Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Hazard Mater ; 467: 133709, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38330650

Microplastics (MPs) from the incomplete degradation of agricultural mulch can stress the effectiveness of biofertilizers and ultimately affect the rhizosphere environment of crops. Yet, the involved mechanisms are poorly known and robust empirical data is generally lacking. Here, conventional polyethylene (PE) MPs and poly(butylene adipate-co-butylene terephthalate) (PBAT) / poly(lactic acid) (PLA) biodegradable MPs (PBAT-PLA BioMPs) were investigated to assess their potential impact on the rhizosphere environment of Brassica parachinensis in the presence of Bacillus amyloliquefaciens biofertilizer. The results revealed that both MPs caused different levels of inhibited crop both above- and belowground crop biomass (up to 50.11% and 57.09%, respectively), as well as a significant decrease in plant height (up to 48.63% and 25.95%, respectively), along with an imbalance of microbial communities. Transcriptomic analyses showed that PE MPs mainly affected root's vitamin metabolism, whereas PBAT-PLA BioMPs mainly interfered with the lipid's enrichment. Metabolomic analyses further indicated that PE MPs interfered with amino acid synthesis that involved in crops' oxidative stress, and that PBAT-PLA BioMPs mainly affected the pathways associated with root growth. Additionally, PBAT-PLA BioMPs had a bigger ecological negative impact than did PE MPs, as evidenced by more pronounced alterations in root antioxidant abilities, a higher count of identified differential metabolites, more robust interrelationships among rhizosphere parameters, and a more intricate pattern of impacts on rhizosphere metrics. This study highlights the MPs' impact on crop rhizosphere in a biofertilizer environment from a rhizosphere multi-omics perspective, and has theoretical implications for scientific application of biofertilizers.


Microplastics , Multiomics , Plastics , Rhizosphere , Polyethylene , Crops, Agricultural , Polyesters
2.
J Environ Manage ; 352: 120071, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38246103

The effectiveness of biofertilizers as a cost-effective crop yield enhancer can be compromised by residual soil pollutants. However, the impact of accumulated polyadipate/butylene terephthalate microplastics (PBAT-MPs) from biodegradable mulch films on biofertilizer application and the consequent growth of crop plants remains unclear. Here, the effects of different levels of PBAT-MPs in soil treated with Bacillus amyloliquefaciens biofertilizer were assessed in a four-week potted experiment. PBAT-MPs significantly decreased the growth-promoting effect of the biofertilizer on Brassica chinensis L., resulting in a notable reduction in both above- and belowground biomass (up to 52.91% and 57.53%, respectively), as well as nitrate and crude fiber contents (up to 12.18% and 13.64%, respectively). In the rhizosphere microenvironment, PBAT-MPs increased soil organic carbon by 2.63-fold and organic matter by 2.68-fold, while enhancing sucrase (from 67.55% to 108.89%) and cellulase (from 31.26% to 49.10%) activities. PBAT-MPs also altered the rhizospheric bacterial community composition/diversity, resulting in more complex microbial networks. With regard to microbial function, PBAT-MPs impacted carbon metabolic function by inhibiting the 3-hydroxypropionate/4-hydroxybutyrate fixation pathway and influencing chitin and lignin degradation processes. Overall, the rhizospheric microbial profiles (composition, function, and network interactions) were the main contributors to plant growth inhibition. This study provides a practical case and theoretical basis for rational use of biodegradable mulch films and indicates that the residue of biodegradable films needs pay attention.


Alkenes , Carbon , Microplastics , Plastics , Soil
3.
Drug Des Devel Ther ; 17: 3085-3101, 2023.
Article En | MEDLINE | ID: mdl-37854130

