Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nat Commun ; 15(1): 3270, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627364

RESUMEN

Epigenetic defects caused by hereditary or de novo mutations are implicated in various human diseases. It remains uncertain whether correcting the underlying mutation can reverse these defects in patient cells. Here we show by the analysis of myotonic dystrophy type 1 (DM1)-related locus that in mutant human embryonic stem cells (hESCs), DNA methylation and H3K9me3 enrichments are completely abolished by repeat excision (CTG2000 expansion), whereas in patient myoblasts (CTG2600 expansion), repeat deletion fails to do so. This distinction between undifferentiated and differentiated cells arises during cell differentiation, and can be reversed by reprogramming of gene-edited myoblasts. We demonstrate that abnormal methylation in DM1 is distinctively maintained in the undifferentiated state by the activity of the de novo DNMTs (DNMT3b in tandem with DNMT3a). Overall, the findings highlight a crucial difference in heterochromatin maintenance between undifferentiated (sequence-dependent) and differentiated (sequence-independent) cells, thus underscoring the role of differentiation as a locking mechanism for repressive epigenetic modifications at the DM1 locus.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/genética , Heterocromatina/genética , Diferenciación Celular/genética , Metilación de ADN , Epigénesis Genética
2.
Mol Ther Nucleic Acids ; 32: 622-636, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37200862

RESUMEN

Antisense oligonucleotide (ASO) therapies for myotonic dystrophy type 1 (DM1) are based on elimination of transcripts containing an expanded repeat or inhibition of sequestration of RNA-binding proteins. This activity is achievable by both degradation of expanded transcripts and steric hindrance, although it is unknown which approach is superior. We compared blocking ASOs with RNase H-recruiting gapmers of equivalent chemistries. Two DMPK target sequences were selected: the triplet repeat and a unique sequence upstream thereof. We assessed ASO effects on transcript levels, ribonucleoprotein foci and disease-associated missplicing, and performed RNA sequencing to investigate on- and off-target effects. Both gapmers and the repeat blocker led to significant DMPK knockdown and a reduction in (CUG)exp foci. However, the repeat blocker was more effective in MBNL1 protein displacement and had superior efficiency in splicing correction at the tested dose of 100 nM. By comparison, on a transcriptome level, the blocking ASO had the fewest off-target effects. In particular, the off-target profile of the repeat gapmer asks for cautious consideration in further therapeutic development. Altogether, our study demonstrates the importance of evaluating both on-target and downstream effects of ASOs in a DM1 context, and provides guiding principles for safe and effective targeting of toxic transcripts.

3.
NAR Genom Bioinform ; 4(1): lqac016, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35274098

RESUMEN

In patients with myotonic dystrophy type 1 (DM1), dysregulation of RNA-binding proteins like MBNL and CELF1 leads to alternative splicing of exons and is thought to induce a return to fetal splicing patterns in adult tissues, including the central nervous system (CNS). To comprehensively evaluate this, we created an atlas of developmentally regulated splicing patterns in the frontal cortex of healthy individuals and DM1 patients, by combining RNA-seq data from BrainSpan, GTEx and DM1 patients. Thirty-four splice events displayed an inclusion pattern in DM1 patients that is typical for the fetal situation in healthy individuals. The regulation of DM1-relevant splicing patterns could partly be explained by changes in mRNA expression of the splice regulators MBNL1, MBNL2 and CELF1. On the contrary, interindividual differences in splicing patterns between healthy adults could not be explained by differential expression of these splice regulators. Our findings lend transcriptome-wide evidence to the previously noted shift to fetal splicing patterns in the adult DM1 brain as a consequence of an imbalance in antagonistic MBNL and CELF1 activities. Our atlas serves as a solid foundation for further study and understanding of the cognitive phenotype in patients.

4.
Methods Mol Biol ; 2383: 197-210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34766291

RESUMEN

Cationic cell-penetrating peptides spontaneously associate with negatively charged oligonucleotides to form submicron nanoparticles, so-called polyplexes. Contact with cells leads to endosomal uptake of these nanoparticles. Oligonucleotide activity critically depends on endosomal release and finally dissociation of polyplexes. Fluorescence provides a highly powerful means to follow the spatial dynamics of oligonucleotide uptake, trafficking and decomplexation, in particular when combined with markers of subcellular compartments that enable a quantitative analysis of colocalization and thereby mapping of trafficking routes. In this chapter, we describe protocols for a highly defined formation of polyplexes. We then point out the use of fluorescent fusion proteins to identify subcellular trafficking compartments and image analysis protocols to obtain quantitative information on trafficking routes and endosomal release.


Asunto(s)
Péptidos de Penetración Celular , Péptidos de Penetración Celular/metabolismo , Endosomas , Oligonucleótidos , Oligonucleótidos Antisentido
5.
Stem Cell Rev Rep ; 17(3): 878-899, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33349909

RESUMEN

The intrinsic regenerative capacity of skeletal muscle makes it an excellent target for cell therapy. However, the potential of muscle tissue to renew is typically exhausted and insufficient in muscular dystrophies (MDs), a large group of heterogeneous genetic disorders showing progressive loss of skeletal muscle fibers. Cell therapy for MDs has to rely on suppletion with donor cells with high myogenic regenerative capacity. Here, we provide an overview on stem cell lineages employed for strategies in MDs, with a focus on adult stem cells and progenitor cells resident in skeletal muscle. In the early days, the potential of myoblasts and satellite cells was explored, but after disappointing clinical results the field moved to other muscle progenitor cells, each with its own advantages and disadvantages. Most recently, mesoangioblasts and pericytes have been pursued for muscle cell therapy, leading to a handful of preclinical studies and a clinical trial. The current status of (pre)clinical work for the most common forms of MD illustrates the existing challenges and bottlenecks. Besides the intrinsic properties of transplantable cells, we discuss issues relating to cell expansion and cell viability after transplantation, optimal dosage, and route and timing of administration. Since MDs are genetic conditions, autologous cell therapy and gene therapy will need to go hand-in-hand, bringing in additional complications. Finally, we discuss determinants for optimization of future clinical trials for muscle cell therapy. Joined research efforts bring hope that effective therapies for MDs are on the horizon to fulfil the unmet clinical need in patients.


Asunto(s)
Distrofias Musculares , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Músculos , Distrofias Musculares/terapia , Mioblastos , Células Madre , Resultado del Tratamiento
7.
Methods Mol Biol ; 2056: 187-202, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31586349

RESUMEN

Aberrant RNA structure plays a central role in the molecular mechanisms guided by repeat RNAs in diseases like myotonic dystrophy (DM), C9orf72-linked amyotrophic lateral sclerosis (ALS) and fragile X tremor/ataxia syndrome (FXTAS). Much knowledge remains to be gained about how these repeat-expanded transcripts are actually folded, especially regarding the properties specific to very long and interrupted repeats. RNA structure can be interrogated by chemical as well as enzymatic probes. These probes usually bind or cleave single-stranded nucleotides, which can subsequently be detected using reverse transcriptase primer extension. In this chapter, we describe methodology for in vitro synthesis and structure probing of expanded CUG repeat RNAs associated with DM type 1 and approaches for the associated data analysis.


Asunto(s)
Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , ARN/química , Repeticiones de Trinucleótidos , Humanos , Técnicas In Vitro , Modelos Moleculares , Conformación de Ácido Nucleico , Expansión de Repetición de Trinucleótido
8.
Methods Mol Biol ; 2063: 119-138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31667767

RESUMEN

Antisense oligonucleotides (AON) have been intensively studied as tools in molecular cell biology and as novel therapeutics in various diseases over the past two decades. Especially cellular uptake and endosomal release of AONs are topics of interest, as these are crucial steps in reaching the subcellular AON target sites and achieving biological activity. We used cell-penetrating peptides (CPPs) to enhance uptake and endosomal release of AONs, and monitored these two processes and the subsequent fate of the AONs by advanced fluorescence microscopy in living cells. In this chapter, we discuss the use of automated time-lapse confocal laser scanning microscopy (CLSM) to follow AON uptake and trafficking in time, fluorescence lifetime imaging microscopy (FLIM) to distinguish between free and AON-bound fluorophore, and fluorescence correlation spectroscopy (FCS) to measure subcellular AON concentrations and molecular associations. Additionally, we expand on the analysis of these microscopy data.


Asunto(s)
Transporte Biológico/fisiología , Péptidos de Penetración Celular/química , Sistemas de Liberación de Medicamentos/métodos , Oligonucleótidos Antisentido/química , Células Cultivadas , Endosomas/metabolismo , Fluorescencia , Humanos , Microscopía Confocal , Microscopía Fluorescente , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia
9.
Int J Mol Sci ; 20(22)2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766224

RESUMEN

The congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG)n repeat in DMPK and DM1-AS. The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM's most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing. We found that excision of the repeat restored the ability of cDM myoblasts to engage in myogenic fusion, preventing the ensuing myotubes from remaining immature. Although the cDM-typical epigenetic status of the DM1 locus and the expression of genes therein were not altered upon removal of the repeat, analyses at the transcriptome and proteome level revealed that early abnormalities in the temporal expression of differentiation regulators, myogenic progression markers, and alternative splicing patterns before and immediately after the onset of differentiation became normalized. Our observation that molecular and cellular features of cDM are reversible in vitro and can be corrected by repeat-directed genome editing in muscle progenitors, when already committed and poised for myogenic differentiation, is important information for the future development of gene therapy for different forms of myotonic dystrophy type 1 (DM1).


Asunto(s)
Mioblastos/patología , Distrofia Miotónica/genética , Repeticiones de Trinucleótidos , Línea Celular , Epigénesis Genética , Edición Génica , Terapia Genética , Humanos , Desarrollo de Músculos , Mioblastos/citología , Mioblastos/metabolismo , Distrofia Miotónica/patología , Distrofia Miotónica/terapia , Proteína Quinasa de Distrofia Miotónica/genética
10.
FASEB J ; 33(10): 11314-11325, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31311315

RESUMEN

Antisense oligonucleotides (ASOs) are a promising class of therapeutics that are starting to emerge in the clinic. Determination of intracellular concentrations required for biologic effects and identification of effective delivery vehicles are crucial for understanding the mode of action and required dosing. Here, we investigated which nuclear oligonucleotide concentration is needed for a therapeutic effect for a triplet repeat-targeting ASO in a muscle cell model of myotonic dystrophy type 1 (DM1). For cellular delivery, ASOs were complexed into nanoparticles using the cationic cell-penetrating peptides nona-arginine and PepFect14 (PF14). Although both peptides facilitated uptake, only PF14 led to a dose-dependent correction of disease-typical abnormal splicing. In line with this observation, time-lapse confocal microscopy demonstrated that only PF14 mediated translocation of the ASOs to the nucleus, which is the main site of action. Through fluorescence lifetime imaging, we could distinguish intact oligonucleotide from free fluorophore, showing that PF14 also shielded the ASOs from degradation. Finally, we employed a combination of live-cell fluorescence correlation spectroscopy and immunofluorescence microscopy and demonstrated that intranuclear blocking-type oligonucleotide concentrations in the upper nanomolar range were required to dissolve nuclear muscleblind-like protein 1 foci, a hallmark of DM1. Our findings have important implications for the clinical use of ASOs in DM1 and provide a basis for further research on other types of ASOs.-Van der Bent, M. L., Paulino da Silva Filho, O., Willemse, M., Hällbrink, M., Wansink, D. G., Brock, R. The nuclear concentration required for antisense oligonucleotide activity in myotonic dystrophy cells.


Asunto(s)
Núcleo Celular/genética , Distrofia Miotónica/genética , Oligonucleótidos Antisentido/genética , Células Cultivadas , Humanos , Músculo Esquelético/fisiología , Mioblastos/fisiología , Oligonucleótidos/genética
11.
Int J Mol Sci ; 20(15)2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357652

RESUMEN

CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Terapia Genética , Distrofia Miotónica/genética , Distrofia Miotónica/terapia , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Marcación de Gen , Estudios de Asociación Genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Humanos , Expansión de Repetición de Trinucleótido , Repeticiones de Trinucleótidos
12.
BMC Med Educ ; 19(1): 178, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31151456

RESUMEN

BACKGROUND: Study motivation and knowledge retention benefit from regular student self-assessments. Inclusion of certainty-based learning (CBL) in computer-assisted formative tests may further enhance this by enabling students to identify whether they are uninformed or misinformed regarding the topics tested, which may trigger future study actions including instructor consultation. METHODS: Using a cross-over study design involving two out of thirteen computer-assisted formative assessments (CAFAs) of a first-year cell biology course, we compared student-instructor interactions, student learning experiences and final exam scores between two (bio)medical science student cohorts who worked with different CBL-containing CAFAs. RESULTS: A total of 389 students participated in the study. After completion 159 (41%) filled in a questionnaire on their experience with CBL during supervised CAFAs. In the control group the median duration of student-instructor interactions was 90 s (range 60-140 s), and this increased with 20 s to 110 s (range 60-150 s) in the group working with a CBL-based CAFA. The number of interactions was similar in both groups (0.22 per student per hour, regardless of CBL inclusion). Forty percent of the students expected that CBL would positively influence their study behavior, and 23% also anticipated a positive effect on examination scores. Student examination scores, however, were not affected by CBL. Almost half of the students (43%) were in favor of CBL inclusion in future computer-assisted learning modules, whereas 33% did not see merit in including CBL in CAFAs. CONCLUSIONS: Incorporation of CBL in a single formative assessment led to a slight increase in student-instructor interaction times, but had effect neither on the number of student-instructor interactions nor on exam scores. CBL inclusion positively influenced student's appreciation of the coursework, presumably by helping students to evaluate their mastery level and identify misconceptions. A more extensive enrollment of CBL beyond an individual formative assessment, throughout a course or a curriculum, may possibly reveal positive effects on study efficacy.


Asunto(s)
Evaluación Educacional/métodos , Estudiantes de Medicina/psicología , Adolescente , Instrucción por Computador/métodos , Estudios Cruzados , Femenino , Retroalimentación Formativa , Humanos , Masculino , Adulto Joven
13.
PLoS One ; 14(5): e0217317, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31116797

RESUMEN

Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder caused by the expression of trinucleotide repeat-containing DMPK transcripts. Abnormally expanded (CUG)n repeats in these transcripts form hairpin-like structures that cause the RNA to accumulate in the cell nucleus by sequestering isoforms of the Muscleblind (MBNL) family, tissue-specific regulators of developmentally programmed, post-transcriptional processes in RNA metabolism. Through this mechanism, the function of MBNL in RNA processing becomes dominantly perturbed, which eventually leads to aberrant alternative splicing and the expression of foetal splice variants of a wide variety of proteins, including the MBNL isoforms themselves. Here, we employ a patient-derived muscle cell model for DM1 to examine in detail the expression of MBNL RNA and protein variants during myogenic differentiation. This DM1 model consists of a panel of isogenic myoblast cell lines that either contain a pathogenic DMPK allele with a congenital mutation of 2600 triplets, or lack this expanded repeat through CRISPR/Cas9-mediated gene editing. We found that the temporal expression levels of MBNL1, MBNL2 and MBNL3 RNAs are not influenced by presence of the (CTG)2600 repeat during myogenesis in vitro. However, throughout myoblast proliferation and differentiation to myotubes a disproportionate inclusion of MBNL1 exon 5 and MBNL2 exons 5 and 8 occurs in cells with the (CTG)2600 repeat. As a consequence, a reduced quantity and imbalanced collection of splice variants of MBNL1 and MBNL2 accumulates in both the cytoplasm and the nucleus of DM1 myoblasts and myotubes. We thus propose that both the quantitative and qualitative changes in the intracellular partitioning of MBNL proteins are a pivotal cause of skeletal muscle problems in DM1, starting already in muscle progenitor cells.


Asunto(s)
Distrofia Miotónica/genética , Proteínas de Unión al ARN/genética , Expansión de Repetición de Trinucleótido , Empalme Alternativo , Línea Celular , Exones , Edición Génica , Expresión Génica , Humanos , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mioblastos/metabolismo , Mioblastos/patología , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/genética , Proteínas de Unión al ARN/metabolismo
14.
RNA ; 25(4): 481-495, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30700578

RESUMEN

Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disorder caused by expansion of a CTG repeat in the 3'-untranslated region (UTR) of the DMPK gene. Mutant DMPK transcripts form aberrant structures and anomalously associate with RNA-binding proteins (RBPs). As a first step toward better understanding of the involvement of abnormal DMPK mRNA folding in DM1 manifestation, we used SHAPE, DMS, CMCT, and RNase T1 structure probing in vitro for modeling of the topology of the DMPK 3'-UTR with normal and pathogenic repeat lengths of up to 197 CUG triplets. The resulting structural information was validated by disruption of base-pairing with LNA antisense oligonucleotides (AONs) and used for prediction of therapeutic AON accessibility and verification of DMPK knockdown efficacy in cells. Our model for DMPK RNA structure demonstrates that the hairpin formed by the CUG repeat has length-dependent conformational plasticity, with a structure that is guided by and embedded in an otherwise rigid architecture of flanking regions in the DMPK 3'-UTR. Evidence is provided that long CUG repeats may form not only single asymmetrical hairpins but also exist as branched structures. These newly identified structures have implications for DM1 pathogenic mechanisms, like sequestration of RBPs and repeat-associated non-AUG (RAN) translation.


Asunto(s)
Regiones no Traducidas 3' , Secuencias Invertidas Repetidas , Proteína Quinasa de Distrofia Miotónica/genética , Repeticiones de Trinucleótidos , Emparejamiento Base , Expresión Génica , Humanos , Modelos Genéticos , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/metabolismo , Conformación de Ácido Nucleico , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Oligonucleótidos Antisentido/síntesis química , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Front Neurol ; 9: 368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892259

RESUMEN

Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.

16.
Sci Rep ; 8(1): 4181, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29520012

RESUMEN

Antisense oligonucleotide (AON)-based therapies hold promise for a range of neurodegenerative and neuromuscular diseases and have shown benefit in animal models and patients. Success in the clinic is nevertheless still limited, due to unfavourable biodistribution and poor cellular uptake of AONs. Extensive research is currently being conducted into the formulation of AONs to improve delivery, but thus far there is no consensus on which of those strategies will be the most effective. This systematic review was designed to answer in an unbiased manner which delivery strategies most strongly enhance the efficacy of AONs in animal models of heritable neurodegenerative and neuromuscular diseases. In total, 95 primary studies met the predefined inclusion criteria. Study characteristics and data on biodistribution and toxicity were extracted and reporting quality and risk of bias were assessed. Twenty studies were eligible for meta-analysis. We found that even though the use of delivery systems provides an advantage over naked AONs, it is not yet possible to select the most promising strategies. Importantly, standardisation of experimental procedures is warranted in order to reach conclusions about the most efficient delivery strategies. Our best practice guidelines for future experiments serve as a step in that direction.


Asunto(s)
Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Trastornos Heredodegenerativos del Sistema Nervioso , Enfermedades Neuromusculares , Oligonucleótidos Antisentido , Animales , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/terapia , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/terapia , Oligonucleótidos Antisentido/farmacocinética , Oligonucleótidos Antisentido/uso terapéutico
17.
Biochim Biophys Acta Gene Regul Mech ; 1860(6): 740-749, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28435090

RESUMEN

In yeast and higher eukaryotes nuclear retention of transcripts may serve in control over RNA decay, nucleocytoplasmic transport and premature cytoplasmic appearance of mRNAs. Hyperadenylation of RNA is known to be associated with nuclear retention, but the cause-consequence relationship between hyperadenylation and regulation of RNA nuclear export is still unclear. We compared polyadenylation status between normal and expanded DMPK transcripts in muscle cells and tissues derived from unaffected individuals and patients with myotonic dystrophy type 1 (DM1). DM1 is an autosomal dominant disorder caused by (CTG)n repeat expansion in the DMPK gene. DM1 etiology is characterized by an almost complete block of nuclear export of DMPK transcripts carrying a long (CUG)n repeat, including aberrant sequestration of RNA-binding proteins. We show here by use of cell fractionation, RNA size separation and analysis of poly(A) tail length that a considerable fraction of transcripts from the normal DMPK allele is also retained in the nucleus (~30%). They carry poly(A) tails with an unusually broad length distribution, ranging between a few dozen to >500 adenosine residues. Remarkably, expanded DMPK (CUG)n transcripts from the mutant allele, almost exclusively nuclear, carry equally long poly(A) tails. Our findings thus suggest that nuclear retention may be a common feature of regulation of DMPK RNA expression. The typical forced nuclear residence of expanded DMPK transcripts affects this regulation in tissues of DM1 patients, but not through hyperadenylation.


Asunto(s)
Núcleo Celular/metabolismo , Regulación Enzimológica de la Expresión Génica , Proteína Quinasa de Distrofia Miotónica/biosíntesis , Poli A , Expansión de Repetición de Trinucleótido , Alelos , Línea Celular Transformada , Núcleo Celular/genética , Núcleo Celular/patología , Humanos , Distrofia Miotónica/enzimología , Distrofia Miotónica/genética , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/genética
18.
Nucleic Acid Ther ; 27(3): 144-158, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28375678

RESUMEN

Clinical efficacy of antisense oligonucleotides (AONs) for the treatment of neuromuscular disorders depends on efficient cellular uptake and proper intracellular routing to the target. Selection of AONs with highest in vitro efficiencies is usually based on chemical or physical methods for forced cellular delivery. Since these methods largely bypass existing natural mechanisms for membrane passage and intracellular trafficking, spontaneous uptake and distribution of AONs in cells are still poorly understood. Here, we report on the unassisted uptake of naked AONs, so-called gymnosis, in muscle cells in culture. We found that gymnosis works similarly well for proliferating myoblasts as for terminally differentiated myotubes. Cell biological analyses combined with microscopy imaging showed that a phosphorothioate backbone promotes efficient gymnosis, that uptake is clathrin mediated and mainly results in endosomal-lysosomal accumulation. Nuclear localization occurred at a low level, but the gymnotically delivered AONs effectively modulated the expression of their nuclear RNA targets. Chloroquine treatment after gymnotic delivery helped increase nuclear AON levels. In sum, we demonstrate that gymnosis is feasible in proliferating and non-proliferating muscle cells and we confirm the relevance of AON chemistry for uptake and intracellular trafficking with this method, which provides a useful means for bio-activity screening of AONs in vitro.


Asunto(s)
Núcleo Celular/química , Endocitosis , Endosomas/química , Fibras Musculares Esqueléticas/química , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/química , Análisis de Varianza , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Cloroquina/farmacología , Clatrina/metabolismo , Humanos , Hidrazonas/farmacología , Ratones , Ratones Transgénicos , Microscopía Confocal , Oligonucleótidos Antisentido/síntesis química , Oligonucleótidos Antisentido/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , ARN/efectos de los fármacos , ARN/genética , ARN/metabolismo
19.
RNA Biol ; 14(10): 1374-1388, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28102759

RESUMEN

The unstable (CTG·CAG)n trinucleotide repeat in the myotonic dystrophy type 1 (DM1) locus is bidirectionally transcribed from genes with terminal overlap. By transcription in the sense direction, the DMPK gene produces various alternatively spliced mRNAs with a (CUG)n repeat in their 3' UTR. Expression in opposite orientation reportedly yields (CAG)n-repeat containing RNA, but both structure and biologic significance of this antisense gene (DM1-AS) are largely unknown. Via a combinatorial approach of computational and experimental analyses of RNA from unaffected individuals and DM1 patients we discovered that DM1-AS spans >6 kb, contains alternative transcription start sites and uses alternative polyadenylation sites up- and downstream of the (CAG)n repeat. Moreover, its primary transcripts undergo alternative splicing, whereby the (CAG)n segment is removed as part of an intron. Thus, in patients a mixture of DM1-AS RNAs with and without expanded (CAG)n repeat are produced. DM1-AS expression appears upregulated in patients, but transcript abundance remains very low in all tissues analyzed. Our data suggest that DM1-AS transcripts belong to the class of long non-coding RNAs. These and other biologically relevant implications for how (CAG)n-expanded transcripts may contribute to DM1 pathology can now be explored experimentally.


Asunto(s)
Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , ARN sin Sentido/genética , ARN Mensajero/química , Expansión de Repetición de Trinucleótido , Regiones no Traducidas 3' , Adolescente , Empalme Alternativo , Estudios de Casos y Controles , Línea Celular , Biología Computacional/métodos , Humanos , Masculino , Proteína Quinasa de Distrofia Miotónica/química , Sistemas de Lectura Abierta , Poliadenilación , ARN sin Sentido/química , ARN Largo no Codificante/genética , ARN Mensajero/genética , Sitio de Iniciación de la Transcripción , Regulación hacia Arriba
20.
Mol Ther ; 25(1): 24-43, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28129118

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG)n-repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5' or 3' unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair. Complete and precise excision of the repeat tract from normal and large expanded DMPK alleles in myoblasts from unaffected individuals, DM1 patients, and a DM1 mouse model could be achieved at high frequency by dual CRISPR/Cas9-cleavage at either side of the (CTG⋅CAG)n sequence. Importantly, removal of the repeat appeared to have no detrimental effects on the expression of genes in the DM1 locus. Moreover, myogenic capacity, nucleocytoplasmic distribution, and abnormal RNP-binding behavior of transcripts from the edited DMPK gene were normalized. Dual sgRNA-guided excision of the (CTG⋅CAG)n tract by CRISPR/Cas9 technology is applicable for developing isogenic cell lines for research and may provide new therapeutic opportunities for patients with DM1.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Inestabilidad Genómica , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido , Repeticiones de Trinucleótidos , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Codón , Modelos Animales de Enfermedad , Endonucleasas/genética , Fibroblastos/metabolismo , Expresión Génica , Orden Génico , Sitios Genéticos , Humanos , Ratones , ARN Guía de Kinetoplastida , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...