Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Front Oncol ; 14: 1255061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532928

RESUMEN

Background: Osteosarcoma (OS) is the most common bone malignant tumor in children and adolescents. Recent research indicates that non-coding RNAs (ncRNAs) have been associated with OS occurrence and development, with significant progress made in this field. However, there is no intelligent structure prediction and literature visualization analysis in this research field. From the perspective of intelligent knowledge structure construction and bibliometrics, this study will comprehensively review the role of countries, institutions, journals, authors, literature citation relationships and subject keywords in the field of ncRNAs in OS. Based on this analysis, we will systematically analyze the characteristics of the knowledge structure of ncRNAs in OS disease research and identify the current research hotspots and trends. Methods: The Web of Science Core Collection (WoSCC) database was searched for articles on ncRNAs in OS between 2001 and 2023. This bibliometric analysis was performed using VOSviewers, CiteSpace, and Pajek. Results: This study involved 15,631 authors from 2,631 institutions across 57 countries/regions, with a total of 3,642 papers published in 553 academic journals. China has the highest number of published papers in this research field. The main research institutions include Nanjing Medical University (n = 129, 3.54%), Shanghai Jiao Tong University (n = 128, 3.51%), Zhengzhou University (n = 110, 3.02%), and China Medical University (n = 109, 2.99%). Oncology Letters (n =139, 3.82%), European Review for Medical Pharmacological Sciences (120, 3.31%), and Molecular Medicine Reports (n = 95, 2.61%) are the most popular journals in this field, with Oncotarget being the most co-cited journal (Co-Citation = 4,268). Wei Wang, Wei Liu, and Zhenfeng Duan published the most papers, with Wang Y being the most co-cited author. "miRNA", "lncRNA" and "circRNA" are the main focuses of ncRNAs in OS studies. Key themes include "migration and invasion", "apoptosis and proliferation", "prognosis", "biomarkers" and "chemoresistance". Since 2020, hotspots and trends in ncRNA research in OS include "tumor microenvironment", "immune" and "exosome". Conclusion: This study represents the first comprehensive bibliometric analysis of the knowledge structure and development of ncRNAs in OS. These findings highlight current research hotspots and frontier directions, offering valuable insights for future studies on the role of ncRNAs in OS.

2.
ACS Appl Mater Interfaces ; 16(6): 7463-7469, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38300878

RESUMEN

Control of magnetic anisotropy in thin films with perpendicular magnetic anisotropy is of paramount importance for the development of spintronics with ultralow-energy consumption and high density. Traditional magnetoelectric heterostructures utilized the synergistic effect of piezoelectricity and magnetostriction to realize the electric field control of magnetic anisotropy, resulting in additional fabrication and modulation processes and a complicated device architecture. Here, we have systematically investigated the electric current tuning of the magnetic properties of the metallic NiCo2O4 film with intrinsic perpendicular magnetic anisotropy. Ferrimagnetic-to-paramagnetic phase transition has been induced through Joule heating, resulting in a rapid decrease of both magnetic coercivity and moment. An ultralow current density of 2.5 × 104 A/cm2, which is 2 to 3 orders magnitude lower than that of conventional spin transfer torque devices, has been verified to be effective for the control of the magnetic anisotropy of NiCo2O4. Successful triggering of magnetic switching has been realized through the application of a current pulse. These findings provide new perspectives toward the electric control of magnetic anisotropy and design of spintronics with an ultralow driving current density.

3.
Nano Lett ; 24(6): 2003-2010, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306120

RESUMEN

Heat-assisted magnetic anisotropy engineering has been successfully used in selective magnetic writing and microwave amplification due to a large interfacial thermal resistance between the MgO barrier and the adjacent ferromagnetic layers. However, in spin-orbit torque devices, the writing current does not flow through the tunnel barrier, resulting in a negligible heating effect due to efficient heat dissipation. Here, we report a dramatically reduced switching current density of ∼2.59 MA/cm2 in flexible spin-orbit torque heterostructures, indicating a 98% decrease in writing energy consumption compared with that on a silicon substrate. The reduced driving current density is enabled by the dramatically decreased magnetic anisotropy due to Joule dissipation and the lower thermal conductivity of the flexible substrate. The large magnetic anisotropy could be fully recovered after the impulse, indicating retained high stability. These results pave the way for flexible spintronics with the otherwise incompatible advantages of low power consumption and high stability.