Purpose: Arecoline is one of the main toxic components of arecoline to cause oral mucosal lesions or canceration, which seriously affects the survival and life quality of patients. This study analyzed the mechanism of Jiawei Danxuan Koukang (JDK) in alleviating arecoline induced oral mucosal lesions, to provide new insights for the treatment of oral submucosal fibrosis (OSF) or cancerosis. Methods: Metabolomics was applied to analyze the composition of JDK and serum metabolites. The active ingredients of JDK were analyzed by the combined ultra-high performance liquid chromatography and mass spectrometry. The target network of JDK, metabolites and OSF was analyzed by network pharmacology, and molecular docking. Oral mucosal lesions and fibrosis were analyzed by HE and Masson staining. Cell differentiation, proliferation and apoptosis were detected. The expressions of α-SMA, Collagen I, Vimentin, Snail, E-cadherin, AR and NOTCH1 were detected by Western blot. Results: Arecoline induced the gradual atrophy and thinning of rat oral mucosal, collagen accumulation, the increase expressions of fibrosis-related proteins and Th17/Treg ratio. JDK inhibited arecoline-induced oral mucosal lesions and inflammatory infiltration. Arecoline induced changes of serum metabolites in Aminoacyl-tRNA biosynthesis, Alanine, aspartate and glutamate metabolism and Arginine biosynthesis pathways, which were reversed by M-JDK. Quercetin and AR were the active ingredients and key targets of JDK, metabolites and OSF interaction. Arecoline promoted the expression of AR protein, and the proliferation of oral fibroblasts. Quercetin inhibited the effect of arecoline on oral fibroblasts, but was reversed by AR overexpression. Arecoline induced NOTCH1 expression in CAL27 and SCC-25 cells, and promoted cell proliferation, but was reversed by M-JDK or quercetin. Conclusion: JDK improved the arecoline-induced OSF and serum metabolite functional pathway. Quercetin targeted AR protein to improve arecoline-induced OSF. JDK and quercetin inhibited arecoline-induced NOTCH1 protein expression in CAL27 and SCC-25 cells to play an anti-oral cancer role.


Arecoline , Oral Submucous Fibrosis , Humans , Rats , Animals , Arecoline/adverse effects , Chromatography, High Pressure Liquid , Network Pharmacology , Molecular Docking Simulation , Quercetin/pharmacology , Oral Submucous Fibrosis/etiology , Oral Submucous Fibrosis/metabolism , Oral Submucous Fibrosis/pathology , Mouth Mucosa/pathology , Fibroblasts , Collagen/pharmacology , Fibrosis , Mass Spectrometry
4.
J Org Chem ; 88(18): 13042-13048, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37647572

An efficient silver-mediated [2 + 2 + 1] cyclization protocol of ortho-propioloylbenzonitriles with elemental selenium for the synthesis of 4H-indeno[1,2-c][1,2]selenazol-4-ones has been developed. One C-Se bond, one N-Se bond, and one C-C bond were rapidly constructed in one step. The reaction might proceed via the formation of a highly reactive selenoketene intermediate, followed by intramolecular cyclization.

5.
Org Lett ; 25(17): 3094-3098, 2023 May 05.
Article En | MEDLINE | ID: mdl-37087758

We report a four-component ring-opening reaction of pyrroles via C-N bond cleavage. In this process, elemental sulfur is used as the sulfur source of thiazole and thioamide and the reductant of olefin. A series of benzothiazoles functionalized with thiopropionamides at the C2 position were synthesized using this method. A plausible reaction mechanism is proposed based on the concise control experiments.

6.
Front Plant Sci ; 13: 1040437, 2022.
Article En | MEDLINE | ID: mdl-36426155

As a functional probiotic, Bacillus subtilis can promote crop growth and improve nutrient utilization by various mechanisms, so it has been made into bioorganic fertilizer as a replacement for chemical fertilizer. However, the effects of B. subtilis bioorganic fertilizer application on the yield and quality of commercial crops of Brassica chinensis L., the soil physicochemical properties and the microflora have not been clarified. In this study, pot experiments were conducted using Brassica chinensis L. plants with four fertilization treatments: control without fertilization (CK), chemical fertilizer (CF), organic fertilizer (OF), and bioorganic fertilizer containing B. subtilis (BF). After 30 days of pot experiment, the results showed that BF efficiently improved plant height and biomass (1.20- and 1.93-fold, respectively); as well as significantly increasing soil available potassium and pH value. Using high-throughput sequencing, we examined the bacterial and fungal communities in the soil, and found that their diversity was remarkablely reduced in the BF treatment compared to CK group. A principal coordinate analysis also showed a clear separation of bacterial and fungal communities in the BF and CK groups. After application of B. subtilis bioorganic fertilizer, some beneficial bacteria (such as Bacillus and Ammoniphilus) and fungi (Trichoderma and Mortierella) were enriched. A network analysis indicated that bacteria were the dominant soil microbes and the presence of B. subtilis stimulated the colonization of beneficial microbial communities. In addition, predictive functional profiling demonstrated that the application of bioorganic fertilizer enhanced the function of mineral element metabolism and absorption and increased the relative abundance of saprotrophs. Overall, the application of bioorganic fertilizer effectively changed the soil microflora, improved the soil available potassium and pH value, and boosted the yield of Brassica chinensis L. This work has valuable implications for promoting the safe planting of facility vegetables and the sustainable development of green agriculture.

7.
Org Lett ; 24(34): 6272-6276, 2022 Sep 02.
Article En | MEDLINE | ID: mdl-35980745

A methodology involving the chemoselective synthesis of tetracyclic [1,3]oxazino[3,2-a]indol-4-one or tetracyclic [1,3]oxazino[3,2-a]indoline-4-one tethered with a medium-sized ring by cross dehydrogenative coupling (CDC) or nucleophilic addition (NA) reaction has been developed. [1,3]Oxazino[3,2-a]indol-4-one compounds fused with a medium-sized ring were constructed through a CDC reaction in the presence of I2 and K2CO3. Whereas, [1,3]oxazino[3,2-a]indoline-4-ones tethered with a medium-sized ring were obtained with a TfOH system by NA reaction.

8.
Mol Biol Rep ; 49(6): 5251-5264, 2022 Jun.
Article En | MEDLINE | ID: mdl-34480688

The ATP-binding cassette (ABC) transporter gene family plays a vital role in substance transportation, including secondary metabolites, and phytohormones across membranous structures. It is still uncovered in potato (Solanum tuberosum), grown worldwide as a 3rd important food crop. The current study identified a total of 54 Stabc genes in potato genome. The accumulative phylogenetic tree of Stabc with arabidopsis, divided into eight groups (ABCA to ABCH). ABCG was the most prominent group covering 90% of Stabc genes, followed by ABCB group. The number and architecture of exon-intron varied from gene to gene. In addition, the presence of stress-responsive elements in the regulatory regions depicted their role in environmental stress. Furthermore, the tissue-specific and stress-specific expression profiling of Stabc genes and their validation through real-time-qPCR analysis revealed their role in development and stress. The presented results provided useful information for further functional analysis of Stabc genes and can also use as a reference study for other important crops.


Solanum tuberosum , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Genome , Phylogeny , Plant Growth Regulators/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Stress, Physiological/genetics
9.
Nanomaterials (Basel) ; 11(11)2021 Nov 16.
Article En | MEDLINE | ID: mdl-34835850

This research reveals the improved performance of bioelectrodes made with amination-modified glucose oxidase (GOx-NH2) and carboxyl-functionalized mesoporous carbon (OMC-COOH). Results showed that when applied with 10 mM EDC amination, the functional groups of NH2 were successfully added to GOx, according to the analysis of 1H-NMR, elemental composition, and FTIR spectra. Moreover, after the aminated modification, increased enzyme immobilization (124.01 ± 1.49 mg GOx-NH2/g OMC-COOH; 2.77-fold increase) and enzyme activity (1.17-fold increase) were achieved, compared with those of non-modified GOx. Electrochemical analysis showed that aminated modification enhanced the peak current intensity of Nafion/GOx-NH2/OMC-COOH (1.32-fold increase), with increases in the charge transfer coefficient α (0.54), the apparent electron transfer rate constant ks (2.54 s-1), and the surface coverage Γ (2.91 × 10-9 mol·cm-2). Results showed that GOx-NH2/OMC-COOH exhibited impressive electro-activity and a favorable anodic reaction.

10.
Org Lett ; 23(15): 5911-5916, 2021 Aug 06.
Article En | MEDLINE | ID: mdl-34283626

An efficient and atom-economical silver-mediated [2 + 2 + 1] cyclization protocol for the synthesis of 3,4-fused-ring-substituted and 2,5-unsubstituted selenophenes or thiophenes has been developed. Two C-Se/C-S bonds and one C-C bond were rapidly constructed in one step. Readily accessible substrates, commercially available elemental selenium/sulfur, and good functional group tolerance make this procedure attractive for the synthesis of π-conjugated material molecules.

11.
J Org Chem ; 84(3): 1379-1386, 2019 02 01.
Article En | MEDLINE | ID: mdl-30608685

A novel methodology for the stereoselective synthesis of dihydroisobenzofuran derivatives is described in this paper. The procedure was realized by the bifunctional TBAF catalyzed selective O-nucleophilic cyclization of enaminone with intramolecular alkyne under mild and non-metal-mediated conditions. The results of control experiments suggested that the cation-π interaction and basicity, offered by TBAF, might be indispensable for the isomerization of enaminone and the formation of carbon-oxygen bond.

...