was validated by receiver operating characteristic (ROC) curve analysis. The clinical effect of the model was evaluated by decision curve analysis (DCA). Consensus clustering was employed to determine the aging expression subtypes. A series of bioinformatics analyses were performed to explore the PD immune microenvironment and its subtypes. The hub aging-related modules were defined using weighted correlation network analysis (WGCNA). Results: Twenty-seven differentially expressed ARGs were dysregulated and a classifier based on four hub ARGs (BLM, FOS, IGFBP3, and PDGFRB) was constructed to diagnose PD with excellent accuracy. Subsequently, the mRNA levels of the hub ARGs were validated by quantitative real-time PCR (qRT-PCR). Based on differentially expressed ARGs, two aging-related subtypes were identified. Distinct biological functions and immune characteristics including infiltrating immunocytes, immunological reaction gene sets, the human leukocyte antigen (HLA) gene, and immune checkpoints were revealed between the subtypes. Additionally, the black module correlated with subtype-1 was manifested as the hub aging-related module and its latent functions were identified. Conclusion: Our findings highlight the critical implications of aging-related genes in modulating the immune microenvironment. Four hub ARGs (BLM, FOS, IGFBP3, and PDGFRB) formed a classification model, and accompanied findings revealed the essential role of aging in the immune microenvironment for PD, providing fresh inspiration for PD etiopathogenesis and potential immunotherapy.


Asunto(s)
Perfilación de la Expresión Génica , Periodontitis , Humanos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Biología Computacional , Envejecimiento/genética , Periodontitis/genética
12.
Cytokine ; 159: 156014, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36084605

RESUMEN

OBJECTIVES: This bioinformatics study is aimed at identifying cross-talk genes, pyroptosis-related genes, and related pathways between periodontitis (PD) and diabetes mellitus (DM), which includes type 1 diabetes (T1DM) and type 2 diabetes (T2DM). METHODS: GEO datasets containing peripheral blood mononuclear cell (PBMC) data of PD and DM were acquired. After batch correction and normalization, differential expression analysis was performed to identify the differentially expressed genes (DEGs). And cross-talk genes in the PD-T1DM pair and the PD-T2DM pair were identified by overlapping DEGs with the same trend in each pair. The weighted gene coexpression network analysis (WGCNA) algorithm helped locate the pyroptosis-related genes that are related to cross-talk genes. Receiver-operating characteristic (ROC) curve analysis confirmed the predictive accuracy of these hub genes in diagnosing PD and DM. The correlation between hub genes and the immune microenvironment of PBMC in these diseases was investigated by Spearman correlation analysis. The experimentally validated protein-protein interaction (PPI) and gene-pathway network were constructed. Subnetwork analysis helped identify the key pathway connecting DM and PD. RESULTS: Hub genes in the PD-T1DM pair (HBD, NLRC4, AIM2, NLRP2) and in the PD-T2DM pair (HBD, IL-1Β, AIM2, NLRP2) were identified. The similarity and difference in the immunocytes infiltration levels and immune pathway scores of PD and DM were observed. ROC analysis showed that AIM2 and HBD exhibited pleasant discrimination ability in all diseases, and the subnetwork of these genes indicated that the NOD-like receptor signaling pathway is the most potentially relevant pathway linking PD and DM. CONCLUSION: HBD and AIM2 could be the most relevant potential cross-talk and pyroptosis-related genes, and the NOD-like receptor signaling pathway could be the top candidate molecular mechanism linking PD and DM, supporting a potential pathophysiological relationship between PD and DM.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Periodontitis , Biología Computacional , Análisis de Datos , Diabetes Mellitus Tipo 2/genética , Perfilación de la Expresión Génica , Humanos , Leucocitos Mononucleares , Proteínas NLR/genética , Piroptosis/genética
13.
Angew Chem Int Ed Engl ; 61(47): e202212032, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36180385

RESUMEN

Ammonia (NH3 ) is an important chemical raw material and a unique carbon-free fuel with high hydrogen energy density. Thus, NH3 capture, storage, and desorption are of significant importance. However, high capacity capture, low energy desorption, and selective separation of NH3 are still challengs so far. Here, we report high-performance hybrid sorbents by anchoring LiCl in the nanopores of MIL-53-(OH)2 metal-organic frameworks (MOFs). It is found that the optimal composite shows a capture capacity of 33.9 mmol g-1 NH3 at 1.0 bar and 25 °C, which far exceeds the current record among the reported porous materials. Notably, the excellent capture capacity at low pressure and high temperature makes it possible to selectively capture NH3 from NH3 /N2 , NH3 /CO2 , and NH3 /H2 O. It is revealed that synergistic action of NH3 coordination to the highly dispersed Li+ in the MOF nanopores and hydrogen bonding of NH3 with Cl- account for such an excellent capture and selectivity performance.