4.
Analyst ; 148(19): 4730-4737, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37646193

RESUMEN

Target-responsive aptamer hydrogels are increasingly used in the field of analytical sensing with different morphologies developed by various strategies. Herein, we developed a DNA hydrogel film combined with capillary self-driven action for the specific detection of the tumor marker EpCAM and further introduced Exo I for signal amplification. EpCAM aptamer was used as a crosslinking agent to construct the DNA hydrogel film. When EpCAM was present, it competed for binding with the EpCAM aptamer, resulting in a permeability change of the DNA hydrogel film attached to one end of the capillary, and leading to different solution flow rates through the capillaries that can be utilized for the quantitative detection of EpCAM. This method did not require any instrument and was easy to use. The distance the solution travelled through the capillary was quantified as the concentration of EpCAM, and only a small amount of DNA hydrogel was required for each detection. The detection limit of EpCAM was as low as 0.018 ng mL-1, while offering the advantages of good stability and specificity, and showing great potential in point-of-care testing.


Asunto(s)
Biomarcadores de Tumor , Metilgalactósidos , Molécula de Adhesión Celular Epitelial , Acción Capilar , Hidrogeles , Oligonucleótidos
5.
Anal Chim Acta ; 1267: 341351, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257972

RESUMEN

Food safety is one of the greatest public health challenges. Developing ultrasensitive detection methods for analytes at ultra-trace levels is, therefore, essential. In recent years, the bio-barcode assay (BCA) has emerged as an effective ultrasensitive detection strategy that is based on the indirect amplification of various DNA probes. This review systematically summarizes the progress of fluorescence, PCR, and colorimetry-based BCA methods for the detection of various contaminants, including pathogenic bacteria, toxins, pesticides, antibiotics, and other chemical substances in food in over 120 research papers. Current challenges, including long experimental times and strict storage conditions, and the prospects for the application of BCA in biomedicine and environmental analyses, have also been discussed herein.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Inocuidad de los Alimentos , Sondas de ADN/química , Tecnología
6.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1700-1704, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005858

RESUMEN

Chinese patent medicines(CPMs) are unique therapeutic drugs in China. Establishing and improving the evaluation criteria is an important measure to promote the high-quality development of CPMs. Based on the "evaluation criteria of high-grade CPMs with quality as the core index" established by our group in 2018, the "high-quality evaluation criteria for CPMs based on whole process control" was proposed in the present study in 2022. The scope of application and basic principles of the new criteria were clarified. A quality evaluation scoring table was established in the new criteria, including five parts: raw material selection, production process, quality control, efficacy evaluation, and brand building. The technical evaluation indexes involved have increased from 20% in the original criteria to 70% in the new criteria, and efficacy evaluation has been added in the new criteria. The subjective evaluation indicators account for a large proportion in the original criteria, which is prone to bias. The improved criteria overcome this shortcoming. It is expected that the new criteria as a basis can play a better role in the selection of high-quality products of CPMs, guide enterprises and institutions to participate actively in the evaluation and research of high-quality CPMs, and promote the high-quality development of CPMs.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos sin Prescripción , Clorobencenos , China
7.
Anticancer Drugs ; 34(1): 103-114, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539364

RESUMEN

Circular RNAs (circRNAs) act as key regulators in human cancers and chemoresistance. Here, we aimed to explore the role and mechanism of circ_0058608 in nonsmall cell lung cancer (NSCLC) and taxol resistance. The expression of circ_0058608, microRNA-1299 (miR-1299) and guanylate binding protein 1 (GBP1) mRNA was determined by quantitative real-time PCR. In-vitro and in-vivo assays were conducted using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), colony formation, transwell assays, flow cytometry and animal xenograft experiments. The interaction between miR-1299 and circ_0058608 or GBP1 was confirmed by the dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Circ_0058608 was overexpressed in NSCLC tissues/cells and taxol-resistant NSCLC tissues/cells. Circ_0058608 knockdown inhibited NSCLC cell proliferation and metastasis and also suppressed tumor growth in vivo. Moreover, circ_0058608 knockdown increased taxol sensitivity by increasing taxol-induced apoptosis in taxol-resistant NSCLC cells. Moreover, circ_0058608 silencing enhanced taxol-induced tumor growth of NSCLC in vivo. MiR-1299 was a target of circ_0058608, and the effects of circ_0058608 knockdown on NSCLC cell progression and taxol resistance were reversed by miR-1299 inhibition. Additionally, miR-1299 could interact with GBP1, and miR-1299 suppressed NSCLC cell progression and taxol resistance by targeting GBP1. Furthermore, circ_0058608 could regulate GBP1 expression by sponging miR-1299. Circ_0058608 promoted the progression and taxol resistance of NSCLC by regulating the miR-1299/GBP1 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Paclitaxel/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Vendajes , MicroARNs/genética , Proliferación Celular , Proteínas de Unión al GTP
8.
Front Immunol ; 14: 1289774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274803

RESUMEN

DEK protein is highly expressed in asthma. However, the mechanism of DEK on mitophagy in asthma has not been fully understood. This study aims to investigate the role and mechanism of DEK in asthmatic airway inflammation and in regulating PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. PINK1-Parkin mitophagy, NLRP3 inflammasome, and apoptosis were examined after gene silencing or treatment with specific inhibitors (MitoTEMPO, MCC950, and Ac-DEVD-CHO) in house dust mite (HDM) or recombinant DEK (rmDEK)-induced WT and DEK-/- asthmatic mice and BEAS-2B cells. The regulatory role of DEK on ATAD3A was detected using ChIP-sequence and co-immunoprecipitation. rmDEK promoted eosinophil recruitment, and co-localization of TOM20 and LC3B, MFN1 and mitochondria, LC3B and VDAC, and ROS generation, reduced protein level of MnSOD in HDM induced-asthmatic mice. Moreover, rmDEK also increased DRP1 expression, PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. These effects were partially reversed in DEK-/- mice. In BEAS-2B cells, siDEK diminished the Parkin, LC3B, and DRP1 translocation to mitochondria, mtROS, TOM20, and mtDNA. ChIP-sequence analysis showed that DEK was enriched on the ATAD3A promoter and could positively regulate ATAD3A expression. Additionally, ATAD3A was highly expressed in HDM-induced asthma models and interacted with DRP1, and siATAD3A could down-regulate DRP1 and mtDNA-mediated mitochondrial oxidative damage. Conclusively, DEK deficiency alleviates airway inflammation in asthma by down-regulating PINK1-Parkin mitophagy, NLRP3 inflammasome activation, and apoptosis. The mechanism may be through the DEK/ATAD3A/DRP1 signaling axis. Our findings may provide new potential therapeutic targets for asthma treatment.


Asunto(s)
Asma , Mitofagia , Animales , Ratones , Dermatophagoides pteronyssinus , ADN Mitocondrial , Inflamasomas/metabolismo , Inflamación , Mitofagia/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Pyroglyphidae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Iran J Allergy Asthma Immunol ; 21(5): 524-536, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36341561

RESUMEN

MicroRNAs (miRNAs) can participate in airway remodeling by regulating immune molecule expression. Here, we aimed to identify the differential miRNAs involved in airway remodeling. Airway remodeling was induced by ovalbumin in female BALB/C mice. The differentially expressed miRNAs were screened with microarray. GO (Gene Ontology) and KEGG enrichment analysis was performed. The miRNA target gene network and miRNA target pathway network were constructed. Verification with real-time PCR and Western blot was performed. We identified 63 differentially expressed miRNAs (50 up-regulated and 13 down-regulated) in the lungs of ovalbumin-induced airway remodeling mice. Real-time PCR confirmed that 3 miRNAs (mmu-miR-1931, mmu-miR-712-5p, and mmu-miR-770-5p) were significantly up-regulated, and 4 miRNAs (mmu-miR-128-3p, mmu-miR-182-5p, mmu-miR-130b-3p, and mmu-miR-20b-5p) were significantly down-regulated. The miRNA target gene network analysis identified key mRNAs in the airway remodeling, such as Tnrc6b (trinucleotide repeat containing adaptor 6B), Sesn3 (sestrin 3), Baz2a (bromodomain adjacent to zinc finger domain 2a), and Cux1 (cut like homeobox 1). The miRNA target pathway network showed that the signal pathways such as MAPK (mitogen-activated protein kinase), PI3K/Akt (phosphoinositide 3-Kinase/protein kinase B), p53 (protein 53), and mTOR (mammalian target of rapamycin) were closely related to airway remodeling in asthma. Collectively, differential miRNAs involved in airway remodeling (such as mmu-miR-1931, mmu-miR-712-5p, mmu-miR-770-5p, mmu-miR-128-3p mmu-miR-182-5p, and mmu-miR-130b-3p) as well as their target genes (such as Tnrc6b, Sesn3, Baz2a, and Cux1) and pathways (such as MAPK, PI3K/Akt, p53, mTOR pathways) have been identified. Our findings may help to further understand the pathogenesis of airway remodeling.


Asunto(s)
MicroARNs , Proteínas Proto-Oncogénicas c-akt , Ratones , Femenino , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ovalbúmina , Proteína p53 Supresora de Tumor , Fosfatidilinositol 3-Quinasas/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/genética , Ratones Endogámicos BALB C , MicroARNs/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Perfilación de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo
10.
Mater Today Bio ; 16: 100430, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36157049

RESUMEN

Deoxyribonucleic acid (DNA) hydrogels combine the properties of DNAs and hydrogels, and adding functionalized DNAs is key to the wide application of DNA hydrogels. In stimuli-responsive DNA hydrogels, the DNA transcends its application in genetics and bridges the gap between different fields. Specifically, the DNA acts as both an information carrier and a bridge in constructing DNA hydrogels. The programmability and biocompatibility of DNA hydrogel make it change macroscopically in response to a variety of stimuli. In order to meet the needs of different scenarios, DNA hydrogels were also designed into microcapsules, beads, membranes, microneedle patches, and other forms. In this study, the stimuli were classified into single biological and non-biological stimuli and composite stimuli. Stimuli-responsive DNA hydrogels from the past five years were summarized, including but not limited to their design and application, in particular logic gate pathways and signal amplification mechanisms. Stimuli-responsive DNA hydrogels have been applied to fields such as sensing, nanorobots, information carriers, controlled drug release, and disease treatment. Different potential applications and the developmental pro-spects of stimuli-responsive DNA hydrogels were discussed.

11.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4814-4822, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164888

RESUMEN

The big brand of Chinese patent medicine, Fufang Danshen Prescription(FDP), effective in promoting blood circulation, resolving blood stasis, regulating qi, and relieving pain, is wide in clinical application and diverse in dosage forms and products, but its quality and price are uneven, which causes problems for doctors and patients. To clarify the key links and weakness of quality control leading to the quality difference of FDP products, the present study carried out a comprehensive evaluation of the whole production cycle of FDP based on the "high-quality Chinese patent medicine evaluation criteria" and analyzed the advantages and disadvantages of production and quality of different FDP products according to scores. The results showed that the scores of various products in the "raw materials selection" varied greatly. The highest score(S1) and the lowest score(S2) differed by more than 3 times, indicating that different manufacturers had inconsistent requirements for the selection of raw materials, leading to fundamental differences in the quality of raw materials. The scores in the "production process" varied slightly, with an average score of 66.8%. The manufacturer S8 obtained the highest score(84.0%), which indicated the emergence of intelligent manufacturing production. The scores(with the average score of 44.0%) in the "quality control" were lower than those of the previous two items, which was attributed to the fact that most FDP products only met the "qualified" benchmark required by the 2020 edition of Chinese Pharmacopoeia, and their consistency and high quality were both uncontrollable. The scores in the "post-marketing research" were the lowest(with an average score of 28.5%), and most manufacturers were scored 0, which reflected little attention paid. Only a few brand manufacturers were scored acceptably and they were willing to carry out relevant research on post-marketing evaluation. The evaluation results demonstrated the key links and weakness leading to the production and quality differences of FDP from different manufacturers. It is expected to improve the quality of FDP, promote the formation of the "high quality and good price" mechanism, and provide information for the centralized procurement of governments.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , China , Medicamentos Herbarios Chinos/análisis , Humanos , Medicamentos sin Prescripción , Prescripciones
12.
Anal Chim Acta ; 1228: 340312, 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36127008

RESUMEN

The illegal addition of melamine (MEL) into pet foods and infant milk powder has caused great concern among people. In this study, a point-of-care testing (POCT) method was developed by combining stimuli-responsive deoxyribonucleic acid (DNA) hydrogels with microfluidic chips to achieve portable and sensitive detection of MEL. With the MEL aptamer (MA) acting as a cross-linker, DNA hydrogel-coated gold nanoparticles (AuNPs) served as a basis for colorimetric detection and quantitative analysis. In the presence of MEL, it competitively binds to the aptamer, causing disintegration of the DNA hydrogels and a release of the coated AuNPs, making it possible to visually detect and quantitatively measure the MEL. Under optimal conditions, the detection range of MEL using DNA hydrogels was 0.1-100 µM and the limit of detection (LOD) was 42 nM. This portable, sensitive, and user-friendly field test equipment was developed to avoid the use of non-portable laboratory instruments. Furthermore, we combined microfluidic chips with the properties of DNA hydrogels, making it possible to quantitatively detect MEL by taking photos and analyzing the gray value using software in accordance with the different colors of copolymerization solutions after the reaction. The detection range of MEL using the microfluidic chip-based method was 0.2-50 µM, and the LOD was 37 nM. Neither trained operators nor large-scale instruments are needed for using this method to conduct portable and sensitive field detection of the targets, which highlights the methods excellent potential in food security, clinical tests, environmental monitoring, and other aspects.


Asunto(s)
Oro , Nanopartículas del Metal , ADN , Humanos , Hidrogeles , Microfluídica , Polvos , Triazinas
13.
Biomed Mater ; 17(6)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36108624

RESUMEN

There is a great need for small diameter vascular grafts among patients with cardiovascular diseases annually. However, continuous foreign body reactions and fibrosis capsules brought by biomaterials are both prone to poor vascular tissue regeneration. To address this problem, we fabricated a polycaprolactone (PCL) vascular graft incorporated with quercetin (PCL/QCT graft) in this study.In vitrocell assay showed that quercetin reduced the expressions of pro-inflammatory genes of macrophages while increased the expressions of anti-inflammatory genes. Furthermore,in vivoimplantation was performed in a rat abdominal aorta replacement model. Upon implantation, the grafts exhibited sustained quercetin release and effectively enhanced the regeneration of vascular tissue. The results revealed that quercetin improved endothelial layer formation along the lumen of the vascular grafts at four weeks. Furthermore, the thickness of vascular smooth muscle layers significantly increased in PCL/QCT group compared with PCL group. More importantly, the presence of quercetin stimulated the infiltration of a large amount of M2 phenotype macrophages into the grafts. Collectively, the above data reinforced our hypothesis that the incorporation of quercetin may be in favor of modulating the inflammatory microenvironment and improving vascular tissue regeneration and remodeling in vascular grafts.


Asunto(s)
Bioprótesis , Injerto Vascular , Animales , Materiales Biocompatibles , Prótesis Vascular , Poliésteres , Quercetina , Ratas
14.
Int Immunopharmacol ; 112: 109243, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36115279

RESUMEN

We investigated the regulatory role of miR-181b-5p in neutrophilic asthma and its mechanisms by targeting DEK. DEK, matrix metalloproteinase (MMP)-2, and MMP-9 were overexpressed and the miR-181b-5p was decreased in mice with neutrophilic asthma. DEK was a direct target of miR-181b-5p. In mouse model, miR-181b-5p agomir had an inhibitory effect on airway inflammation and remodeling. miR-181b-5p inhibited DEK/p-GSK-3ßSer9/ß-catenin/MMP-9 pathway activation by regulating Wnt ligands in BEAS-2B and 16HBE cells. The ability of supernatants from human bronchial epithelial cells (hBECs) co-stimulated with CXCL8 (IL-8) and miR-181b-5p to induce NETs was weaker than that of IL-8 alone. Moreover, DEK overexpression led to excessive mitochondrial dysfunction, including DRP1 up-regulation, p-DRP1ser637 and MFN2 down-regulation, mitochondrial membrane potential loss, excessive mtROS generation and mitochondrial incompleteness. Interestingly, all these phenotypes were rescued by Wnt inhibitor DKK-1 and miR-181b-5p agomir. Additionally, inhibition of DRP1 with Mdivi-1 decreased MMP-9 on BEAS-2B cells. Overall, miR-181b-5p could attenuate neutrophilic asthma through inhibition of NETs release, DEK/p-GSK-3ßSer9/ß-catenin/MMP-9 pathway, DEK/Wnt/DRP1/MMP-9 and mitochondria damage. It may become a new therapeutic target for neutrophilic asthma.


Asunto(s)
Asma , MicroARNs , Proteínas de Unión a Poli-ADP-Ribosa , Animales , Humanos , Ratones , Asma/metabolismo , beta Catenina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inflamación/metabolismo , Interleucina-8/metabolismo , Ligandos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
15.
Open Med (Wars) ; 17(1): 1158-1171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859797

RESUMEN

The aim of this study is to investigate the protective effects of glaucocalyxin A (GLA) on airways in mouse models of asthma, concerning the inflammatory mediators, Th1/Th2 subgroup imbalance, and Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Hematoxylin and eosin/periodic acid-Schiff staining was used to observe the pathological changes in lung tissues. Inflammatory cytokine contents in the bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay. Protein expression levels were detected with Western blot, immunohistochemistry, and immunofluorescence. In vivo studies showed that, in ovalbumin (OVA)-induced asthmatic mouse models, the GLA treatments reduced the airway hyperresponsiveness and the secretion of inflammatory cells, declined the proliferation of goblet cells, decreased the levels of IL-4, IL-5, and IL-13, and increased the contents of interferon-γ and IL-12. Moreover, GLA inhibited the protein expression levels of TLR4, MyD88, TRAF6, and NF-κB in OVA-induced asthmatic mouse models. Further in vitro studies showed that GLA inhibited the expression of NF-κB, p-IκBα, tumor necrosis factor-α, IL-6, and IL-1ß and blocked the nuclear transfer of NF-κB in lipopolysaccharide-stimulated RAW264.7 macrophages. Conclusively, GLA can inhibit the inflammatory responses in OVA-induced asthmatic mice and inhibit the release of inflammatory factors in LPS-induced RAW264.7 macrophages, which may be related to the inhibition of TLR4/NF-κB signaling pathway.

16.
Front Immunol ; 13: 853848, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711428

RESUMEN

Bronchial asthma is characterized by chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. MicroRNA (miRNA) has recently been implicated in the pathogenesis of asthma. However, the mechanisms of different miRNAs in asthma are complicated, and the mechanism of miRNA-182-5p in asthma is still unclear. Here, we aim to explore the mechanism of miRNA182-5p in asthma-related airway inflammation. Ovalbumin (OVA)-induced asthma model was established. MiRNA Microarray Analysis was performed to analyze the differentially expressed miRNAs in the asthma model. We found that the expression of miRNA-182-5p was significantly decreased in OVA-induced asthma. In vitro, IL-13 stimulation of BEAS-2B cells resulted in a significant up-regulation of NOX4 (nicotinamide adenine dinucleotide phosphate oxidase 4), accompanied by mitochondrial damage-induced apoptosis, NLRP3 (NOD-like receptor family pyrin domain-containing 3)/IL-1ß activation, and reduced miRNA-182-5p. In contrast, overexpression of miRNA-182-5p significantly inhibited epithelial cell apoptosis and NLRP3/IL-1ß activation. In addition, we found that miRNA-182-5p could bind to the 3' untranscripted region of NOX4 mRNA and inhibit epithelial cell inflammation by reducing oxidative stress and mitochondrial damage. In vivo, miRNA-182-5p agomir treatment significantly reduced the percentage of eosinophils in bronchoalveolar lavage fluid, and down-regulated Th2 inflammatory factors, including IL-4, IL-5, and OVA induced IL-13. Meanwhile, miRNA-182-5p agomir reduced the peribronchial inflammatory cell infiltration, goblet cell proliferation and collagen deposition. In summary, targeting miRNA-182-5p may provide a new strategy for the treatment of asthma.


Asunto(s)
Asma , MicroARNs , Animales , Asma/metabolismo , Inflamación/genética , Inflamación/metabolismo , Interleucina-13/genética , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , NADPH Oxidasa 4/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ovalbúmina/efectos adversos
18.
J Agric Food Chem ; 70(16): 4921-4933, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420033

RESUMEN

Bronchial asthma poses a considerable burden on both individual patients and public health. Sesamin is a natural lignan that relieves asthma. However, the potential regulatory mechanism has not been fully validated. In this study, we revealed the mechanism of sesamin in inhibiting airway inflammation of asthma. In cockroach extract (CRE)-induced asthmatic mice, sesamin efficiently inhibited inflammatory cell infiltration, expressions of total and CRE-specific IgE in serum, and inflammatory cytokines (including IL-4, 5, 13) in bronchoalveolar lavage fluid. Further study revealed that sesamin inhibited Th2 cells in the mediastinal lymph nodes and spleen, the expression of PTEN-induced putative kinase 1 (PINK1) and Parkin, and apoptosis of lung airway epithelial cells. In vitro, sesamin had no significant cytotoxicity to BEAS-2B cells. Sesamin significantly increased TNF-α/IL-4-induced superoxide dismutase (SOD), catalase (CAT), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2 related factor 2 (Nrf2), and decreased malondialdehyde. Sesamin also inhibited TNF-α/IL-4-induced mitochondrial reactive oxygen species, increased mitochondrial membrane potential, and reduced cell apoptosis as well as PINK1/Parkin expression and translocation to mitochondria. Conclusively, sesamin may relieve asthma airway inflammation by inhibiting mitophagy and mitochondrial apoptosis. Thus, sesamin may become a potential therapeutic agent for asthma.


Asunto(s)
Asma , Lignanos , Animales , Apoptosis , Asma/tratamiento farmacológico , Asma/genética , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Dioxoles , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Interleucina-4/metabolismo , Lignanos/metabolismo , Pulmón/metabolismo , Ratones , Mitocondrias/metabolismo , Mitofagia , Proteínas Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(2): 103-109, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35356877

RESUMEN

Objective To investigate the inhibitory effect of DEK targeting aptamer 64 (DTA-64) on airway inflammation and epithelial to mesenchymal transition (EMT) induced by ovalbumin (OVA) in asthmatic mice. Methods Thirty-two female BALB/c mice (8 weeks old) were randomly divided into PBS group, OVA model group, DTA-64 group (1 µg/mouse), and control aptamer group, with 8 in each. HE staining of lung tissues was used to detect inflammatory cell infiltration around the airways; immunohistochemical staining was used to detect DEK expression around the airways; ELISA was used to detect serum IgE, and Th2-type cytokines IL-4, IL-5, IL-13 and Th1-type cytokine IFN-γ in bronchoalveolar lavage fluid (BALF); Western blot was applied to detect the EMT-related proteins α-SMA, Snail+Slug, vimentin, and E-cadherin, and TGF-ß1/Smad, MAPK, PI3K, AKT, as well as mTOR in lung; and flow cytometry was used to observe the α-SMA expression in the lung single cell suspensions. Results DEK protein was highly expressed in the lung tissues of OVA group mice and decreased in the DTA-64 group mice; DTA-64 reduced the infiltration of eosinophils and neutrophils around the airways, down-regulated serum OVA-specific IgE and IL-4, IL-5, IL-13 in BALF, and up-regulated IFN-γ; DTA-64 also reduced the expressions of vimentin, α-SMA, Snail+Slug in the lung tissue, and up-regulated epithelial marker E-cadherin. DTA-64 inhibited the expressions of TGF-ß1 and its downstream canonical pathways Smad2/3 and Smad4, as well as the phosphorylation of non-canonical TGF-ß1 pathways ERK1/2, p38 MAPK, JNK and PI3K/AKT/mTOR. Conclusion DTA-64 may inhibit the airway inflammation and EMT induced by OVA in asthmatic mice via blocking TGF-ß1/Smad, MAPK and PI3K signaling pathways, thereby alleviating airway remodeling in asthma.


Asunto(s)
Asma , Factor de Crecimiento Transformador beta1 , Animales , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Ratones , Ratones Endogámicos BALB C , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120991, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35182923

RESUMEN

Three-dimensional (TD) deoxyribonucleic acid (DNA) tweezers were programmed for one-step identification and detection of ochratoxin A (OTA) and zearalenone (ZEN). The unfolding of the TD-DNA tweezers by aptamers specific to these two mycotoxins "turned" the fluorescent signals "on." The bonding of the aptamers to their corresponding targets in OTA and ZEN "turned" the fluorescent signals and the DNA tweezers "off." The detection limit of the TD-DNA tweezers for OTA and ZEN was 0.032 and 0.037 ng mL-1, respectively. The feasibility of this method was tested using two samples. Detection via this method increased the recovery of OTA and ZEN from 95.8% to 110.2%. Spike recovery and certified food products were used to detect applicability in actual situations. Analyte detection in complex samples using TD-DNA tweezers is rapid, as the process involves a single operational step. This proposed design has considerable potential for application in mycotoxin detection.


Asunto(s)
Aptámeros de Nucleótidos , Zearalenona , ADN , Contaminación de Alimentos/análisis , Límite de Detección , Ocratoxinas , Zearalenona/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA