Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(20): 22371-22385, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799339

RESUMEN

The occurrence and genesis of grain-coating chlorite were investigated in order to evaluate the impact of grain-coating chlorite on preserving porosity in the deep-buried Triassic Karamay volcaniclastic sandstones based on thin sections, scanning electron microscopy, and an electron probe. Grain-coating chlorite was formed during the eogenesis, originating from the precursor of smectite through the solid-state transformation (SST) mechanism. The hydration and dissolution of unstable, intermediately basic volcanic rock fragments provided essential Fe2+ and Mg2+ ions for the formation of grain-coating chlorite. Due to relatively high stability and low susceptibility to dissolution, acidic volcanic rock fragments could not promote chlorite formation but resulted in authigenic quartz and clays as pore-filling cements. This process would destroy reservoir properties. Under high hydraulic conditions, medium- to coarse-grained sandstone experienced saltation transport, creating significant velocity differentials and pressure differentials on grain surfaces. Subsequently, clay grains adhere to the surfaces, forming grain-coating chlorite during diagenesis with good continuity. In contrast, pebbly sandstone undergoes rolling transport, resulting in smaller velocity differentials on grain surfaces. This makes relatively ineffective clay adsorption and leads to discontinuous grain-coating chlorite in subsequent stages. Under weak hydraulic conditions, grains and clay particles in fine-grained sandstone undergo suspended transport, lacking mutual movement and velocity differentials. Clay particles cannot effectively cover particles but instead fill the pores between them. Therefore, continuous grain-coating chlorite is more commonly developed in the medium- to coarse-grained sandstones and is crucial for inhibiting quartz cementation with a coverage rate exceeding 80%. Inadequate coatings fail to inhibit quartz cementation effectively, while excessive coatings may block pore throats. Optimal protection of primary porosity could occur only when grain-coating chlorite is moderately developed.

2.
Micromachines (Basel) ; 15(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38675318

RESUMEN

Arterial stiffness has been proved to be an important parameter in the evaluation of cardiovascular diseases, and Pulse Wave Velocity (PWV) is a strong indicator of arterial stiffness. Compared to regional PWV (PWV among different arteries), local PWV (PWV within a single artery) outstands in providing higher precision in indicating arterial properties, as regional PWVs are highly affected by multiple parameters, e.g., variations in blood vessel lengths due to individual differences, and multiple reflection effects on the pulse waveform. However, local PWV is less-developed due to its high dependency on the temporal resolution in synchronized signals with usually low signal-to-noise ratios. This paper presents a method for the noninvasive simultaneous measurement of two local PWVs in both left and right radial arteries based on the Fiber Bragg Grating (FBG) technique via correlation analysis of the pulse pairs at the fossa cubitalis and at the wrist. Based on the measurements of five male volunteers at the ages of 19 to 21 years old, the average left radial PWV ranged from 9.44 m/s to 12.35 m/s and the average right radial PWV ranged from 11.50 m/s to 14.83 m/s. What is worth mentioning is that a stable difference between the left and right radial PWVs was observed for each volunteer, ranging from 2.27 m/s to 3.04 m/s. This method enables the dynamic analysis of local PWVs and analysis of their features among different arteries, which will benefit the diagnosis of early-stage arterial stiffening and may bring more insights into the diagnosis of cardiovascular diseases.

3.
Sci Rep ; 8(1): 1453, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362451

RESUMEN

The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid-Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confirmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large-scale intracontinental orogeny in the region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...