14.
Med Sci Monit ; 28: e937909, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35933594

RESUMEN

This publication has been retracted by the Editor as it erroneously describes the effects of an injectable polyacrylamide gel.Reference:Zhenxiang Wang, Shirong Li, Lingli Wang, Shu Zhang, Yan Jiang, Jinping Chen, Donglin Luo. Polyacrylamide Hydrogel Injection for Breast Augmentation: Another Injectable Failure. Med Sci Monit, 2012; 18(6): CR399-408. DOI: 10.12659/MSM.882910.

15.
J Periodontal Res ; 57(5): 977-990, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35839262

RESUMEN

BACKGROUND AND OBJECTIVE: Published studies proved that both pyroptosis and periodontitis owned a substantial relationship with immunity, and recent research revealed a solid correlation between periodontitis and pyroptosis. While abundant findings have confirmed pyroptosis has a strong impact on the tumor microenvironment, the function of pyroptosis in influencing the periodontitis immune microenvironment remains poorly understood. Thus, we aimed to identify pyroptosis-related genes whose expression signature can well discriminate periodontitis from healthy controls and to comprehend the role of pyroptosis in the periodontitis immune microenvironment. MATERIALS AND METHODS: The periodontitis-related datasets were acquired from the Gene Expression Omnibus (GEO) database. A series of bioinformatics analyses were conducted to investigate the underlying mechanism of pyroptosis in the periodontitis immune microenvironment. Infiltrating immunocytes, immunological reaction gene sets, and the human leukocyte antigen (HLA) gene were all investigated as potential linkages between periodontitis immune microenvironment and pyroptosis. RESULTS: Twenty-one pyroptosis-related genes were dysregulated. A four-mRNA combined classification model was constructed, and the receiver operating characteristic (ROC) curve analysis demonstrated its prominent classification capabilities. Subsequently, the mRNA levels of the four hub markers (CYCS, CASP3, NOD2, CHMP4B) were validated by quantitative real-time PCR (qRT-PCR). The correlation coefficients between each hub gene and immune characteristics were calculated, and CASP3 exhibited the most significant correlations with the immune characteristics. Furthermore, distinct pyroptosis-related expression patterns were revealed, along with immunological features of each pattern. Afterward, we discovered 1868 pyroptosis phenotype-related genes, 134 of which were related to immunity. According to the functional enrichment analysis, these 134 genes were closely related to cytokine signaling in immune system, and defense response. Finally, a co-expression network was constructed via the 1868 gene expression profiles. CONCLUSION: Four hub mRNAs (CYCS, CASP3, NOD2, and CHMP4B) formed a classification model and concomitant results revealed the crucial role of pyroptosis in the periodontitis immune microenvironment, providing fresh insights into the etiopathogenesis of periodontitis and potential immunotherapy.


Asunto(s)
Periodontitis , Piroptosis , Caspasa 3 , Humanos , Periodontitis/genética , Piroptosis/genética , ARN Mensajero , Microambiente Tumoral/genética
16.
Stem Cell Res Ther ; 13(1): 234, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35659736

RESUMEN

BACKGROUND: Bio-root regeneration is a promising treatment for tooth loss. It has been reported that dental-derived stem cells are effective seed cells for bio-root construction, but further applications are limited by their few sources. Human adipose tissues have a wide range of sources and numerous studies have confirmed the ability of adipose-derived stromal/stem cells (ASCs) in regenerative medicine. In the current study, the odontogenic capacities of ASCs were compared with dental-derived stem cells including dental follicle cells (DFCs), and stem cells from human exfoliated deciduous teeth (SHEDs). METHODS: The biological characteristics of ASCs, DFCs, and SHEDs were explored in vitro. Two-dimensional (2D) and three-dimensional (3D) cultures were compared in vitro. Odontogenic characteristics of porcine-treated dentin matrix (pTDM) induced cells under a 3D microenvironment in vitro were compared. The complexes (cell/pTDM) were transplanted subcutaneously into nude mice to verify regenerative potential. RNA sequencing (RNA-seq) was used to explore molecular mechanisms of different seed cells in bio-root regeneration. RESULTS: 3D culture was more efficient in constructing bio-root complexes. ASCs exhibited good biological characteristics similar to dental-derived stem cells in vitro. Besides, pTDM induced ASCs presented odontogenic ability similar to dental-derived stem cells. Furthermore, 3D cultured ASCs/pTDM complex promoted regeneration of dentin-like, pulp-like, and periodontal fiber-like tissues in vivo. Analysis indicated that PI3K-Akt, VEGF signaling pathways may play key roles in the process of inducing ASCs odontogenic differentiation by pTDM. CONCLUSIONS: ASCs are potential seed cells for pTDM-induced bio-root regeneration, providing a basis for further research and application.


Asunto(s)
Dentina , Raíz del Diente , Animales , Diferenciación Celular , Pulpa Dental , Dentina/metabolismo , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Células Madre , Porcinos
18.
Adv Mater ; 34(52): e2200999, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35358341

RESUMEN

As a class of porous materials with crystal lattices, metal-organic frameworks (MOFs), featuring outstanding specific surface area, tunable functionality, and versatile structures, have attracted huge attention in the past two decades. Since the first conductive MOF is successfully synthesized in 2009, considerable progress has been achieved for the development of conductive MOFs, allowing their use in diverse applications for electrochemical energy storage. Among those applications, supercapacitors have received great interest because of their high power density, fast charging ability, and excellent cycling stability. Here, the efforts hitherto devoted to the synthesis and design of conductive MOFs and their auspicious capacitive performance are summarized. Using conductive MOFs as a unique platform medium, the electronic and molecular aspects of the energy storage mechanism in supercapacitors with MOF electrodes are discussed, highlighting the advantages and limitations to inspire new ideas for the development of conductive MOFs for supercapacitors.

20.
J Gastrointestin Liver Dis ; 30(3): 358-365, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551036

RESUMEN

BACKGROUND AND AIMS: There is still considerable controversy surrounding the relationship between fatigue of endoscopists and the quality of colonoscopy. The aim of this study is to comprehensively explore the association between fatigue and adenoma detection rate (ADR) and cecal intubation rate (CIR). METHODS: The mixed effects logistic regression model was used to explore the relationship between fatigue- related factors including procedure order, session of procedures and the day of week and ADR as well as CIR. RESULTS: When controlling for confounders, the day of week (Monday as reference, Friday, p=0.022; weekends, p=0.015) and session of procedures (P<0.001) were significantly associated with ADR while procedure order (<5 as reference, 6-10, p<0.001; >10, p=0.001) and session of procedures (p=0.004) were independent predictors for CIR. Additionally, there was a significant downward trend on ADR and CIR with the approaching of weekends (p=0.005) and increasing procedure orders (p<0.001), respectively. In the subgroup analysis stratified by gender, age and workload intensity, significant lower ADR was found in the afternoon in all subgroups (male, p<0.001; female, p=0.005; <40 years, p<0.001; ≥40 years, p=0.020; intensity<50 per month, p=0.017; intensity≥50 per month, p<0.001) but the downward trend on ADR as the week progressed was only found in endoscopists with male gender (p=0.011), age<40 (p=0.027) and high workload intensity (p=0.003). Moreover, a significant downward trend on CIR as the procedure order increased was found in all subgroups except endoscopists with age≥40 (male, p=0.005; female, p<0.001; <40 years, p<0.001; intensity<50 per month, p=0.001; intensity≥50 per month, p<0.001). CONCLUSIONS: Colonoscopies in the afternoon will affect ADR negatively while increasing procedure order will cause a lower CIR. Importantly, the significant negative influence of Friday and weekends on ADR was first discovered in this study. Moreover, endoscopists with female gender and advanced age (≥40) but not high workload intensity showed superiority in resistance of fatigue caused by the end of the week and increasing daily procedures.


Asunto(s)
Adenoma , Agotamiento Profesional , Colonoscopía/normas , Neoplasias Colorrectales , Fatiga , Adenoma/diagnóstico por imagen , Adulto , Neoplasias Colorrectales/diagnóstico por imagen , Femenino , Humanos , Masculino , Tamizaje Masivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA